Supplementary Tab	le 1. Expam	oles of microbia	l delignification	of different raw	^v materials
--------------------------	-------------	------------------	-------------------	------------------	------------------------

Microorganism	Raw Material	Lignin loss	Improve	Improve Ethanol	Remarks	Reference
			Hydrolysis ^a	Production ^a		
C. subvermispora, D. squalens, P. ostreatus and T. versicolor	Beech wood chips	13-21%	n.r.	High with C. subvermispora	Saved 15% of the electricity needed for the subsequent ethanolysis	Itoh <i>et al.</i> , 2003
C. lacerata, S. hirsutum and P. brumalis	Japanese red pine chips	11-15%	Low-Medium	n.r.		Lee et al., 2007
<i>C. subvermispora</i> and <i>G. australe</i>	Wood chips from Monterey pine and	9%	High (Monterey pine)	Low-Medium in SHF.		Muñoz <i>et al.</i> , 2007
	silver wattle		No (silver wattle)	Very high (Montery pine) and Low (silver wattle) in SSF		
P. chrysosporium, P. cinnabarinus, RCK-1 and RCK-3	Wheat straw and mesquite	8-23%	Medium	Medium (wheat straw) and Low (mesquite)	Lower acid load for hydrolysis	Kuhar <i>et al.</i> , 2008
Bacterial and fungal strains	Sugarcane trash	33-92%	n.r.	n.r.	Cellulase production	Singh <i>et al.</i> , 2008
T. versicolor	Wheat straw and steam exploded wheat straw	31-75%	n.r.	n.r.	Better delignification in steam-exploded material	Zhang <i>et al.</i> , 2008
P. chrysosporium	Cotton stalks	19-36%	No	No		Shi et al., 2009
Euc-1 and I. lacteus	Wheat straw	n.r.	Medium-High	n.r.	Increase cellulose/lignin ratio	Dias et al., 2010
C. subvermispora	Corn stover	Up to 32%	High-Very high	Very high	Minimal cellulose loss	Wan and Li, 2010

I. lacteus	Cornstalks	75-80%	Low-Medium	n.r.		Yu et al., 2010
<i>T. versicolor</i> (strain deficient on CDH)	Chinese kenaf pulp pretreated with soda- anthraquinone cooking	n.r.	High-Very high	n.r.		Canam <i>et al.</i> , 2011
P. cinnabarinus	Mesquite and Spanish flag	6-12%	Medium	n.r.	Reduced phenolic content in acid hydrolysate	Gupta <i>et al.</i> , 2011
Different white-rot fungi	Wheat straw	Up to 47%	Low-Very high	Low-Very high		Salvachúa <i>et al.</i> , 2011
P. chrysosporium	Wheat straw	30%	n.r.	n.r.		Singh et al., 2011

n.r. not reported

^a Low, increments lower than 20%; Medium, increments between 20-50%; High, increments between 50-90%; Very high, increments higher than 90%

		D	Improve fermentation parameters ^a				Increase Tole	erance		
Strategy	Strain	Kaw Material	Ethanol Concentration	Yield	Productivity	Weak acids	Furan derivatives	Phenolic compounds	Remarks	Reference
Co-culture	A. nidulans FLZ10	Steam exploded corn stover	Very high	Very high	Very high	Yes	Yes	n.r.	Little competition with <i>S</i> . <i>cerevisiae</i>	Yu <i>et al</i> ., 2011
Adaptation	Adapted P. stipitis NRRL Y-7124 and S. cerevisiae NRRL Y- 12632	Synthetic media	No	No	Very high	No	Yes	No		Liu <i>et al</i> ., 2005
	Adapted xylose- utilizing S. cerevisiae	Hydrolysate from acid pretreated sugarcane bagasse	Low	No	Very high	No	Yes	No		Martín <i>et</i> <i>al.</i> , 2007
	Adapted S. cerevisiae Y5	SPORL- pretreated lodgepole pine	No	No	Very high	No	Yes	No		Tian <i>et al</i> ., 2010
	Adapted S. cerevisiae F12	Steam exploded wheat straw	Medium-High	Low- Medium	Low-Very high	Yes	Yes	Yes	Less residual xylose	Tomás-Pejó et al., 2010
	Adapted P. stipitis Y-7124	Hydrolysate from acid pretreated sugar maple	Very high	Very high	Very high	Yes	Yes	Yes		Stoutenburg et al., 2011
	Adapted P. stipitis	Steam exploded	Very high	Very	Very High	Yes	Yes	Yes		Yang et al.,

Supplementary Table 2. In situ microbial detoxification by co-culture, evolutionary engineering, genetic engineering and other strategies

	CBS6054	corn stalk		High						2011
	Adapted xylose- recombinant <i>S.</i> <i>cerevisiae</i> strains	Hydrolysate from dilute- acid pretreated spruce	Low	Low	Medium	Yes	Yes	Yes		Koppram <i>et al.</i> , 2012
Genetic S Engineering I (G F	S. cerevisiae INVSC1 (strain overexpressing PAD1)	Synthetic media and hydrolysate from dilute- acid pretreated spruce	n.r.	Low- Medium	Low	No	No	Yes		Larsson <i>et</i> <i>al.</i> , 2001a
	S. cerevisiae INVSC1 (strain expressing laccase (T. versicolor) and overexpressing SSO2)	Synthetic media and hydrolysate from dilute- acid pretreated spruce	Very high	Very high	Very high	No	No	Yes		Larsson <i>et</i> <i>al.</i> , 2001b
	<i>S. cerevisiae</i> BY4741 (strain overexpressing ZWF1)	Synthetic media	n.r.	n.r	n.r.	No	Yes	No		Gorsich <i>et</i> <i>al.</i> , 2006
	S. cerevisiae CEN.PK 113- 5D (strain overexpressing ADH6)	Synthetic media	n.r.	n.r.	n.r.	No	Yes	No	Higher rate even in aerobic and anaerobic conditions	Petersson <i>et al.</i> , 2006
	<i>S. cerevisiae</i> CEN.PK 113- 5D (strain	Hydrolysate from dilute- acid	No	No	Medium	No	Yes	No		Almeida <i>et</i> <i>al.</i> , 2008

	overexpressing ADH6)	pretreated spruce								
Others	Continuous culture with cell recirculation (<i>S. cerevisiae</i> ATCC 96581)	Hydrolysate from dilute- acid pretreated spruce	Low	Low	Low	No	Yes	n.r.		Brandberg et al., 2005
	Continuous culture with encapsulated cells (<i>S.</i> <i>cerevisiae</i> CBS 8066)	Hydrolysate from dilute- acid pretreated spruce	n.r.	Medium	Medium- Very high	No	Yes	n.r.	Keep more than 75% cell viability	Talebnia and Taherzadeh, 2006
	Anaerobic batch cultivations of encapsulated cells (<i>S.</i> <i>cerevisiae</i> CBS 8066)	Hydrolysate from dilute- acid pretreated spruce	n.r.	Low	Low	No	Yes	n.r.		Westman <i>et</i> <i>al.</i> , 2012
	Continuous culture with flocculating yeast (S. cerevisiae CCUG 53310)	Hydrolysate from dilute- acid pretreated spruce	Very high [*]	Very high [*]	Very high [*]	No	Yes	n.r.		Purwadi <i>et</i> <i>al.</i> , 2007

^aLow, increments lower than 20%; Medium, increments between 20-50%; High, increments between 50-90%; Very high, increments higher than 90%. n.r. not reported * Taking into account the dilution rate

Supplementary References

- Shi J, Sharma-Shivappa RR, Chinn M, Howell N. (2009). Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy, 33, 88-96.
- Singh D, Zeng J, Laskar DD, Deobald L, Hiscox WC, Chen S. (2011). Investigation of wheat straw biodegradation by *Phanerochaete chrysosporium*. Biomass and Bioenergy, 35, 1030–40.
- Dias AA, Freitas GS, Marques GS, Sampaio A, Fraga IS, Rodrigues MA, Evtuguin DV, Bezerra RM. (2010). Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol, 101, 6045-50.