I . Escuela Tecnica Superior de
B Ingenieria Informdatica

MASTER’S THESIS
Identifying Genomic Relationships in
Cancer Drug Response

Written by
Sergio Santiago Sanchez

To obtain the title of
Master’s Degree in Logic, Computation and Artificial Intelligence

Advisors

Miguel Angel Gutiérrez Naranjo
Miguel Cardenas Montes

July Examination Session, Curse 2024/25

To all those who dedicate part of their lives to improving the lives of others

Acknowledgments

I would like to thank all my friends who have supported me, both by helping me to
disconnect and by motivating me during the most difficult moments of my research.
But I would particularly like to highlight the help of Nicole, who has encouraged me
to keep going at all times, cheered me up when I needed it and spent many hours
reviewing what caused me the most uncertainty: writing in English. Without your
help, I probably wouldn’t have finished on time.

I would also like to express my gratitude to my two tutors, Miguel Cardenas
and Miguel Angel Gutiérrez, for their patience throughout the development of this
work. I sincerely appreciate their willingness to correct my mistakes, as well as their
efforts to find time to meet with me and guide me, even in difficult moments.

Resumen

Las terapias personalizadas genéticamente para tratar el cAncer muestran grandes
avances, permitiendo mejorar la calidad y esperanza de vida de los pacientes. Sin
embargo, existe un reto clave en este tipo de tratamientos, ya que actualmente no se
puede predecir con exactitud la respuesta de una persona ante un medicamento, lo
que supone un gran problema. Si el tratamiento es demasiado intenso, no solo no
ayudara al paciente, sino que supondrd un empeoramiento de su condicién.

Este estudio hace uso del dataset Genomics of Drug Sensitivity in Cancer (GDSC),
el cual incluye informacién sobre perfiles genémicos, farmacolégicos y datos sobre
las caracteristicas de las lineas celulares cancerosas, constituyendo una gran fuente
de informacién. Para explotar estos datos, se han empleado algoritmos basados
tanto en redes neuronales como en arboles, manteniendo siempre como objetivo
proporcionar un modelo que no solo sea preciso, sino ttil para la sociedad.

La investigaciéon trata de obtener un modelo que sea capaz de predecir la
variable LN_ICsy, la cual es un indicador de la concentracién necesaria de
medicamento para inhibir el crecimiento de las células cancerosas en un 50

El modelo resultante ha sido, a su vez, validado mediante técnicas de
explicabilidad, proporcionando certeza sobre la fiabilidad de las predicciones y
demostrando que los perfiles genéticos influyen en la respuesta del paciente ante
los farmacos contra el cadncer.

Palabras clave: cancer, respuesta farmacoldgica, efectividad del tratamiento,
redes neuronales, XGBoost, explicabilidad, SHAP.

ii

Abstract

Genetically personalized therapies for treating cancer are showing great advances,
improving patients’ quality of life and life expectancy. However, there is a key
challenge in this type of treatment, as it is currently impossible to accurately
predict a person’s response to a drug, which is a major problem. If the treatment is
too intense, not only will it not help the patient, but it will also worsen their
condition.

This study makes use of the Genomics of Drug Sensitivity in Cancer (GDSC)
dataset, which includes information on genomic and pharmacological profiles and
data on the characteristics of cancer cell lines, constituting a great source of
information. To exploit this data, algorithms based on both neural networks and
trees have been used, always with the aim of providing a model that is not only
accurate but also useful to society.

The research aims to obtain a model capable of predicting the LN_ICs variable,
which is an indicator of the concentration of drug needed to inhibit the growth of
cancer cells by 50

The resulting model has, in turn, been validated using explainability techniques,
providing certainty about the reliability of the predictions and demonstrating that
genetic profiles influence the patient’s response to cancer drugs.

Keywords: cancer, drug response, treatment effectiveness, neural networks,
XGBoost, explainability, SHAP.

iii

Contents

1 Introduction and motivations 1
2 CoreKnowledge 2
21 Introduction o 2
22 Neural Networks, 2
221 Relevantlayers for thisresearch 2

222 Regularizationmethods 3

2.3 Predictionstrees L Lo 3
24 SHAPwvalues. 4

3 Understanding thedataset 7
31 Introduction L L o 7
3.2 Descriptionof variables 8
3.3 Analyzing the information 10
3.3.1 Checking the feasibility of assigning values 14

4 Insearchofsolutions 16
4.1 Solving our regression problem0 .. 16
411 Predicting LN_ICsg using Neural Networks 19

41.2 Application of XGBoost Regression Trees to our problem . . . 36

42 A classification problem 0 0oL 39
4.3 Discovering the correct group using Neural Networks 42
44 Testing XGBoostas aclassifier 49
45 SHAP: The reasons mustbe known. 53

5 Conclusions i 57
Appendix 57
Bibliography 75

iv

List of Figures

21

2.2
2.3

3.1

4.1
4.2

4.3

44
4.5

4.6
4.7
4.8
4.9
4.10
411
4.12

4.13

4.14

4.15

4.16

4.17
4.18

4.19

Example of SHAP values representation: Summary plot with 100
examples. L

Example of SHAP values representation: Force plot with 100 examples.

Example of SHAP values representation: Dependence plot with 100
examples..

Distribution of the LN_ICsq variable.

Distributions of the variable LN _ICsj in the different subsets.
Distributions of the variable LN_ICsy in the different subsets
represented in the same graph to facilitate comparison.
Study of the feasibility of employing MSE as a loss function using a
neuralnetwork. o oL o
Result of employing MSE as a loss function using a neural network. .
Study of the feasibility of employing logarithm of the hyperbolic
cosine as a loss function using a neural network.
Result of employing logarithm of the hyperbolic cosine as a loss
function using aneural network. 00 0L
Study of the feasibility of employing Huber as a loss function using a
neuralnetwork. Lo Lo o L

Result of employing Huber as a loss function using a neural network.

Soft-ordering with 1D convolutional architecture.
Training a neural network using convolutional layers and addition as
abridge.
Result of employing a neural network using convolutional layers and
additionasabridge. o o L.
Comparison between SiLU and ReLU. In this picture it is observed
the differences between them around zero.
Training a neural network using convolutional layers and addition as
a bridge, increasing the regularization and using SiLU as activation
function.
Result of employing a neural network using convolutional layers and
addition as a bridge, increasing the regularization and using SiLU as
activation function. o Lo oo Lo
Training a neural network wusing convolutional layers and
multiplicationasabridge. 0 ..
Result of employing a neural network using convolutional layers and
multiplicationasabridge. 0 0L
Results of XGBoost with target variables encoded using one-hot. . . .
Representation of predictions using XGBoost, together with feature
reduction and hyperparameter optimization.
Representation of entropy evolution based on the number of bins. . .

5

23
24
25
26
27
29
29

31

32

33

35

35
37

38
40

4.20

4.21

4.22

4.23
4.24
4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

Representation of the data by t-SNE, where it can be seen the
separation between points of the same cluster.
Representation of the data by UMAP, where it can be checked the
distance between the different groups and their internal elements. . .
Progress of model training after replacing the error function with
cross-entropy and the output layer with a multi-class layer with
softmax activation function. Better performance is observed in the
validation set compared to the trainingset.
Model training progress applying categorical focalloss.
Model training progress by changing the importance of outputs. . . .
Progress of model training applying a customized error function,
which takes into account both accuracy and the difference between
the actual and predicted values.
Bar chart representation of the absolute error committed in the test
set. It allows us to verify that the model predicts with a low degree of
EITOL. .« . v v i it
Representation of the mean absolute error for each class using neural
networks..
Representation of the absolute error committed with the test set using
XGBoost and softmax. A substantial increase in error is observed,
with the largest error committed being 11.
Representation of the absolute error committed with the test set using
XGboost and MSE. A substantial increase in error is observed, with
the largest error committed being 12.

41

42

43
45
46

47

48

49

50

51

Representation of the mean absolute error for each class using XGBoost. 52

Shap summary plot with 200 examples. This one shows how the

model behaves based on the values of its most representative variables. 54

Dependence plot of variable SANGER MODEL_ID_SIDM00412
obtained using SHAP. Obtained by analyzing 200 examples.

vi

56

List of Tables

3.1

3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

411
4.12

4.13
4.14
4.15
4.16
4.17
4.18
4.19

4.20

Detected inconsistencies between DRUG_NAME, DRUG_ID and their

suppliers 13
Model performance in the test set after applying value imputation. . 15
Model performance in the test set without applying value imputation. 15

Model performance upon completion of training. The predictions

used come from the validationset. 21
Performance metrics obtained from the model’s predictions in the test
set, calculated using MSE as the loss function. 21
Validation performance metrics at the end of training using LogCosh. 23
Performance metrics on the test set using LogCosh as loss function. . 23
Validation performance metrics at the end of training using Huber loss. 25
Performance metrics on the test set using Huber as loss function. . . 25
Model performance metrics on the validation set during the
architecture adapting phase. 0 L. 28
Model performance metrics on the test set during the architecture
adaptingphase. o o 28
Performance metrics on the test set after applying the SiLU activation
function. L 32
Performance metrics on the test set after incorporating the
multiplicative gating mechanism. 34
Performance metrics of the evaluated model on test set using XGBoost. 36

Performance metrics of the XGBoost model using one-hot encoding
after hyperparameter optimization and variable selection. 38
Hyperparameters of the gradient boosting model after applying
hyperparameter optimization. 39
Best validation results for LN_IC50 metrics. 43
Best validation results for LN_IC50 metrics using focal loss. 45
Best validation results for LN_ICsp metrics after applying output
weighting. L 46
Best validation results for LN_IC50 metrics using the custom loss
function. 47
Regression performance metrics on the test set for LN_IC_50 using a
neural network with custom loss function. 48
Performance metrics on the test set for LN_IC5y using XGBoost
classifier predictions interpreted as numerical outputs. 51
Performance metrics on the test set using XGBoost with
reg:squarederror. e e e e e e e e e 52

vii

Code excerpt index

S

g o Gl

10

11

12

13
14

15

16

17
18

19

Find obsolete variables and determine the size of each variable’s

domain.. L 58
Check for matching values between the drug ID and drug name

variables. L 58
Checking whether LN_ICs follows a normal distribution. 59
Code intended to check the different suppliers assigned to each drug

NAIMNE. ottt e e 59
Application of ColumnTransformer to map thedata. 59
Encoding data in numerical format using Ordinal Encoder. 61
Imputation of values using KnnImputer. 61

Function to generate a neural network. This code generates a very
simple dense network, but we only want it to know which loss

functiontochoose. Lo Lo oL 61
Function to compile, show the losses during learning, do a evaluation
with test set and return the model trained. 61

Functions to show some metrics about the model. Also, we display a
plot where you can see how much near is the predicted values from

therealones. Lo oo 62
Definition of Soft-ordering with 1D convolutional architecture using
tensorflow. L 63
Definition of Soft-ordering with 1D convolutional architecture using
SiLU as activation function. 64
Representation of entropy evolution based on the number of bins. . . 65
Calculation of dimensionality reduction using t-SNE for data
representation while respecting local distances. 66
Calculation of dimensionality reduction using UMAP for data
representation while respecting global and local distances. 66
First adaptation of the regressor network in the process of obtaining
aclassifier. L 67

Testing a different function to check for changes in model performance. 69
Assigning importance to target variables for the purpose of obtaining

better resultsin LN_ICsp. o v i v it e 70
Definition of a custom error function, including categorical cross
entropyand MSE.o o L oL 72

viii

1. Introduction and motivations

There is currently an extensive body of publicly available research focused on
finding a cure for cancer. There is a huge amount of open access data [1, 2] that
allows researchers worldwide to exchange knowledge with the community. This is
how the scientific community tries to continue the chain until it achieves findings
that can save lifes.

One line of research is the effect of a drug based on the patient’s genome. There
are records of patients and studies with the same medication and type of cancer but
with different responses to treatment [3, 4]. Especially regarding the
personalization of therapy since the variability raises critical questions. Decisions
about which medication to administer and in what dosage directly affect people’s
quality of life. If a patient receives an excessive amount of medication, it could
negatively affect your health. Similarly, if the amount administered is less than
required, the effects will not be as desired.

One of the main challenges of applying machine learning techniques, to this
type of research, lies in the nature of the data, which poses significant limitations.
Generally, it is highly variable, with cancer records showing a large number of
treatments for the same type and often containing a considerable amount of noise
or missing values. At the same time, genetic information is very extensive, further
complicating the search for a model that meets all requirements.

To address these challenges, the proposed models must be highly robust in the
face of different datasets. They must be able to function correctly despite noise and
missing values. In addition, these models must be updated regularly so that new
knowledge about the disease leads to better and higher quality predictions. Without
these periodic predictions, the risk of obsolescence increases dangerously.

This is undoubtedly one of the most demanding and sensitive areas of
research, not only due to its technical complexity, but also because of the profound
human responsibility it entails. Working with data derived from serious illnesses,
such as cancer, requires a constant awareness that behind each data point is a
person, with their own story, struggle and hope. The outcomes of such research
have the potential to significantly improve patient care and quality of life.
However, this potential is accompanied by a high degree of responsibility: a robust
and well-validated finding can guide more effective treatments, while an error or
oversight could lead to inappropriate clinical decisions, potentially harming lives.
In this respect, it really is a matter of life or death. It is a field that demands not
only technical excellence but also ethical rigor, caution and empathy. The risks are
substantial but so are the opportunities to make meaningful, life-changing
contributions to human health.

2. Core Knowledge

2.1. Introduction

There are currently numerous techniques used in artificial intelligence. These not
only come from physics or mathematics, but are also closely related to economics
and computer science. Such is the catalog of possibilities available to us that it is
often difficult to keep up to date, as new ideas emerge every day. Therefore, in order
to obtain a better general understanding of this work, we will explain the principles
of some of the methods or techniques used in the project, since understanding them
will make it easier to follow the workflow. s

2.2. Neural Networks

If we look at the history of science and technology, we can observe that many
advances are inspired by real biological systems. For example, a camera shares
many similarities with the human eye. Another example is the processor, which
consists of a large number of transistors connected to perform calculations. Neural
networks are also part of this trend, as their structure is approximately based on
biological neural networks.

Neural networks are a type of machine learning model inspired by the human
brain. They are designed to recognize patterns or relationships between data. This
feature makes them the ideal type of model for images, language processing, or
predictive modelling.

To fully comprehend this research, it is necessary to understand the following
concepts.

2.21 Relevant layers for this research

There are numerous options available when selecting the appropriate layers for a
neural network, each serving a distinct and well-defined purpose. Given the wide
variability of existing architectures, this study will briefly describe the most
influential layer types employed during the research, focusing on those that had
the most significant impact on model performance and learning behavior.

* Dense: Also known as fully connected, it is one of the simplest and
best-known layers. Each neuron receives one input from each neuron in the
previous layer and produces one output per neuron.

e Convolutional 1D layers: This is a layer used in neural networks to process
sequential information, such as text, audio or genes. It allows
one-dimensional convolution filters to be applied, thereby extracting
relationships and patterns from the data. The output of a Conv1D layer is a

feature map that captures the patterns extracted from the input data. These
maps highlight local relationships in the sequence, such as recurring motifs or
trends. However, one potential drawback of stacking many convolutional
layers is that the original low-level information can become increasingly
abstract or diluted. While deeper layers tend to capture more complex
features, they may also lose fine-grained details present in the raw data.

2.2.2 Regularization methods

Regularization is applied to machine learning models to prevent overfitting, which
occurs when they learn the training data too well, including noise and outliers. This
results in poorer generalization when faced with new data.

Some examples include:

e L1 and L2 regularization: Also known as Lasso (L1) and Ridge (L2)
regularization, these techniques help prevent the model’s weights from
becoming too large. L1 Regularization encourages sparsity by driving less
relevant weights to zero, effectively performing feature selection. L2
Regularization penalizes large weights more smoothly, distributing the error
and promoting generalization.

* Dropout: This layer allows some neurons to be randomly reset to zero. This
prevents the network from becoming overly dependent on a single neuron,
thus avoiding overfitting.

* Spatial dropout 1D: This is an adaptation of dropout to networks in which
convolutional layers are applied, so that the dimension of spatial dropout
depends on the dimension of the convolutional layer, in this case 1.

¢ Batch normalization: Used to standardize the input to the layers, it reduces
the impact of weight initialization. It is very important to apply this layer
before the activation function and not afterwards.

e Max pooling: It allows you to reduce the dimensionality of feature maps by
selecting the maximum available using a sliding window.

2.3. Predictions trees

Decision trees are one of the most widely used types of machine learning
algorithms, due not only to their great predictive power but also to their ease of
interpretation, both in classification and regression tasks. The idea behind this
algorithm is to divide the dataset into increasingly smaller subsets.

One of the main advantages is the interpretability they offer, without the need
for any type of complex preprocessing or scaling. This makes them widely used in
domains where understanding the reason behind each decision is important, such
as biology or chemistry.

However, they do have disadvantages. For example, they are prone to
overfitting, although there are techniques such as a posteriori pruning, maximum

3

depth or minimum number of examples per leaf, to avoid this. But undoubtedly,
the main drawback is that they are unable to generalize correctly when the test
data falls outside the training domain.

The main types of tree algorithms include:

e CART: It is a foundational decision tree algorithm, used for regression or
classification tasks. It uses the Gini index or MSE to divide the data into
different subsets, depending on whether it is a classification or regression
problem.

* RandomForest: It is an ensemble learning method ! used for both
classification and regression tasks. It builds upon decision trees by combining
multiple trees, which are independent, and aggregating their results to
improve accuracy and reduce overfitting.

¢ Gradient Boosted Trees: This technique combines different decision trees, but
unlike RandomForest, they are not independent. Each tree is trained with
the aim of improving on those examples where the previous one failed. An
example of this type of algorithm is XGBoost.

2.4. SHAP values

Based on Shapley values from cooperative game theory, SHAP is capable of
measuring the contribution of a feature to a result, i.e., it quantifies the contribution
of variables to the model output, both locally, a single example, and globally, the
entire dataset. This allows us to determine which variables are most relevant in a
prediction.

The main advantage of SHAP over other explainability algorithms is that it
provides a global view of the importance of the features in the entire dataset. In
addition, thanks to its additive nature, it can be parallelized, as long as it is
guaranteed that an example belongs to only one set, reducing computation times.

In addition, the implementation in Python [5] provides numerous graphs, thus
facilitating the understanding of the data. For example:

* Summary plot: This graph combines feature importance with their
directional effect on the model’s output, providing an intuitive representation
of which variables are most influential, whether they contribute to an increase
or decrease in predictions, and the range of input values that drive such
behavior. The representation encompasses the entire dataset.

L Algorithms that combine several models, usually of the same type, produce an output based on
all of them, applying techniques such as average voting.

High

DRUG_NAME x SABUTOCLAX sss o *
Screen Medium R -‘—l—-ﬂ- .
MAX CONC —-b so .

Screen Medium D/F12 —-'-—-
DRUG ID —'——

DRUG_NAME_x_VINBLASTINE LR .

Feature value

Low

4 3 2 -1 0 1
SHAP value (impact on model output)

Figure 2.1: Example of SHAP values representation: Summary plot with 100
examples.

— Y-axis: The features sorted by relevance.

- X-axis: SHAP value. Impact on model output, a positive value show a
higher prediction and vice versa.

— Dots: Each point represent a record of the dataset.
— Color: Indicate the feature value for that example.

* Force plot: Used for local explainability. It provides the reasons why the
prediction is higher or lower for an unique instance. In this type of graph,
contrasting colors are used to show how each variable influences the
prediction. Features that push the prediction higher are typically shown in
red, while those that push it lower are shown in blue. This visualization helps
to clearly distinguish between the variables that support and those that
oppose the model’s output for a specific instance.

higher = lawer
base value fx)
-6 -4 -2 0 2 4

b))))))

00008066 GDSC Tissue descriptor 1_LEUKEMIA ' GDSC Tissue descriptor 2_LYMPHOBLASTIC_T_CELL_LEUKAEMIA ' Cancer Type (matching TCGA label)_ALL ' Screen Medium_R ' Growth Properties

X
5.81 8 10

Figure 2.2: Example of SHAP values representation: Force plot with 100 examples.

Figure 2.2 shows the variables that support increasing the value of the model
output, while indicating that the Growth Properties variable is the only one
that opposes this increase.

* Dependence plot: Used for global explainability. Show how a feature’s value
affect its SHAP value across the entire dataset helping to identify the
relationship.

1
o
o

1.00 - :
-—0.2
0.75 1 .
L] I _DA]
. 0.50 - _E
e
g % -—0.6 g
29 025 o
> --0.8%
o X -
% S 0.001 cee . 2
. -=1.0 =
. Q0
~0.25 1 .
;.- * = —1>2
-0.50{ ¢°
. 1.4
B N S

MAX_CONC

Figure 2.3: Example of SHAP values representation: Dependence plot with 100
examples.

— Y-axis: The SHAP value for that variable, how much this feature
contributes to the model’s output.

— X-axis: The value of the feature.
— Color: Indicate the second feature value.

In the example case shown in Figure 2.3, it can be seen that as the
MAX_CONC variable decreases, it contributes less to a positive output,
prompting a negative one.

3. Understanding the dataset

3.1. Introduction

To carry out this study, it is essential to identify a dataset that not only includes
detailed information about patients’ cancer diagnoses but also links each case to the
administered drugs, their genetic profiles, and other relevant features. Furthermore,
the dataset must meet a minimum standard of data quality. Given these stringent
requirements, locating a suitable dataset is a non-trivial task.

After extensive research and evaluation of publicly available sources, the
selected dataset is the Genomics of Drug Sensitivity in Cancer (GDSC) dataset [6],
which is available through Kaggle. The primary aim of this resource is to make
data public available from the original GDSC repository, including additional
annotations to facilitate a downstream analysis.

The dataset includes detailed information about various cancer cell lines and
their associated types. It provides genomic and molecular features such as
mutation status, tissue origin, growth conditions and methylation patterns. On the
pharmacological side it offers drug-specific information, including treatment
response, administered concentrations and metadata related to drug selection. In
addition, it includes a classification label that reflects the effectiveness of the drug
response.

This research is pioneering, as it aims to integrate genomic data, medication
information, and patient responses into a unified predictive framework. Although
some analyses are available in the dataset repository, a critical flaw has been
observed in several of them: models often achieve surprisingly high accuracy by
mistakenly including target-related variables among the input features, like RMSE,
drug response or AUC. This results in information leakage, where the model has
access to data it should not know at prediction time, thereby inflating performance
metrics artificially.

Among the most critical variable is the logarithm of the half-maximal
inhibitory concentration, denoted as LN_ICsy. This metric quantifies the drug
dosage required to inhibit cell viability by 50%, making it a biologically meaningful
and clinically relevant target for prediction. A model capable of accurately
predicting LN_ICsg could serve as a decision-support tool in assigning optimal
drug dosages to individual patients. Moreover, gaining insight into the factors that
influence this value could offer valuable directions for further research in
personalized medicine and oncology.

3.2. Description of variables

GDSC comprises a total of four files, each providing complementary information
on the status of cancer cell lines, patient characteristics and prescribed medications.
One of the most important features of this dataset is, that the information it
contains comes from the COSMIC database [7], one of the most comprehensive
collections on cancer cases and their treatment. In the following sections, each file
will be briefly described along with the variables it contains, in order to provide an
initial understanding of their relevance and potential utility for this research.

1. GDSC2-dataset.csv: Contains information about the medicines used and their
effectiveness on the different patients. Among its variables are:

DATASET: Since the objective of the author in the mentioned dataset is
to keep the information updated. He uses this variable to indicate which
version it comes from, since the database COSMIC is updated regularly.

NLME_RESULT_ID: Unique identifier of the NLME model to which it is
related.

NLME_CURVE_ID: Identifier of the dose-response curve fitted by the
previous model.

COSMIC.ID: Identifier by which this record is known in the database
COSMIC.

CELL_LINE_NAME: Name of the cancer cell line of the experiment.

SANGER_MODEL_ID: Identifier of the cell used by the Sanger Institute
[8].

TCGA _DESC: Description of the type of cancer according to The Cancer
Genome Atlas?.

DRUG_ID: Identifier of the drug prescribed to the patient.
DRUG_NAME: Name of the drug used in the treatment.

PUTATIVE_TARGET: Refers to the original cellular target of the drug,
i.e. which cell line the drug is intended to treat.

PATHWAY _NAME: The biological pathway affected by the drug, i.e.
which series of cellular interactions the drug intake modifies.

COMPANY_ID: Identifier of the company that provides the drug.
WEBRELEASE: Date this information was published on the website.

MIN_CONC: Minimum used concentration of the drug during follow-
up.
MAX_CONC: Maximum used concentration of the drug during follow-
up.

Project with the aim of cataloging genomic alterations due to the presence of cancer cells.

LN_IC50: This variable represents the natural logarithm of the ICs
value (mean inhibitory concentration). A large value indicates that a
greater dose of the drug is required to achieve the desired effect,
suggesting lower sensitivity. Conversely, a lower value implies that a
small dose was sufficient to produce a significant biological response,
indicating higher sensitivity to the drug.

AUC: Area Under the Curve, a statistical measure that, in this case,
reflects the effectiveness of the drug.

RMSE: Error measure known as Root Mean Square Error which
indicates the quality of the dose-response prediction performed by the
NLME model.

Z_SCORE: Standardized performance measure which intended to allow
comparisons between different drugs and cell lines.

2. Cell_Lines_Details.xlsx: Contains information about the different cell lines, as
well as data related to the patient’s cancer. The variables it includes are:

Sample Name: Unique identifier for the cell line sample.

COSMIC identifier: Unique ID from the COSMIC database for the cell
line.

Whole Exome Sequencing (WES): Genetic mutation data obtained
through whole exome sequencing.

Copy Number Alterations (CNA): Data on gene copy number changes
in the cell line.

Gene Expression: Information on gene expression levels in the cell line.
Methylation: Data on DNA methylation patterns in the cell line.

Drug Response: Information on how the cell line responds to various
drugs.

GDSC Tissue descriptor 1: Primary tissue type classification which
indicates the type of cancer.

GDSC Tissue descriptor 2: Secondary tissue type classification which
can be interpreted as indicating the region affected by cancer.

Cancer Type (matching TCGA label): Cancer type according to the
TCGA classification.

Microsatellite instability Status (MSI): Indicates the microsatellite
instability status of the cell line.

Screen Medium: Growth medium used to culture the cell line.

Growth Properties: Characteristics of how the cell line grows in culture.

3. Compounds-annotation.csv: Information referring to the drug:

DRUG_ID: Unique identifier for the drug.

9

SCREENING_SITE: Location where the drug screening was performed.
DRUG_NAME: Name of the drug compound.

SYNONYMS: Alternative names for the drug.

TARGET: The molecular target(s) of the drug.

TARGET_PATHWAY: The biological pathway(s) targeted by the drug.

4. GDSC_DATASET.csv: This dataset is the result of preprocessing performed
by the original Kaggle author, based on three raw data files included in the
same repository. The author applied extensive data cleaning and
transformation techniques to reduce noise, enhance signal quality and
incorporate relevant domain knowledge. The resulting file provides a curated
version of the data that is ready for analysis and modeling. Among the
variables included in this dataset are:

COSMIC.ID CELL_LINE_ZNAME
TCGA_DESC DRUG_ID
DRUG_NAME LN_IC50
AUC Z_SCORE
GDSC Tissue descriptor 1 GDSC Tissue descriptor 2
Cancer Type (matching TCGA label) | Microsatellite instability Status (MSI)
Screen Medium Growth Properties
CNA Gene Expression
Methylation TARGET
TARGET_PATHWAY

Although the preprocessing of the GDSC_DATASET is very interesting, this
data has not been used for this research. It eliminates some variables that were
considered useful for improving the prediction results. For example, including
"DRUG_RESPONSE” among the variables to be predicted could support the model
understand some internal relationships in the data. However, given that the
procedures applied could be helpful in resolving this research, some of the analysis
provided has been taken into account.

3.3. Analyzing the information
The focus is on LN_ICsp, which is intended to show how those drugs are adminstred

to the patients. Therefore, the first step is to understand its distribution. This makes
it possible to anticipate potential problems and to understand how it evolves.

10

LN-1C50

-

30000 - ?[A

25000

20000

15000 - VZ
10000 7[

3000 -

Frecuency

Values

Figure 3.1: Distribution of the LN_ICs(variable.

Figure 3.1 shows how the LN_ICsy variable distribution has a Gaussian bell
shape, in which some aspect can be observed:

* There are fewer examples on the right side of the distribution, which implies
that the data has been slightly skewed when acquiring positive values.

* In the same area on the right, a small increase can be seen. This may indicate
a population for which more records are available on an ad hoc basis, which
could pose a small challenge during model training, as this population
disrupts the natural progression of the normal distribution.

* In general it shows good symmetry, thus favouring the training of a model,
ignoring the area mentioned above.

e The question arises as to whether the LN_ICs5y variable follows a normal
distribution or not. To find out, the Anderson and kstest tests were applied,
visible in Listing 3, with the aim of obtaining an unambiguous answer. The
result of these tests was that this variable does not follow a normal
distribution.

11

Joining the data

Once the main target variable has been analyzed, it is necessary to know how to join
the files appropriately so that the records match their corresponding ones. Thus,
referring to database terminology, it is needed to carry out various join operations
between the three files, relating each of the foreign keys? to their corresponding
primary keys.

There are unknown records in each of the three files, which show the following
possibilities:

* Delete all null values and perform the joins afterwards.

* Join the three files and apply value imputation to try to infer the value of the
unknown fields.

¢ Join the datasets and then delete the resulting null values.

To obtain the complete dataset, it is necessary to merge the GDSC2 and
Cell_Lines_Details files using "COSMIC.ID” and “COSMIC identifier” keys
respectively. Because both records come from different sections of the COSMIC
database.. The resulting dataset must be joined with Compounds-annotation using
the "DRUG_ID” key, thus obtaining a record with all the data.

When making a decision, it is important to consider that value imputation
could improve performance. However, if some of the records are deleted and
assigned a status to those that are unknown, the future model could acquire a
certain degree of resilience, strengthening the model. Based on this two decisions
were made. Investigate two of the possibilities: in the first case, the datasets will be
joined, applying a process of value imputation a posteriori. In the second case, null
records will be deleted and then the files will be merged. Both resulting datasets
will be used in a first regressor to check which data provides the most value.
Although this may seem complex, the implementation is straightforward using
notebook files®, as the two workflows are nearly identical, except for the step
involving imputation. This approach will be detailed in a subsequent section.

Filtering the information

Applying variable selection methods reduces the dimensionality of the dataset.
This includes two key benefits: first, it reduces noise in the dataset and lowers the
computational cost of training the model. Secondly, it reduces the potential of
human error during the initial data collection process. In practical terms, if only 10
characteristics needed to be record instead of 20, the likelihood of introducing
mistakes during data entry or measurement is significantly lowered.

The current dataset contains many identifiers related to external studies or
various databases. These identifiers are disposable for this research.

e DATASET

%In the context of relational databases, it refers to an identifier which mutually refers to each other.
3Development environment that allows to run code organized in cells

12

NLME_CURVE_ID
COMPANY_ID
COSMIC identifier

Sample Name
COSMIC_ID
SYNONYMS

The next step is to check if any of the variables are obsolete. This condition
occurs when all available records for that feature are the same. In order to get it, the
code described in Listing 1 has been used. This makes it possible to identify obsolete
variables and determine the size of each variable’s domain.

Semantically, a one-to-one correspondence is expected between the variables
DRUG.ID and DRUG_NAME, meaning that each drug ID should consistently map
to a unique drug name. To evaluate this assumption, Pearson’s correlation
coefficient was calculated. The result, however, deviates from 1, indicating that the
relationship is not perfectly consistent. To identify the specific instances of
inconsistency, the function shown in Listing 2 was implemented. This function
systematically traverses the dataset to ensure that each drug ID corresponds to the
same drug name throughout. When mismatches are found, the function also
attempts to determine which variable, either the ID or the name, is responsible for
the discrepancy, thereby offering insights into potential data quality issues

This reveals that there is inconsistency in the names, i.e. some names are
assigned to more than one identifier. ~ To understand the nature of this
inconsistency, the identifiers of the suppliers of these drugs are examined, as they
may have a different identifier depending on the supplier, as can be seen in
Listing 4.

Drug Name | Detected IDs | Supplier IDs
Docetaxel [1007, 1819] [1046, 1043]
Selumetinib [1062, 1736] [1046, 1001]
Oxaliplatin [1089, 1806] [1046, 1043]
Fulvestrant [1200, 1816] [1046, 1043]
Uprosertib [1553, 2106] [1046]
GSK343 [1627, 2037] [1046, 1033]
Acetalax [1803, 1804] [1043]
Dactinomycin | [1811, 1911] [1043, 1046]
Ulixertinib [1908, 2047] [1046]

Table 3.1: Detected inconsistencies between DRUG_NAME, DRUG_ID and their
suppliers

As shown in Table 3.1, with the exception of three cases, there is an inconsistency
between the drug name and its identifier, moreover the medicine is supplied by
a different provider. This information can be very useful, as variations between

13

suppliers may involve subtle changes to some component of the drug formula, its
preservation or concentration. Therefore, the drug name and drug ID variables will
be retained in the dataset, while the company identifier will be omitted.

Modifying the representation of data

Many operations, such as computing correlations, visualizing data, or training
machine learning models, require the dataset to be in a numerical format.
Therefore, the next step involves transforming categorical variables into numerical
representations. A widely used method is the one-hot encoding; however, this
method significantly increases the dimensionality of the dataset, which may
negatively affect performance and training time. As an alternative, ordinal
encoding will be applied where appropriate, allowing the numerical representation
to preserve the inherent order or semantic relationships of the original categories.
For example, in a variable representing size with values such as small, medium, and
large, them the values 0, 1, and 2 are assigned, which respectively maintains their
natural ordering.

The following variables only express information of Yes, No or unknown value,
making them clear candidates for replacement.

¢ Copy Number Alterations (CNA)
* Gene Expression

* Methylation

* Drug Response

The Growth Properties variable contains information regarding adhesion,
differentiated into three levels: Adherent, Semi-Adherent, and Suspension.
Therefore, applying a numerical substitution indicating the degree of adhesion
represents a plausible option.

Finally, the Screen Medium variable only takes two values, "R” and "D /F12”,
which can be replaced by 0 or 1.

In order to facilitate the application of these changes to future data, this entire
process is carried out using Sklearn’s ColumnTransformer. This class allows you
to perform a sequence of transformations on the data easily and effectively. The
required steps are illustrated in Listing 5.

3.3.1 Checking the feasibility of assigning values

The imputation of unknown values could improve results, which is why research
has been conducted in this context. The objective is to conduct a small test to verify
whether imputing values improves accuracy or whether, on the contrary, allowing a
certain degree of ambiguity in the data what improves the robustness of the model.
To achieve this performance, following steps are needed:

To perform the imputation process, all variables must be represented as
numbers. However, after the preprocessing described above, the dataset retains

14

some categorical features. Since these variables cannot be expressed in numerical
format while maintaining the relationship between them, the ideal solution would
be to apply a one-hot encoder which in turn would significantly increase the
computational cost of applying value imputation. Therefore, if Sklearn’s ordinal
encoder [9] is applied, categorical variables will be replaced by numerical ones,
while it maintains the stored correspondence, if needed. This process can be
observed in Listing 6.

Once the dataset does not contain categorical information, it is possible to
apply imputation methods. During this research, the method selected was
KNNImputer [10], which creates clusters between the data and imputes values
based on the nearest centroids using the Euclidean distance. In other words, it
assigns values based on their similarity to known data. The application of this
technique can be seen in Listing 7.

Comparing results

Comparing the results between applying value imputation and assigning values to
nulls after the unification process will allow us to determine which method is best
for the research.

To perform the comparison, a neural network architecture consisting of three
fully connected (dense) layers was implemented, as detailed in Listing 8. This
structure was chosen to ensure a fair and consistent baseline for evaluating the
impact of preprocessing. The network was trained both with and without imputed
values. The results from each training scenario were then collected and analyzed to
indicate the influence of the values imputation.

Metric | Value
MSE | 0.843
RMSE | 0.918
MAE | 0.674

Table 3.2: Model performance in the test set after applying value imputation.

Metric | Value
MSE | 0.320
RMSE | 0.566
MAE | 0.300

Table 3.3: Model performance in the test set without applying value imputation.

As can be seen in Tables 3.2 and 3.3, the model’s performance is severely
compromised after applying value imputation. Everything seems to indicate that
adding some ambiguity to the data does indeed make the model more robust and
versatile.

15

4. In search of solutions

4.1. Solving our regression problem

The estimation of the variable LN_IC_50 is considered highly beneficial in the fight
against cancer. If this value can be accurately predicted, cases in which excessive
medication is prescribed, potentially harming the patient’s system, could be
avoided. Patients requiring higher doses could be identified, thereby improving
their outcomes during the course of the disease. To achieve this goal, it is essential
that the target variables provided in the dataset are considered. Even if they are not
all the primary objective, they can support the learning process of the algorithm,
enabling more comprehensive and accurate predictions.

In line with this approach, the selected target variables, besides the LN_IC_50
indicator, include the AUC curve, RMSE value, Z-Score, and the Boolean drug
response. These variables contribute to understanding the behavior and
characteristics of LN_IC_50 across various blood samples, drugs, cancer types and
other factors. Despite the preprocessing already performed, many variables still
remain unordered or categorical in nature, such as blood samples, drug names or
tissue descriptors. Therefore, one-hot encoding! will be applied to these features.
This will be done using the get_ dummies function from the pandas library, which is
already being utilized for various other operations. However, this transformation
may be viewed as controversial, since it significantly increases the dataset’s
dimensionality, from 21 variables to 1339.

The next step to prepare the data for model training, is to divide it into three
distinct subsets: a training set, a validation set and a test set. This division helps
ensure that the model learns from one portion of the data the training set, while its
performance is periodically evaluated on a separate subset the validation set,
reducing the risk of overfitting. During training, the model attempts to minimize
error on the training data, but its hyperparameters and general behavior are
refined based on its performance on the validation set. Finally, once the model is
fully trained, its ability to generalize is assessed using the test set, since it is a
collection of data it has never seen before. This evaluation provides an unbiased
estimate of the model’s performance on new unseen data.

Although this step may appear straightforward, it is indispensable. It is
essential to ensure that these subsets are representative of the overall data
distribution. If the data is split in an unsupervised or careless manner, it may result
in certain populations being excluded from the training set. This, in turn, would
hinder the model’s ability to learn from those data groups and ultimately reducing
the generalization capacity of the model.

This is a method for converting categorical data into numerical format. Instead of assigning
arbitrary numeric values to categories, one-hot encoding creates a binary vector for each category
[11].

16

Therefore, after separating the data using sklearn’s train_test_split method [12],
the various distributions have been represented using bar charts. This allows to
check the differences between the distributions in order to detect anomalies between
them.

LN-IC50 (train) LN-IC50 (val) LN-IC50 (test)

~

17500 f \ 3500 r-\\ 8000 I[\

15000 % X 3000 y[

6000
12500 2500 1

5 g
g 10000 § 2000
£ 4000

7500 1500 -

5000 1000
2000

2500 500

Figure 4.1: Distributions of the variable LN_ICs in the different subsets.

LN-IC50
e
17500 - ?[A
15000 -
12500 -
-
W
=
¢ 10000
@
=
7500 1

3000 -

2500

Values

Figure 4.2: Distributions of the variable LN_ICsj in the different subsets represented
in the same graph to facilitate comparison.

In order to achieve better results, the data can be standardized. This process
involves representing all the information on the same scale, i.e. which is specially

17

important for algorithms like neural networks. Scikit-learn provides severals
functions for this purpose, such as the StandardScaler [13], which use the mean
and the standard deviation to standardize the data.

The transformation applied by StandardScaler follows the formula:

Where x is the original value, u is the mean of the feature, and ¢ is the standard
deviation.

Although the StandardScaler is widely used in many research studies, in this
work it was decided to choose to use the RobustScaler [14] instead. This method
has two main advantages: it standardizes the data while also reducing the
influence of noise in the dataset. In particular, it is less sensitive to outliers, which
is a highly valuable property when it is necessary to avoid misleading trends
caused by extreme values. RobustScaler applies the formula:

, x —median(x)
¥ T TTIOR®G)

IQR(x) = Q3(x) — Qi (x)

Where x is the original value, x’ is the scaled value, median(x) is the median of
that feature and IQR is the interquartile range?.

Given their proven effectiveness in similar contexts, both neural networks and
XGBoost are selected as candidate algorithms for model training.

* Neural networks: Neural networks are well-suited for handling
high-dimensional data and typically outperform other algorithms in such
contexts. In addition, applying convolutional layers could improve this
predictive performance, by capturing local patterns or dependencies between
related samples. This is particularly relevant, as the main aim to uncover
potential relationships between blood samples, the drugs and the cancer
react.

* XGBoost: Tree based model used to get great performance with tabular data,
even they are able to overcome or match deep learning algorithms, like
neural networks [15]. Moreover, training a tree-based model is typically
faster and easier, compared to training a neural network, which takes more
time. Another key advantage is interpretability, as tree models provide
clearer insights into decision-making processes. However, they have one
notable disadvantage: they are not able to extrapolate beyond the range of
the train data due to how the algorithm learn [16].

2The difference between the first and the last quartile.

18

4.1.1 Predicting LN _ICs) using Neural Networks

Tensorflow is the framework selected for this research due to it provides a smooth
learning curve and includes built-in tools which helps to visualize the architecture
and training progress.

During this research the following callbacks® will be used:

* PlotLossesKerasTF [17]: This package allows real-time visualization of
training loss and other metrics during model training.

* ModelCheckpoint [18]: This callback save the best-performing model based
on a chosen evaluation metric.

* EarlyStopping [19]: Sometimes the model is not able to learn more. In this
situations is common that the validation loss does not improve. When the
moment in captured, the training is stopped using this callback. This enables
to reduce the training time and to avoid overfitting. There are some
occasions, where the model is not able to improve the validation results after
a few epochs. In order to fix this, the callback uses a patience of 10 epoch.

¢ ReduceLROnPlateau [20]: Similar to the last one, this callback point out, in
case the model stop of learning. In that moment it reduces the leaning rate in
order to get an improvement in validation results. The patience considered
was 7, as when this callback is applied the improvement is slower. The value
7 has been assigned empirically, since in this way, in cases where the model
failed to improve after 3 epochs after applying the learning rate reduction, the
model stopped training. In cases where the difference between the two
callbacks was greater, the increase in epochs did not bring about any
significant improvement.

Comparison of loss functions

One of the main hyperparameters* that must be configured during model
development is the loss function. The choice of an appropriate loss function can
significantly influence the quality of the results. Therefore, a function that aligns
well with the nature of the problem should be selected. In this context, three
potential candidates have been considered:

e MSE [21] (Mean Squared Error): Measures the averages squared difference
between predicted values § and the real ones y. It is sensitive to large errors,
but also to outliers. Since the units are squared is less interpretable than other
metrics like RMSE [22].

1 n
MSE = —) (y; —)
nis
3Callbacks are functions or routines that are automatically called at specific points during training,
such as at the end of an epoch or after a batch. They are commonly used for tasks like saving models,
early stopping, adjusting the learning rate or logging training metrics.
4A configuration variable set before training, which often determines whether the model learns
effectively.

19

* logCosh [23]: It combines the best of MSE and MAE [24], it is les sensitive to
outliers and smoother than MAE. This function follows the formula:

LogCosh(y,7) = Z log (cosh(7; — vi))
=1

This means in small errors it works like MSE and in the large ones, it grows
more slowly like MAE. In addition, it is derivable in all his domain, which
ideal for neural network training.

e Huber [25]: This loss function try to replicate the principe of LogCosh, it works
as squared error when this one is low, and it is linear for large errors. It requires
tunning one hyperparameter, é.

6-(ly—9|—36) otherwise

Development of our regressor model

In order to determine the most appropriate approach for the research, some of
methods were defined to increase the dynamism of the research. These can be
found in the appendix in Listing 8, 9 and 10.

By default, the RMSE will be displayed during our training, just to interpret the
learning progress.

Getting the tools to compare error functions

The initial training was conducted using Mean Squared Error (MSE) as the loss
function. While simple, MSE is one of the most effective metrics for gaining insight
into how well the model is learning during the early stages of training.

The training progress is illustrated in Figure 4.3.

20

Loss root_mean_squared_error

0.7 1

0.80 4

0.6
0.75 4

—— training —— training
validation validation
0.70 4

0.5

0.65

0.4

0.60

031 T T T T T T 0.551 T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
epoch epoch

Figure 4.3: Study of the feasibility of employing MSE as a loss function using a
neural network.

A summary of the validation performance, in terms of loss and RMSE, is
provided in Table 4.1, which shows the final values of the loss function and RMSE
at the end of training.

Maetric Best value
Loss (validation) 0.317
RMSE (validation) 0.563

Table 4.1: Model performance upon completion of training. The predictions used
come from the validation set.

Finally, the overall performance of the model on the test set is summarized in
Table 4.2:

Metric | Value
MSE | 0.320
RMSE | 0.566
MAE | 0.300
R? 0.575

Table 4.2: Performance metrics obtained from the model’s predictions in the test set,
calculated using MSE as the loss function.

Figure 4.4 illustrates the relationship between the predicted values generated
by our model and the corresponding actual values. In an ideal scenario, all points

21

would lie precisely on the red diagonal line, which represents perfect predictions.
Although not all predictions fall exactly on this line, the majority are closely
clustered around it, indicating a generally good predictive performance. However,
it is worth noting that in cases where the actual values are particularly high, the
model tends to underpredict, suggesting a limitation in capturing extreme values
accurately.

LN_IC50 AUC

Real real
Z_SCORE RMSE

B Z 2 [2 T 000 005 olo 015 020 025 030
Real Real

Figure 4.4: Result of employing MSE as a loss function using a neural network.

To further the research, the same process will be repeated with LogCosh as loss
function. This could be an alternative because it works better with outliers than
MSE and also it has a good performance with small error. For this reasons this one
could be a great alternative.

In Figure 4.5 si displayed the difference between training and validation,
something similar to what it was seen in Figure 4.3. But there is a clear difference,
in the previous case it seems that the model is not able to learn more, while in this
one more fluctuations can be observed during learning, which allow us to see how
each time the model makes a mistake and increases the error, it rectifies in the next
step. This change is due to the new loss function. While ReLU is unable to
represent negative values, LogCosh can.

22

Loss root_mean_squared_error

0.126 1
0.590

0.124 - 0.585 1

0.122 4 0.580 -

—— ftraining
validation

—— fraining
validation

0.575
0.120

0.570 4

0.118

0.565 -

0.116 -

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
epoch epoch

Figure 4.5: Study of the feasibility of employing logarithm of the hyperbolic cosine
as a loss function using a neural network.

In this case the predictions over the test set were a little bit worse that the
previous one.

Maetric Best value
Loss (validation) 0.116
RMSE (validation) 0.564

Table 4.3: Validation performance metrics at the end of training using LogCosh.

Metric | Value
MSE | 0.321

RMSE | 0.567
MAE | 0.299

R? 0.577

Table 4.4: Performance metrics on the test set using LogCosh as loss function.

Although at first glance the results shown in Figures 4.4 and 4.6 may appear
nearly identical, a more in depth analysis reveals key differences. In Figure 4.4, the
model trained with MSE appears to exhibit slightly less dispersion in its predictions,
as the plot presents a more defined shape compared to that of Figure 4.6.

However, in Figure 4.3, it can be observed that after only a few training
iterations, the model reaches a plateau, showing little to no further improvement,

23

an indication of early stagnation. In contrast, Figure 4.5 displays a continued
downward trend in the loss function, even in the final training stages. This
suggests that the model trained with Log-Cosh loss retains the potential for further
optimization, making it a more promising candidate than the one trained with
MSE.

LN_IC50 AuC

Real Real
Z_SCORE RMSE

015
Real Real

Figure 4.6: Result of employing logarithm of the hyperbolic cosine as a loss function
using a neural network.

Finally, a new model is trained using the Huber loss function. Just as a
reminder, this function and LogCosh have similar target but different points of
views. The both are robust to reduce the impact of outliers, but this one require one
hyperparameter, §, which one is used as threshold.

24

Loss root_mean_squared_error
0.590

0.138
0.585 1

0.136 -
0.580 1

—— training —— training
validation validation

0.134 0.575 4

0.570 - N
0.132 1

N—

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
epoch epoch

0.565 -

0.130 -

Figure 4.7: Study of the feasibility of employing Huber as a loss function using a
neural network.

Metric Best value
Loss (validation) 0.130
RMSE (validation) 0.565

Table 4.5: Validation performance metrics at the end of training using Huber loss.

Metric | Value
MSE | 0.321
RMSE | 0.567
MAE | 0.297
R? 0.586

Table 4.6: Performance metrics on the test set using Huber as loss function.

At the beginning of the training, the model trained with the Huber loss
function seems really interesting, since, as illustrated in Figure 4.7, the results on
the validation set are better than on the training set, a sign that the network is able
to generalize certain behaviors. However, as the epochs go by, this difference not
only reduces but the validation error exceeds the train error, gradually acquiring a
clear upward trend, as can be seen in the same figure. This represents a major
drawback, since if the model does not acquire or loses the ability to generalize, the
results provided by the model are worthless, as it is not able to understand the
nature of the progression.

25

LN_IC50 AUC

Real Real
Z_SCORE RMSE

T T) [3 1 000 005 010 015 020 035 030
Real Real

Figure 4.8: Result of employing Huber as a loss function using a neural network.

The three loss functions seen are interesting, as the implemented architectures
that use them are able to estimate the correct form of LN_ICs in a similar way.
However, this is only the beginning of defining the final model, so the best loss
function will be the one that gives us a hint that it may be the start of something
more promising.

Based on the results, everything seems to indicate that using the MSE error as a
loss function will probably not allow us to make much progress. As previous
discussed, the learning of the model that implements it does not present large
variations, since the epoch 25. Only minimal improvement in validation is
observed after applying the learning rate reduction callback.

The decision then lies between LogCosh and Huber. According to the graphs of
the respective trainings, both experience oscillations in the error obtained, rectifying
each time the error as the training progresses. However, as discussed in the previous
analysis, Huber seems to contain an upward current from the last stage of training,
while LogCosh tends to reduce the error. This is a key feature, as regularization
techniques could be used to enhance these signs of reduction and achieve a better
result.

Applying convolutional layers to our problem

Once the error function has been selected, attention must be directed toward
defining the architecture of the network responsible for performing the regression.

When thinking about how to organize the neurons there are many possible

26

options, and there is no formula that indicates how to do it. So it is a trial-and-error
process, with a lot of research and reading involved. Because keeping abreast of
current events can save us from unnecessary testing. Something really interesting,
since this type of training is not too fast.

Several studies [26, 27, 28] explore the use of one dimensional convolutional
(ID-CNN) layers to address problems involving tabular data. However, the
effectiveness of 1D-CNN depends on the existence of a natural relationship
between the variables that comprise the dataset, such as genetic sequences or
cellular information. Otherwise, this type of network is not appropriate, as it may
fail to capture meaningful patterns or dependencies in data lacking inherent
sequential structure. In cases where the main objective is to capture local
interactions between variables, 1D CNN layers represent one of the most suitable
architectures that can provide meaningful insights into such relationships. This is
specially significance because one of the primary goals is explain the different
aspect involved in the increases or decreases of the LN_ICsq variable, in order to
apply that knowledge to future investigations.

A multitude of studies and architectures were analyzed, with different
approaches. The most promising is an article on predictions of wind farm
degradation [29]. This study introduce an architecture that combines a
soft-ordering mechanism with 1D CNN layers to solve a regression problem, as
illustrated in Figure 4.9. To enhance performance a dense layer is first applied to
the input data to capture the spatial data or sequential relationships, without
maintaining a strict order. The output is then reshape to the required dimension to
allow processing through several convolutional layers.

During the process, a branch is extracted from the initial convolutional layers.
Once the main flow line passes through the last convolutional, the second flow are
merged into the first one by summation, to avoid gradient vanishing. The output
of this summation is subjected to average pooling and flattening before reaching
the last layer, dense one as mentioned before. Finally, a dense layer performs the
predictions.

1x4096

1x2048
1x937

256@16x1 512@16x1 512@8x1 512@8x1 512@8x1 512@8x1 512@4x1
1x206
Dense Reshape Conv Avg- Conv Conv Conv i Flatten Ll Dense
Pool Pool

Figure 4.9: Soft-ordering with 1D convolutional architecture.

27

The process of reducing the error consisted of two stages.
1. Adapting the proposed architecture to the Kaggle data using tensorflow.

2. Moditying the version proposed in the original article to incorporate
techniques that address issues present in the proposed dataset.

Adapting the proposed architecture to the Kaggle data using tensorflow

The implementation was carried out using Tensorflow, based on the proposed
scheme. As shown in Listing 11, various components from the library were
utilized, such as the different types of layers, activation functions required and
different regularization techniques. This elements contributed an improvement in
prediction quality, as illustrated in Figure 4.11. In this figure, the discrepancy
between the predicted and actual values of the LN_ICsq variable is visible reduced,
indicating lower dispersion and a more accurate model, as reflected in the metrics
in Table 4.8. In addition, it is very important to note that Figure 4.11 no longer
shows the large error that when LN_ICs(variable took high values.

Metric | Value
Loss 0.099
RMSE | 0.503

Table 4.7: Model performance metrics on the validation set during the architecture
adapting phase.

Metric | Value
Loss 0.098
RMSE | 0.504

Table 4.8: Model performance metrics on the test set during the architecture
adapting phase.

Despite improved results, it is still possible to achieve a better quality model.
To identify potential improvements to the model, it is important to analyze
Figure 4.10, which illustrates the evolution of the loss function during training. As
shown in the figure, the model initially exhibits high error, which progressively
decreases as it learns to adjust its parameters. At a certain point, the loss drops
significantly, suggesting that the model begins to generalize key patterns relevant
to the regression task. However, this improvement plateaus after a few iterations,
with no further reduction in error.

Moreover, a considerable gap is observed between the training and validation
errors, with the training loss being significantly lower. This discrepancy suggests
that, although there is no clear indication of overfitting, the model performs
considerably better on the training set than on the validation set. This implies that
it may not be capturing generalizable patterns well enough to accurately predict
unseen data. Reducing this gap could therefore help to achieve better results.

28

root_mean_squared_error

0.25

0.20

0.15

0.10 -

0.05

—— ftraining
validation

1.1+

1.0 4

0.9 4

0.8

0.7 1

—— fraining
validation

0 10 20 30 40
epoch

T T
0 10 20 30 40
epoch

Figure 4.10: Training a neural network using convolutional layers and addition as a

bridge.

LN_IC50

Real

Z_SCORE

000 005 010 01s 020
Real

Figure 4.11: Result of employing a neural network using convolutional layers and

addition as a bridge.

29

Modifying the initial version to incorporate techniques that address issues
present in the proposed dataset

To mitigate overfitting, numerous experiments were conducted by increasing and
varying different types of regularization techniques. However, the results
remained largely unchanged, with only marginal improvements in error reduction.
In contrast, experimenting with different activation functions led to more
promising results. Initially, the functions suggested in the original paper were
tested, but subsequently, other activation functions available in TensorFlow were
explored. Among these, the SiLU function [30], also known as Swish, proved
particularly effective. It significantly reduced the gap between training and
validation errors.

This improvement can be attributed to the characteristics of SiLU compared to
ReLU and the specific nature of our dataset. SiLU is a smoother function with
outputs close to zero, as illustrated in Figure 4.12, making it more suitable in
scenarios where small negative values may carry meaningful information. Unlike
ReLU, which zeroes out all negative values, SiLU retains them with a small but
non-zero output, allowing a more nuanced interpretation.

One of the main drawbacks of SiLU is its higher computational cost, as it
requires computing a sigmoid function in addition to a multiplication operation. In
contrast, ReLU simply computes the maximum between zero and the input value.
The formula for SiLU is:

SiLU(x) = x-0(x) =] +xe_x where o (x) is the sigmoid function

30

Comparison of RelLU and SiLU Activation Functions

10 + == RelU
SiLU (Swish)
8_
F

- F
=] r
g 67 7
=
o
=4
i=l
o
2 4
=
w
<

2_

0

T T T T T T T T
-10.0 -7.5 —=5.0 -2.5 0.0 2.5 5.0 1.5 10.0

Input

Figure 4.12: Comparison between SiLU and ReLU. In this picture it is observed the
differences between them around zero.

On this basis, the implementation, shown in Listing 12, was carried out again,
adjusting some of the hyperparameters related to the regularization and the number
of layers. As a result of these modifications, the difference between the train and
validation was reduced, showing a narrower gap, as is illustrate by Figure 4.13.

31

Loss root_mean_squared_error

114

0.35

104

0.30
0.9 1

0.25

—— training 0.8 1 —— training
validation ’ validation
0.20 4 0.7 7
0.6 q
0.15 4
i 0.5 4 \
0.10 1
T T . T T T T . T T T T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

Figure 4.13: Training a neural network using convolutional layers and addition as a
bridge, increasing the regularization and using SiLU as activation function.

Metric | Value
MSE 0.270
RMSE | 0.520
MAE | 0.257
R? 0.685

Table 4.9: Performance metrics on the test set after applying the SiLU activation
function.

32

LN_IC50 AUC

real real
Z_SCORE RMSE

] z @ 000 005 010 ols
real Feal

Figure 4.14: Result of employing a neural network using convolutional layers and
addition as a bridge, increasing the regularization and using SiLU as activation
function.

After this improvement in training stage, another challenge was found. The
error was increased, as can be seen in Figure 4.14. Not only did the spread for the
predictions for the LN_ICs variable become wider, but the model also performed
worse when predicting high values in comparation with the previous version.

This prompted a new line of research focused on improving the prediction
results, trying to avoid increase the gap between training and validation again. In
this situation, the best alternative was to investigate how to improve an
architecture based on convolutions for other types of problems, in particular those
related to images, since this is where most research has been done.

Custom architecture

After extensive research, it became clear that one way to cancel out neurons or
drastically reduce their impact was through multiplication [31, 32]. Thus, thinking
about how to adapt this mechanism to the current architecture came to the fore, as
it could be the answer to the problem. If possible, the model could learn to
discriminate between points that are of no interest, providing better results.

Motivated by this idea, various ways of modifying the architecture to introduce
multiplication were considered, two of which stood out:

¢ Perform the addition as planned in the original model and then apply the
multiplication. This adaptation caused problems in the performance of the

33

model.

* Replace the addition with multiplication, thereby reducing the freedom of the
model compared to the previous approach. This design acts as an attention-
like filter, helping the model distinguish important from irrelevant patterns.

After observing the results of both proof-of-concept tests, the decision was clear.
The implementation focused on replacing one operation with the other. As a result
of this modification, the model provides better results in the test set, as evidenced
by the metrics presented in Table 4.10. Additionally, Figure 4.16 shows predictions
with a lower degree of dispersion than any previous representation. This marks a
key a milestone in the research, since the model achieved at this point is capable
of estimating the value of the LN_ICsy variable with great precision. Notably, it
maintains its performance even for data points with exceptionally high LN_ICsg
values, not as it happened in Figure 4.14.

Given the absence of significant discrepancies between validation and test
errors during training, this model is a strong candidate for applying explainability
techniques. The insights derived could offer meaningful contributions to
oncological research aimed at advancing cancer treatment

Metric | Value
MSE | 0.240
RMSE | 0.490
MAE | 0.242
R? 0.694

Table 4.10: Performance metrics on the test set after incorporating the multiplicative
gating mechanism.

34

Loss root_mean_squared_error
0.35
11
0.30 -
1.0 4
0254 |
‘ 0.9 1
|
—— ftraining —— fraining
validation | validation
084 |
0.20 1 \
0.7
0.15
0.6
0.10 4 \\
\M 0.5 4 —
_——
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
Figure 4.15: Training a neural network using convolutional layers and

multiplication as a bridge.

N_IC50

Pronostics

Real
Z_SCORE

real
RMSE

Pronostics

010 ols 020
real

Figure 4.16: Result of employing a neural network using convolutional layers and
multiplication as a bridge.

35

4.1.2 Application of XGBoost Regression Trees to our problem

Currently, much of the research being conducted uses neural networks, but one
should never assume that one type of architecture is always optimal for all cases.
For this reason, this study includes some experiments with tree-based algorithms
as well, in order to increase the knowledge of the problem. As stated at the
beginning of this chapter, the chosen algorithm is XGBoost because it has shown
very good results in several articles [33, 34].

Tree-based models have a major disadvantage compared to networks, they are
typically poor at extrapolation, meaning they struggle to predict values outside the
range observed during training. But even so, they are characterized by their great
robustness and, due to their nature, they allow the elimination of variables without
adding cost, since it is the algorithm itself that determines the features that are
relevant to achieve the objective.

To enable a fair comparison between models, an XGBoost model was trained
using the same dataset that was previously used for the neural networks. This
approach ensures that both models are evaluated under identical conditions,
allowing us to assess their respective performance accurately.

Several training sessions were performed using the XGBoost library available
for Python, through which the following results were obtained:

Metric | Value
MSE 1.253
RMSE | 1.119
R? 0.842

Table 4.11: Performance metrics of the evaluated model on test set using XGBoost.

36

LN_IC50 AUC

25 06
Real Real
2 SCORE RMSE

it
Real Real

Figure 4.17: Results of XGBoost with target variables encoded using one-hot.

Examining the performance of the model trained with XGBoost, as shown in
Figure 4.17 and Table 4.11, a decline in accuracy is observed compared to the
neural network-based models. Specifically, the results suggest that XGBoost yields
poorer predictions for the LN_ICsq variable, while slightly improving the error for
the remaining target variables. In other words, it increases the error in LN_ICsg
while reducing it for the others. However, this behavior is not desirable, as
LN_ICs is the primary variable of interest. The other target variables serve merely
as auxiliary signals to support the model during training and help improve its
performance on the main target.

To improve the results, several hyperparameter optimization algorithms were
applied, including GridSearch [35] and RandomSearch [36]. However, due to the
presence of numerous features encoded using one-hot encoding, executing these
processes required substantial computational resources, particularly in terms of
RAM. This limitation posed a challenge, as such resources were not readily
available. Various alternatives were evaluated to address this issue. Ultimately,
ordinal encoding [37] was applied to the one-hot encoded variables. This approach
significantly reduced the number of columns, enabling the execution of different
methods aimed at identifying dispensable variables. Among the algorithms used
for this purpose were RFE [38] and SelectFromModel [39].

In order to narrow down the variables to be eliminated, both feature selection
methods, SelectFromModel and RFE, were run and those that were common to the
two subsets generated were chosen. In this way, it was possible to reduce the
number of variables to only 8, from 20 that were initially generated. Subsequently,

37

RandomSearch was applied to try to find a good combination of hyperparameters,
which one can be seen in Table 4.13.

After that, the model was trained again. Two training were executed, the first,
using the variables with the ordinal encoder, and the second training with one-hot
coding. Unfortunately, both results were of lower quality than those offered by the
neural networks, as can be seen in Table 4.12, which shows an increase in error. The
best-performing model among the tested configurations was the one using one-hot
encoding. It achieved the following evaluation metrics:

Metric | Value
MSE | 1.318
RMSE | 1.148
MAE | 0.855
R? 0.827

Table 4.12: Performance metrics of the XGBoost model using one-hot encoding after
hyperparameter optimization and variable selection.

LN_IC50 AUC

Pronostics

Z_SCORE RMSE

020

Pronostics
Pronostics
°

010

-6 -4 -2 0 2 4 0.00 0.05 0.10 015 020 025 030
Real

Figure 4.18: Representation of predictions using XGBoost, together with feature
reduction and hyperparameter optimization.

38

Parameter Value
n_estimators 869

seed 123
learning_rate | 0.028
max_depth 7

reg_alpha 0.040
reg_lambda 0.492
max_leaves 328

Table 4.13: Hyperparameters of the gradient boosting model after applying
hyperparameter optimization.

4.2. A classification problem

The previous section has focused on continuous target variables, except for Drug
Response, successfully developing a neural network-based regressor capable of
predicting the LN_ICs(variable with high accuracy, achieving an RMSE below 0.5.
Building upon this strong foundation, the next step aims to bring the model closer
to a real-world clinical application. To do this, the continuous LN_ICs variable is
discretized into 25 equally spaced intervals, offering a practical approximation of
dosage levels.

This number of intervals has not been selected at random, but rather as a result
of analyzing the growth of entropy as a function of the number of divisions,
particularly by observing the slope of this evolution. Maximizing entropy allows to
obtain a highly representative set, but an excessive number of divisions can
introduce noise or redundancy. To avoid this problem, the slope of the entropy
curve is analyzed in order to identify an inflection point that indicates a balance
between representativeness and stability. Thus, Figure 4.19 illustrates the evolution
of both entropy and the slope of its evolution. Based on this information, a division
of 25 intervals is proposed, as this represents a midpoint between the slope and the
increase in entropy. To carry out these operations, the code shown in Listing 13 has
been used.

39

Entropy vs Number of bins Entropy slope

4.5 054

4.0 -
0.4 4

3.5 034

3.0 0.2

Entropy
Slope (dH/dk)

2.0

154 ~0.14

1.0+ 0.2 4

T T T T T T T T T T T v
0 10 20 30 40 50 0 10 20 30 40 50
k (number of bins) k {(number of bins)

Figure 4.19: Representation of entropy evolution based on the number of bins.

The range in which the value of LN_ICsj is found must be understood as the
number of pills the patient should take. This idea makes a lot of sense, as getting
closer to the concept of prescribing a certain number of pills allows to be somewhat
more lax with the error made. For example, if two ibuprofens are taken instead of
one, the negative effect is not appreciable. However, this is not the case when six are
taken instead of one. Therefore, it can be inferred that making a slight error is not as
serious as making a large one, an aspect that should certainly be considered when
calculating the error.

Before any model is trained, the data will be visualized graphically to assess
their separability, specifically, to determine whether the class ranges overlap in
feature space or not. Since the dataset, after applying the ordinal encoder, contains
more than 20 variables, direct representation is not feasible. = Therefore, a
dimensionality reduction process will be performed to project the data into 2D and
3D spaces, allowing for easier interpretation.

First, t-SNE [40] will be used to perform the compression process. This
algorithm is highly effective at capturing local relationships; that is, within a group,
the relationships between data points can be accurately preserved. This will allow
an assessment of whether points belonging to the same group are located close
together in space. If they are not, it indicates higher data variance, which would
make it more challenging for a model to correctly predict group membership.

For this purpose, the t-SNE method from scikit-learn [41] will be used.
However, the algorithm is computationally expensive. To accelerate execution, the
data obtained from the initial run will be saved using NumPy, so that subsequent
executions can bypass the computational step. This process is illustrated in
Listing 14.

40

2D representation (t-TSNE)

150 4

3D representation (t-TSNE)

100 4

—50

—100 -

_150 7 T T T T T
-150 -100 -50 0 50 100

Figure 4.20: Representation of the data by t-SNE, where it can be seen the separation
between points of the same cluster.

As a result, the representation shown in Figure 4.20 is obtained, in which the
groups appear to be clearly distinguishable. However, a new question arises:
although the clusters seem to be located close to one another in the plot, it is not
certain whether this proximity reflects the true structure of the data, since t-SNE
does not accurately capture global relationships, that is, the relationships between
different groups.

To address this, UMAP [42] will be used, as it is capable of preserving both
local and global non-linear relationships. The implementation will be carried out
using the umap-learn library [43], as demonstrated in Listing 15. Similar to t-SNE,
UMAP is computationally expensive; therefore, the same data-saving strategy will
be applied to avoid repeated computations in future executions.

As a result, it can be observed in Figure 4.21 that the clusters are indeed well
separated. Therefore, it can be assumed a priori that applying predictive models
may yield good results.

41

2D representation (UMAP)

204

3D representation (UMAP)

15 4

10

—10

Figure 4.21: Representation of the data by UMAP, where it can be checked the
distance between the different groups and their internal elements.

4.3. Discovering the correct group wusing Neural
Networks

The objective of this section is to estimate the number of doses required by a patient
using a neural network. To accomplish this, the previously developed architecture
must be adapted to effectively model the problem, beginning with the dataset that
includes a discretized version of the target variable.

The process has been divided into three main stages:
1. Adaptation of the existing architecture.
2. Expansion paths

3. Refinement of the loss function.

Adaptation of the existing architecture

Building on the previously trained neural network model, the objective of this
section is to obtain a new network capable of estimating the number of doses of a
drug needed to treat a person. Acquiring a certain degree of intuition about how
current architecture deals with classification issues is crucial to making changes
that truly add value. Therefore, initially the changes will be subtle, i.e., only very
specific sections of the architecture will be modified. In this way, after each
modification that leads to an improvement in performance, it will be translated
into the new goal to be achieved. To achieve this, it is necessary to modify both the

42

loss function and the output layer of the model to make the predictions compatible
with the classification.

Thus, the error function was replaced by categorical cross-entropy, which is
one of the most used, with the aim of testing the model’s accuracy. With regard to
the model output, Softmax is the most recommended for this type of classification
problem, as it provides a probability for each possible class.

As there is more than one target variable, the network must have more than one
output layer simultaneously, as can be seen in Listing 16.

Once model training began, it successfully completed 100 epochs. The learning
curves, shown in Figure 4.22, reveal that the model achieves better performance on
the validation set than on the training set, an uncommon but noteworthy behavior.
However, despite this apparent advantage, the overall quality of the predictions
remains limited, with accuracy values not exceeding 0.35, as can be seen in
Table 4.14. This indicates that, although generalization may be occurring, the
model still struggles to produce reliable predictions. Furthermore, depending on
the progress of the training, the model would be able to improve if the number of
available epochs were increased.

LN_IC50_categorical_accuracy LN_IC50_loss

0.35 4

0.30

0,25 4 = training

validation

= training

validation

0.20

0.15

6 2‘0 4‘0 6‘0 Sb 1CI|0 6 Zb 4‘0 6‘0 BIO 160
epoch epoch
Figure 4.22: Progress of model training after replacing the error function with
cross-entropy and the output layer with a multi-class layer with softmax activation
function. Better performance is observed in the validation set compared to the
training set.

Validation Metric Best Value
LN_IC50_Categorical _Accuracy 0.349
LN_IC50_Loss 2.505

Table 4.14: Best validation results for LN_IC50 metrics.

Expansion paths

Refining the architecture so that the model is able to correctly capture the patterns
present in the dataset is the next step towards achieving better results. Thus, the

43

architecture currently proposed to act as a classifier has one main weakness: the
error function. This is because it is unable to adjust to unbalanced data, for this
reason it will be replaced by categorical focal cross-entropy. Depending on which
one yields the most promising results, one or the other will be selected to form part
of a customized function that takes into account the importance of large errors.

Additionally, giving greater relevance to the LN_ICsy variable will help the
model focus its efforts on correctly predicting this output. Without neglecting the
extra knowledge provided by the others, thus serving as a support.

Expansion paths: Loss function

Among the loss functions suitable for classification tasks involving imbalanced
classes, categorical focal cross-entropy is particularly worth considering. As an
extension of the standard categorical cross-entropy, it introduces mechanisms
specifically designed to mitigate the effects of class imbalance by emphasizing
harder-to-classify examples. Applying this loss function can offer a useful
indication of whether the class imbalance is significantly influencing model
performance.

The formula of this function is:

FL(y,9) = - i‘xi yi (1= 9;)7 log(9;)
i=
¢ C: Total number of classes.
* y;: True label for class i (one-hot encoded).
* {);: Predicted probability for class i.
* «;: Class weight (optional, used for class balancing).
¢ <: Focusing parameter (typically set to 2).

* (1 —g;)": Modulating factor that down-weights easy (high-confidence)
examples.

Since the implementation is being carried out using the Tensorflow API, making
this change is very simple. It only requires changing one line of text, as can be seen
in Listing 17.

44

LN_IC50 categorical_accuracy LN_IC50 loss

0.55 4
0.351

0.50

0.30 4 0.45

—— training —— training
validation 0.40 validation

0.25 1

0.35 4

0.20 1
0.30 4

0.15 | 0.25 A

T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

Figure 4.23: Model training progress applying categorical focal loss.

Validation Metric Best Value
LN_IC50_Categorical _Accuracy 0.383
LN_IC50_Loss 0.504

Table 4.15: Best validation results for LN_IC50 metrics using focal loss.

The results obtained after this new modification are extremely interesting. Both
models, the previous one and this one, perform better on the validation set than on
the training set. However, in this case, it can be seen that it was necessary to reduce
the learning rate halfway through training in order to continue improving. In the
previous case, the learning rate did not need to be reduced to obtain a substantial
improvement in performance, as illustrated in Figure 4.22.

In this second training session, although better results are obtained than in the
previous one, as shown in Table 4.15, the model’s progression is less promising, as
can be seen in Figure 4.23.

This can lead to two main ideas:

e The dataset contains some unbalanced classes. Therefore, in order to learn
how to classify them correctly, the first model must invest more time, while
the second, thanks to the focal error function, is able to learn faster. However,
this second model reaches a plateau even after reducing the learning rate.

¢ Although the model that uses categorical error learns more slowly, it seems
to have more potential for improvement, since in the case of the model that
incorporates focal loss, the performance slope is less pronounced.

Expansion paths: Priorities

Due to the high number of outputs in the current architecture, the model may
attempt to learn all targets with equal emphasis, or worse, prioritize outputs that
are not related to LN_ICsp. To address this, a weighting strategy was proposed in

45

which the importance of each output is adjusted. This aims to improve the
prediction performance for LN_ICsg by giving it higher priority during training.

This modification was implemented using the Keras Functional API, as shown
in Listing 18. The loss contributions from all output layers were maintained, except
for the one corresponding to LN _ICsy, which was assigned 50% more weight. The
objective is to ensure that the model continues to consider the auxiliary outputs
while explicitly encouraging better performance on the primary target, LN_ICsp.

Thanks to this approach, a considerable improvement was achieved during
training, as shown in Figure 4.24 and Table 4.16. Here, both accuracy and error
have improved. Once again, it was necessary to reduce the learning rate during
training.

LN_IC50_categorical_accuracy LN_IC50_loss
2.8 1

0.35 2.61

2.44
0.30

2.24

—— training —— ftraining
validation validation

2.0 4

0.251

0.20 4 1.8

| 16
0.15 1 ,/

T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

Figure 4.24: Model training progress by changing the importance of outputs.

Validation Metric Best Value
LN_IC50_Categorical _Accuracy 0.384
LN_IC50_Loss 2.496

Table 4.16: Best validation results for LN_ICsy metrics after applying output
weighting.

Everything seems to indicate that adjusting the weights of the outputs provides
an increase in the model’s performance. Likewise, during this training, it can be
observed how, once again, the categorical cross-entropy error function has provided
the necessary dynamism to improve the quality of the predictions by reducing the
learning rate in around the epoch 80.

Refinement of the loss function

The experimental results suggest that performance can be improved by carefully
designing the training process, specifically through a combination of output
weighting and an appropriately chosen loss function.

46

While selecting the optimal combination of weights often involves empirical
tuning, the choice of loss function is more critical, as it must be tailored to both the
characteristics of the data and the nature of the problem. It is important to recall that
the objective is not merely to predict the exact number of doses, but to minimize
the severity of misclassifications. For example, mispredicting by one dose is less
significant than mispredicting by five. Consequently, the loss function must reflect
this asymmetry in error severity.

Additionally, the loss must support effective learning; otherwise, there is a risk
of stagnation during training. To address these requirements, a custom loss
function was developed for the final version of the classification model, as shown
in Listing 19. This function penalizes predictions progressively based on their
distance from the correct class, encouraging the model to make closer, even if not
exact, predictions. As a result, the number of highly incorrect classifications is
significantly reduced.

As a result of all these modifications, the model significantly increases
performance and reduces the difference between training and validation, all of
which can be seen in Figure 4.25. This translates into more accurate and reliable
predictions outside the training set.

LN_IC50_categorical_accuracy

0.35 |

LN_IC50_loss

0.30 4 —— ftraining 6
validation

—— training
validation

0.25

0.20 -

0154 |

(I) Zb 4‘0 6‘0 Hb 6 ZID 4‘0 6‘0 BID
epoch epoch
Figure 4.25: Progress of model training applying a customized error function,
which takes into account both accuracy and the difference between the actual and
predicted values.

Validation Metric Best Value
LN_IC50_Categorical _Accuracy 0.412
LN_C50_Loss 2.195

Table 4.17: Best validation results for LN_IC50 metrics using the custom loss

function.

47

14000 1

12000 -

10000 -

8000 -

Frequency

6000 A

4000

2000 A

3 4 5] 7 8 9
Absolute error

Figure 4.26: Bar chart representation of the absolute error committed in the test set.
It allows us to verify that the model predicts with a low degree of error.

Test Metric | Value
MSE 1.218
RMSE 1.103
R? 0.878

Table 4.18: Regression performance metrics on the test set for LN_IC_50 using a
neural network with custom loss function.

However, there is one aspect that cannot be assessed from the graph in
Figure 4.25. In this iteration, an error function has been defined that should prevent
large discrepancies between reality and prediction. This feature is corroborated in
Figure 4.26, which illustrates a histogram in which the highest percentage of errors
are between 0 and 1 doses. Therefore, the model effectively meets expectations.

48

Mean error per real value for LN_IC50

4.0
3.5 4

3.0 1

151

o~ © ~ © m ~ —)] © © a n =] «
~N - — —
LN_IC50_test (real value)

1.0

0.5

0.0 -

1
12
13
14
15
20

Figure 4.27: Representation of the mean absolute error for each class using neural
networks.

Additionally, Figure 4.27 shows the average absolute error committed for each
class. This confirms that class 24 is where the most errors are committed, while
classes 20 and 15 are the most accurate.

Reaching this point in the research represents a milestone in the study, as the
model is capable of deciding how many doses to administer, with a single-dose error
in most cases. This allows for better management of prescriptions, thus improving
patients” quality of life.

4.4. Testing XGBoost as a classifier

In this section, the method applied is XGBoost in a multi-class classification setting,
using the discretized variable LN_ICs as in previous experiments. The aim is to
evaluate its predictive power and compare it with the results obtained using deep
learning approaches.

Beyond accuracy, it is particularly interesting how XGBoost handles the ordinal
nature of the target variable, where misclassifying a class by 1 is much less serious
than misclassifying it by 5 or more. To achieve this, evaluations will be carried out
using standard metrics, such as accuracy, but also some that take into account the
distance between the prediction and the actual classes, including MAE and RMSE.

As the dynamic applied throughout the research, the model will be refined as
the reading progresses. First, training will be carried out where only accuracy will
be taken into account, and then training will also evaluate the difference between
prediction and expected class. This initial process will allow us to compare and
verify that this approach is the most appropriate.

49

Focusing on classification

To conduct the research using xgboost and focusing solely on the accuracy of the
result, the most appropriate objective function is softmax. This setting enable multi-
class classification, by directly modeling the probability distribution over all classes.
Otherwise, the architecture would have to be modelled as one vs rest system, which
would require a binary classifier for each class. This would increase the time and
effort required.

For evaluating model performance, the chosen loss function is categorical
cross-entropy, referred to in the XGBoost Python library as Multi-Class Log Loss
(mlogloss). This metric is particularly appropriate because it not only assesses
classification correctness but also takes into account the confidence of the predicted
probabilities, in this way, a more nuanced assessment is provided than simple
accuracy.

The flaw in this approach is that it does not take into account the severity of
major errors. In fact, Figure 4.28 shows how the results obtained using this model
falls significantly short of those produced by the neural network. This is further
supported by the metrics shown in Table 4.19, which reveal a substantial increase in
error.

12000 A

10000 ~

8000 A

Frequency

6000

4000

2000 +

0 1 2 3 4 5 6 7 8 9 10 11
Absolute error

Figure 4.28: Representation of the absolute error committed with the test set using
XGBoost and softmax. A substantial increase in error is observed, with the largest
error committed being 11.

50

Test Metric | Value
MSE 2.766
RMSE 1.663
R? 0.724

Table 4.19: Performance metrics on the test set for LN_ICsy using XGBoost classifier
predictions interpreted as numerical outputs.

Prioritizing distance to the right class

Applying a function that shows the importance of being close to the correct class
should improve the quality of the model. In the case of XGBoost, the function used
is the mean square error (MSE). In addition, it is necessary to modify the evaluation
metric, in this case the root mean square error (RMSE), to facilitate the interpretation
of progress.

After a series of training sessions, a result similar to that of neural networks
was obtained, without reaching the same quality, but improving on the previous
version. This can be seen in Figure 4.29, which shows how the proportion changes,
increasing the number of cases in which only one error is made, or even none at
all. It also reduces all the others, as reflected in the metrics in Table 4.20, where the
maximum error is 12.

14000 ~

12000 A

10000 A

8000 4

Frequency

6000

4000

2000 A

0 1 p 3 4 5 6 7 8 9 10 11 12
Absolute error

Figure 4.29: Representation of the absolute error committed with the test set using
XGboost and MSE. A substantial increase in error is observed, with the largest error
committed being 12.

51

Test Metric | Value
MSE 2.381
RMSE 1.543
R? 0.834

Table 4.20: Performance metrics on the test set using XGBoost with
reg:squarederror.

Mean error per real value for LN_IC50

3.0 4

2.5 A

2.0<II
||||I|._
1‘OAIIIIIIIIIIIIlIIII_

0.5 1

0.0 -

o~ n — ~ =] A © o m ~ m
o — — — — — — o~

LN_IC50_test (real value)

<t - © ~ ()] ['<] o o~
(o] —~

13
21
14
20
15

Figure 4.30: Representation of the mean absolute error for each class using XGBoost.

Additionally, Figure 4.30 shows the average absolute error committed for each
class using the model based on XGBoost. The figure shows that the error is mainly
incorrect in the same classes as the previous neural network, with the exception of
some of them, such as class 0, where XGBoost makes fewer errors.

By applying the same distance-aware approach used in neural networks to the
XGBoost model, the result obtained is very similar. Two key aspects of this result
must be taken into account:

* Accuracy of predictions: While the overall performance is similar in terms of
trend, the quality of the model is slightly lower. the model exhibits a higher
number of instances where the error is greater than 3, a threshold that should
not be exceeded too often, as such deviations could negatively impact clinical
outcomes.

* Training time and cost: One of the major advantages of using XGBoost lies in
its training efficiency. The model can be trained significantly faster and with
much lower computational overhead compared to neural networks, which
often require extensive resources and time to achieve optimal performance.

52

4.5. SHAP: The reasons must be known.

This chapter focuses on applying all the knowledge acquired during the research to
understand what the best trained models have learned. The objective is to extract
the linear or non-linear relationships that the model has learned from the data.

This approach allows, on the one hand, to validate the correct learning of the
model. For example, it could be the case that to infer the response, the model looks
at patterns that have nothing to do with the efficiency of a drug, as would be the
case with a model that groups several cases because it identifies that they have the
same doctor. This knowledge, although entirely valid, implies that the learning has
not acquired the quality it should, as it should predict based on a patient’s data, not
on who is treating them. On the other hand, knowing the features on which a model
is based and to what extent can represent a major advance in cancer research, open
up new avenues of research or demonstrate previously unknown theories.

Throughout this research, regressors based on two different modeling
approaches were trained. First, models based on neural networks were trained,
which are particularly capable of finding non-linear and complex relationships.
Then, research was conducted on the feasibility of using tree-based models, hough
generally less performant than neural networks, offer faster training times and
lower computational cost. Thus, there are models based in two different type of
algorithm, a network-based model and a tree-based model. Among them, the
model that provides the best results should be selected, as it is the one that
generalizes best. Thus, given that the best network-based model, whose metrics are
shown in Table 4.10, offers much better performance than the tree-based model,
whose metrics are shown in Table 4.11, the network-based architecture should be
used.

To understand the reasons behind the neural network’s predictions, the
technique used in this study was SHAD, as it allows explainability to be applied not
only locally but also globally.

In Figure 4.31, the SHAP values of a set of 200 examples are shown. This
representation provides a very intuitive visualization of what is happening within
the model, slightly dispelling that black box perception.

53

Screen Medium R

MAX_CONC

Screen Medium_D/F12
DRUG_ID
DRUG_NAME_x_SABUTOCLAX
DRUG NAME x PACLITAXEL
DRUG NAME x VINBLASTINE
DRUG_NAME_x VINORELBINE
DRUG_NAME_x_DINACICLIB
DRUG_NAME_x_MG-132
DRUG_NAME_x_AZD7762
DRUG_NAME_x_ROMIDEPSIN
Growth Properties
DRUG_NAME_x_DACTINOMYCIN
DRUG_NAME_x_PFI3
DRUG_NAME x AZD1208
SANGER_MODEL_ID_SIDM00412
DRUG_NAME_x_EG5 9814
DRUG_NAME x_ PICOLINICI-ACID

DRUG_NAME_x_LENALIDOMIDE

High

Feature value

T T T T T LD'W
-6 -4 =2 0 2

SHAP value {impact on model output)

Figure 4.31: Shap summary plot with 200 examples. This one shows how the model
behaves based on the values of its most representative variables.

To interpret the image, it is important to note that all variables beginning with
"DRUG_NAME”, “Screen Medium”, or "SANER” have been one-hot encoded.
This encoding explains the pattern of numerous blue dots and only a few red ones,
indicating that the model primarily values the absence of these features. In
contrast, the variable "DRUG_ID” retains its original numerical values. Thus, the
blue dots corresponding to these variables indicate that they are not present in the
instance. For example, in the case of drug names, the blue dots represent those

54

cases in which the drug in question has not been administered.

Figure 4.31 suggests that when the network detects that drugs such as
Sabutoclax, Paclitaxel Vinblastine are recessed, the probability of predicting a low
value for the LN _ICsy variable increases, since all of them contribute to reducing
the prediction value. Applying this knowledge to real life could mean that these
drugs are more aggressive against cancer and therefore the amount needed is
lower. In fact, according to several studies [44, 45], Sabutoclax is mainly used in
cases where the patient experiences some resistance to standard therapies.

Similarly, it can be seen that when the maximum concentration increases the
model, so does the probability of predicting a high value for LN_ICsp.

Regarding the listed drugs, the presence of the first 9 appears to be associated
with lower predictions for the LN_ICsy variable, which is considered a favorable
outcome for patients. Notably, one of the 20 most influential features is linked to
the blood sample type. Its presence consistently contributes to lower LN_ICsg
values, reinforcing the hypothesis that genetic or biological factors, such as the type
of sample, may significantly influence a patient’s response to cancer treatments.
This finding supports the broader theory that the human genome plays a crucial
role in drug sensitivity.

The dependency plot for the variable SANGER_-MODEL_ID_SIDM00412,
illustrated in Figure 4.32, reveals that, in the cases analyzed by SHAP, when this
specific blood sample is present, the value of the Growth Properties feature is never
set to D/F12. This combination is associated with negative SHAP values for the
target variable LN_ICs, suggesting that patients corresponding to this sample tend
to require a lower dosage of medication. This may indicate a favorable drug
sensitivity profile for this particular biological condition.

55

1.0

0.04 1
~
ﬁ
S
-0.5 A ™~
o
% ™
T a)
4= N I
110 -
5 Ql 1.0 g
1) 055
% O _1.5‘ h p=
n E| 0
E | .
w N 4
o 2.0 n
=
&
2.5 1 .
T T T T T T Duﬂ
0.0 0.2 0.4 0.6 0.8 1.0

SANGER_MODEL_ID_SIDM00412

Figure 4.32: Dependence plot of variable SANGER_MODEL_ID_SIDM00412
obtained using SHAP. Obtained by analyzing 200 examples.

56

5. Conclusions

This thesis has explored the intersection between machine learning and precision
oncology, with the aim of predicting drug sensitivity in cancer using genomic data.
Leveraging the Genomics of Drug Sensitivity in Cancer (GDSC) dataset, the study
developed and evaluated several predictive models focused primarily on estimating
the value LN_IC5, a key indicator of drug efficacy.

The initial phase of the research focused on regression, where neural networks
demonstrated a strong ability to model complex, non-linear relationships inherent
in genomic data. Through careful preprocessing, dimensionality reduction, and
hyperparameter optimization, the best regressor achieved an RMSE of less than 0.5,
demonstrating the feasibility of accurately estimating drug response.

To more closely approximate real clinical decisions, the problem was
subsequently discretized, transforming it into a classification task to emulate dose
estimation. Several approaches were tested, including categorical cross-entropy,
focal loss, and custom-designed loss functions that penalized large prediction
errors more severely. Despite the inherent complexity and class imbalance, the
network maintained reasonable accuracy while respecting the ordinal nature of the
problem.

In addition, explainability techniques such as SHAP were explored to interpret
model decisions. These insights revealed the most influential genomic and
pharmacological characteristics, supporting the hypothesis that patient-specific
genomic profiles significantly influence drug efficacy. This not only improved the
transparency of the model but also suggested potential biological insights that
warrant further investigation.

Comparative experiments with tree-based models, such as XGBoost, confirmed
that, although they offer faster training and lower resource consumption, they tend
to underperform deep learning models when capturing complex data relationships.

Finally, the work highlights the importance of personalized medicine and the
role that machine learning can play in improving treatment strategies. The results
demonstrate that integrating genomic data with predictive models offers a
promising avenue towards more effective and individualized cancer therapies.

57

Appendix

1 obsolete = []
> for col in dataset.columns:

if col.upper() != ("cosmic_id".upper()):
4 content = dataset[col].unique()

if len(content) < 2:

6 obsolete.append(col)
7 suffix = "..." if len(content) > 10 else ""
8 print(f"\033[1mx {col}\033[0m -> {content[:10]} {suffix}")
o print(f"The obsolete columns are: {obsolete}")
10

n dataset = dataset.drop(columns=obsolete)

Code extract 1: Find obsolete variables and determine the size of each variable’s

domain.

1 def check_id_name_consistency(df, id_col="DRUG_ID", name_col="DRUG_NAME_x

Il):
2 names = df[name_col].unique()
3 ids_values = df[id_col].unique()
4 names_inconsistences = []

ids_inconsistences = []
6 for i in names:
7 ids = df[df[name_col] == i][id_col].unique()
8 if len(ids) > 1:
9 print(f"names’ inconsistencies: {i}")
10 names_inconsistences.append(i)
11 for i in ids_values:

12 names = df[df[id_col] == il[name_col].unique()
13 if len(names) > 1:
14 print(f"ids’ inconsistencies: {i}")

15 ids_inconsistences.append(i)
16 if len(names_inconsistences) > 0:

17 print(f"There are inconsistencies in names: {names_inconsistences

1)
18 if len(ids_inconsistences) > 0:
19 print(f"There are inconsistencies in ids: {ids_inconsistences}")
20 return {"names”: names_inconsistences, "ids": ids_inconsistences}

» inconsistence_analysis = check_id_name_consistency(dataset)

Code extract 2: Check for matching values between the drug ID and drug name

variables.

58

N

from scipy.stats import kstest, anderson

stat, p = kstest(y["LN_IC50"]1, ’'norm’, args=(y["LN_IC50"].mean(), y["
LN_IC50"].std()))

print(stat, p)

>> Output: 0.07784598710281665 0.0

result = anderson(y["LN_IC50"], dist="norm’)
print(result)

>> Qutput

>> AndersonResult(statistic=3269.8765859772393, critical_values=array
([0.576, 0.656, 0.787, ©0.918, 1.092]), significance_level=array([15. ,
19. , 5., 2.5, 1. 1), fit_result= params: FitParams(loc
=2.7822776442090498, scale=2.8346892731645923)

>> success: True

>> message: ’‘anderson‘ successfully fit the distribution to the data
2D

>>

Code extract 3: Checking whether LN _ICsj follows a normal distribution.

for name in inconsistence_analysis[’names’]:
drug_ids_found = dataset[dataset["DRUG_NAME_x"].str.upper() == name.
upper () J["DRUG_ID"].unique()
companies_ids_found = dataset[dataset["DRUG_NAME_x"].str.upper() ==
name . upper () J["COMPANY_ID"].unique()
print(f”"-- For the name: {name:<12} ---> we detect this ids: {
drug_ids_found} and this drug has as its supplier: {
companies_ids_found} ")

print(f"Into the company column there are {dataset[’COMPANY_ID’].isna().
sum()} null values")

Code extract 4: Code intended to check the different suppliers assigned to each drug
name.

yes_no_map = {"N": -1, np.nan: @, "Y": 1}
adhenrence_map = {"Adherent”: 2, "Semi-Adherent”: 1, "Suspension”: 0}
screen_medium = {’R’: @, ’D/F12’: 1}

s class MapTransformer(BaseEstimator, TransformerMixin):

def __init__(self, column, mapping):
self.column = column
self.mapping = mapping

59

10 def fit(self, X, y=None):
11 return self

13 def transform(self, X):

14 X_ = X.copy(Q)

15 X_[self.column] = X_[self.column].map(self.mapping).astype(np.int
64)

16 return X_

column_pipeline = ColumnTransformer(
19 transformers=[

®

2 (’map_methylation’, MapTransformer(column="Methylation"”, mapping=
yes_no_map), ["Methylation”]),

21 (’map_response’, MapTransformer(column=’Drug Response’, mapping=
yes_no_map), [’Drug Response’]),

2 (’map_cna’, MapTransformer(column="Copy Number Alterations (CNA)"
, mapping=yes_no_map), [’Copy Number Alterations (CNA)’]),

2 ("map_expression’, MapTransformer(column="Gene Expression”,
mapping=yes_no_map), [’Gene Expression’]),

2 ("map_adherence”, MapTransformer(column="Growth Properties”,
mapping=adhenrence_map), ["Growth Properties”]),

25 ("map_screen_medium”, MapTransformer(column="Screen Medium”,
mapping=screen_medium), ["Screen Medium"])

2 1,

27 remainder="passthrough”

28)

29

s transformed_cols = ["Methylation”, "Drug Response”, "Copy Number
Alterations (CNA)", "Gene Expression”, "Growth Properties”, "Screen
Medium"]

51 remainder_cols = [col for col in dataset.columns if col not in
transformed_cols]
5» column_names = transformed_cols + remainder_cols

s dataset_copy = dataset.copy()

5 dataset_data_preprocessed = column_pipeline.fit_transform(dataset)

3% dataset_preprocessed = pd.DataFrame(dataset_data_preprocessed, columns=
column_names)

ss for col in dataset_preprocessed.columns:
39 if col in transformed_cols:

40 dataset_preprocessed[col] = dataset_preprocessed[col].astype(int)
4 else:
2 dataset_preprocessed[col] = dataset[col].copy()

Code extract 5: Application of ColumnTransformer to map the data.

60

columns_to_impute = ["TCGA_DESC", "PUTATIVE_TARGET", "Cancer Type\n(
matching TCGA label)"”, "Microsatellite \ninstability Status (MSI)", "
TARGET"]
encoder_nan = OrdinalEncoder ()
s encoder_all = OrdinalEncoder()
. dataset_encoded[columns_to_impute] = encoder_nan.fit_transform(dataset[
columns_to_impute])
s columns_not_encode = [i for i in categorical_variables if i not in
columns_to_impute]
+ dataset_encoded[columns_not_encode] = encoder_all.fit_transform(dataset[
columns_not_encode].astype(str))

N

Code extract 6: Encoding data in numerical format using Ordinal Encoder.

imputer = KNNImputer(n_neighbors=8) # This number was determined by
checking the results obtained from various combinations.
> dataset_imputed = imputer.fit_transform(dataset_encoded)

Code extract 7: Imputation of values using KnnImputer.

1 def generate_model(n_columns_x, n_columns_y):

2 model = models.Sequential()

. model.add(layers. Input(shape=(n_columns_x,)))

1 model.add(layers.Dense(32, activation=’relu’))
model .add(layers.Dropout(9.2))

6 model.add(layers.Dense(32, activation="relu’))

7 model.add(layers.Dropout(9.2))

8 model.add(layers.Dense(n_columns_y))

9 return model

Code extract 8: Function to generate a neural network. This code generates a very
simple dense network, but we only want it to know which loss function to choose.

. def train_sequential_model(X_train, y_train, X_val, y_val, X_test, y_test
, model: models.Sequential, optimizer="adam”, error="mse", metric=
keras.metrics.RootMeanSquaredError()):

2 model.compile(optimizer=optimizer, loss=error, metrics=[metric])
model . summary ()

4 early_stopping = EarlyStopping(monitor=’val_loss’, patience=10, mode=
'min’,restore_best_weights=True)
model_checkpoint = ModelCheckpoint("best_model_v1.keras"”, monitor="
val_loss”, mode="min’)

6 reduce_lr = ReducelLROnPlateau(monitor="val_loss’, factor=0.2,
patience=7, min_1r=0.000001)

7 history=model.fit(X_train, y_train,

N)

61

N

epochs=100,
batch_size=32,
validation_data=(X_val, y_val),
callbacks=[early_stopping, model_checkpoint,
PlotLossesKerasTF(), reduce_1r],
verbose=2)
show_evaluation(model, X_test, y_test)
return model

Code extract 9: Function to compile, show the losses during learning, do a
evaluation with test set and return the model trained.

def represent_scatter_matrix(ax, y_test_df, predition_values,

target_variable, color_scatter="black"):
if type(color_scatter) is str:

ax.scatter(np.array(y_test_df[target_variable]), predition_values

, s=2, alpha=0.5, color=color_scatter)
else:

ax.scatter(np.array(y_test_df[target_variable]), predition_values

, s=2, alpha=0.5, c=color_scatter, cmap=’tabl10’)
legend_labels = np.unique(color_scatter)
cmap = plt.get_cmap(’tab10’)
legend_labels = np.unique(color_scatter)
for label in legend_labels:
color_index = label if label >= 0 else 9 # Handle -1 as "
noise” with last color
color = cmap.colors[color_index % len(cmap.colors)]
ax.scatter([], [], color=color, label=f"Cluster {label}")
ax.legend()
ax.grid(True)

min_val = min(np.min(y_test_df[target_variable]), np.min(
predition_values))

max_val = max(np.max(y_test_df[target_variable]), np.max(
predition_values))

ax.plot([min_val, max_vall, [min_val, max_val], color=’red’,
linestyle="--", linewidth=1)

ax.set_ylabel (’Pronostics’)

ax.set_xlabel(’Real’)

ax.set_title(target_variable)

def show_evaluation(model, X_test, y_test):

pred_test = model.predict(X_test)

print(f”"Evaluation value with test values: {model.evaluate(X_test,
y_test)}")

print(f”"MSE: {mean_squared_error(y_test, pred_test)}")
print(f"RMSE: {np.sqgrt(mean_squared_error(y_test, pred_test))}")

62

W
ol

print(f”"MAE: {mean_absolute_error(y_test, pred_test)}")

print(f"R2: {r2_score(y_test, pred_test)}")

rows = int(np.ceil(len(y_test.columns)/2))

fig, axes = plt.subplots(rows, 2, figsize=(8 * rows, 8 * rows))

axes = axes.flatten()

for i, target in enumerate(y_test.columns):
represent_scatter_matrix(axes[i], y_test_df=y_test,

predition_values=pred_test[:, i], target_variable=target)

fig.tight_layout()

plt.show()

Code extract 10: Functions to show some metrics about the model. Also, we display
a plot where you can see how much near is the predicted values from the real ones.

X X X X
1

inputs = keras.Input((X_train.shapel[1],))

layers.Dense(2048, activation="relu") (inputs)
layers.Dropout(0.3) (x)

layers.Reshape((16, 128))(x)

layers.Conv1D(256, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(le-4))(x)
layers.BatchNormalization() (x)

layers.ReLU() (x)

layers.SpatialDropout1D(@.3) (x)
layers.AveragePooling1D(pool_size=2)(x)
layers.BatchNormalization() (x)

layers.ConviD(256, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(1e-4))(x)
layers.BatchNormalization() (x)

layers.ReLU() (x)

layers.SpatialDropout1D(@.3) (x)

_main = layers.ConviD(256, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(1e-4))(x)

X X X X X X
{1 I | O I | B 1|

X X X X

7 X_main = layers.ReLU() (x_main)

Xx_main = layers.SpatialDropoutiD(@.3)(x_main)
X_main = layers.Conv1D(256, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(le-4))(x_main)

0 X_main = layers.ReLU() (x_main)

x_main = layers.SpatialDropoutiD(@.3)(x_main)
conc = layers.Add() ([x, x_mainl])

s x_final = layers.MaxPooling1D() (conc)

x_final = layers.GlobalMaxPooling1D() (x_final)

s outputs = layers.Dense(y_test.shape[1])(x_final)

7 model_convld_v8 = keras.Model (inputs=inputs, outputs=outputs, name="

convmodelv8")
model_convid_v8.compile(optimizer="adam", loss=keras.losses.LogCosh(),

63

29

W

x
1

metrics=[keras.metrics.RootMeanSquaredError()])
model_conv1d_v8.summary()
early_stopping = EarlyStopping(monitor=’val_loss’, patience=10, mode=’min
’,restore_best_weights=True)

51 model_checkpoint = ModelCheckpoint(”model_conv_8.keras"”, monitor="

val_loss”, mode="min’)
reduce_lr = ReducelLROnPlateau(monitor=’val_loss’, factor=0.2, patience=5,
min_lr=0.000001)

s model_convid_v8.fit(X_train, y_train,

epochs=100,

batch_size=32,

validation_data=(X_val, y_val),

callbacks=[early_stopping, model_checkpoint,
PlotLossesKerasTF(), reduce_1r],

verbose=2)

3 model_convid_v8.evaluate(X_test, y_test)

Code extract 11: Definition of Soft-ordering with 1D convolutional architecture
using tensorflow.

inputs = keras.Input((X_train.shapel[1],))

layers.Dense(1024, activation="silu"”, kernel_regularizer=regularizers
.12(1e-4)) (inputs)

layers.Dropout(@.3) (x)

layers.Reshape((16, 64))(x)

layers.ConviD(256, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(1e-4))(x)
layers.BatchNormalization() (x)

keras.activations.silu(x)
layers.SpatialDropout1D(@.3) (x)
layers.AveragePooling1D(pool_size=2)(x)
layers.BatchNormalization() (x)

layers.Conv1D(256, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(1e-4))(x)
layers.BatchNormalization() (x)

= keras.activations.silu(x)
layers.SpatialDropout1D(@.1) (x)

main = layers.ConviD(256, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(1e-4))(x)

xX X
I

X X X X X X
Imnmnnmnnu

X X X X
|

7 X_main = keras.activations.silu(x_main)

x_main = layers.SpatialDropout1D(@.3)(x_main)

x_main = layers.Conv1D(256, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(1e-4))(x_main)

x_main = keras.activations.silu(x_main)

X_main = layers.SpatialDropout1D(@.4)(x_main)

conc = layers.Add() ([x, x_main])

64

» X_final = layers.MaxPooling1D() (conc)

2 Xx_final = layers.Flatten()(x_final)
s x_final
; outputs = layers.Dense(y_test.shapel[1])(x_final)

layers.Dropout(0.3) (x_final)

s model_convid_v21 = keras.Model(inputs=inputs, outputs=outputs, name="

convmodelv21")

model_convid_v21.compile(optimizer="adam", loss=keras.losses.LogCosh(),
metrics=[keras.metrics.RootMeanSquaredError()1)

51 model_convid_v21.summary()

53 early_stopping = EarlyStopping(monitor="val_loss’, patience=10, mode=’"min

’,restore_best_weights=True)
model_checkpoint = ModelCheckpoint(”model_conv_21.keras"”, monitor="
val_loss”, mode="min’)

55 reduce_lr = ReducelLROnPlateau(monitor=’val_loss’, factor=0.5, patience=7,

N

min_lr=0.000001)

77 model_convld_v21.fit(X_train, y_train,

epochs=100,

batch_size=32,

validation_data=(X_val, y_val),

callbacks=[early_stopping, model_checkpoint,
PlotLossesKerasTF(), reduce_1lr],

verbose=2)

5 show_evaluation(model_convid_v21, X_test, y_test)

Code extract 12: Definition of Soft-ordering with 1D convolutional architecture
using SiLU as activation function.

def shannon_entropy_from_bins(data, k):
hist, _ = np.histogram(data, bins=k)
p = hist / np.sum(hist)
return entropy(p, base=2)

, data = y_data[[’LN_IC50’]]

k_values = np.arange(2, 50)
entropies = np.array([shannon_entropy_from_bins(data, k) for k in
k_values])

slopes = np.diff(entropies) / np.diff(k_values)

s plt.figure(figsize=(12, 5))

s plt.subplot(1, 2, 1)

65

16

plt.plot(k_values, entropies, marker=’0’)

7 plt.title("Entropy vs Number of bins")

plt.xlabel("k (number of bins)")
plt.ylabel ("Entropy")

plt.subplot(1, 2, 2)
plt.plot(k_values[:-1], slopes, marker=’x’, color=’orange’)

; plt.title("Entropy slope”)

plt.xlabel("k (number of bins)")

»» plt.ylabel(”"Slope (dH/dk)")

7 plt.tight_layout()

plt.grid(True)
plt.show()

Code extract 13: Representation of entropy evolution based on the number of bins.

if os.path.exists("tsne_3d_result.npy”):
X_3d_tsne = np.load("tsne_3d_result.npy")
X_2d_tsne = np.load("tsne_2d_result.npy"”)

else:
tsne_3d = TSNE(n_components=3, random_state=10, perplexity=40.0, init
=’random’, learning_rate=’auto’)
X_3d_tsne = tsne_3d.fit_transform(X_data)
np.save("tsne_3d_result.npy”, X_3d_tsne)

tsne_2d = TSNE(n_components=2, random_state=10, perplexity=40.0, init
=’random’, learning_rate=’auto’)

X_2d_tsne = tsne_2d.fit_transform(X_data)
np.save("tsne_2d_result.npy”, X_2d_tsne)

s fig = plt.figure(figsize=(12,7))

ax_1 = fig.add_subplot(121)

s ax_1.set_title("2D representation (t-TSNE)")
» sc = ax_1.scatter(X_2d_tsne[:, 0], X_2d_tsnel[:, 1], c=y_datal["LN_IC50"],

cmap="viridis’, alpha=0.8, s=s)

ax_2 = fig.add_subplot (122, projection="3d")

ax_2.set_title("”3D representation (t-TSNE)")

sc = ax_2.scatter(X_3d_tsnel[:, 0], X_3d_tsne[:, 1], X_3d_tsnel[:, 2], c=
y_data["LN_IC50"], cmap='viridis’, alpha=0.8, s=s)

Code extract 14: Calculation of dimensionality reduction using t-SNE for data
representation while respecting local distances.

if os.path.exists("tsne_3d_result.npy"):

66

4

6

X_3d_tsne

X_2d_tsne
else:

tsne_3d = TSNE(n_components=3, random_state=10, perplexity=40.0, init

=’random’, learning_rate=’auto’)

X_3d_tsne = tsne_3d.fit_transform(X_data)

np.save("tsne_3d_result.npy"”, X_3d_tsne)

np.load("tsne_3d_result.npy")
np.load("tsne_2d_result.npy"”)

tsne_2d = TSNE(n_components=2, random_state=10, perplexity=40.0, init
=’random’, learning_rate=’auto’)

X_2d_tsne = tsne_2d.fit_transform(X_data)
np.save("tsne_2d_result.npy"”, X_2d_tsne)

3 $=0.8

fig = plt.figure(figsize=(12,7))

s ax_1 = fig.add_subplot(121)
; ax_1.set_title("2D representation (t-TSNE)")

sc = ax_1l.scatter(X_2d_tsne[:, 0], X_2d_tsne[:, 11, c=y_datal["LN_IC50"],
cmap="viridis’, alpha=0.8, s=s)

ax_2 = fig.add_subplot (122, projection="3d")

0 ax_2.set_title("3D representation (t-TSNE)")

sc = ax_2.scatter(X_3d_tsnel[:, 0], X_3d_tsne[:, 1], X_3d_tsnel[:, 2], c=
y_data["LN_IC50"], cmap='viridis’, alpha=0.8, s=s)

Code extract 15: Calculation of dimensionality reduction using UMAP for data
representation while respecting global and local distances.

o
X X X X
1

input_shape = (X_train.shapel[1],)
inputs = Input(shape=input_shape)

layers.Dense(2048, activation="silu") (inputs)

layers.Dropout(0.5) (x)

layers.Reshape((16, 128))(x)

layers.ConviD(16, kernel_size=(5), padding="same", kernel_regularizer
=regularizers.12(le-4))(x)

layers.BatchNormalization() (x)

keras.activations.silu(x)

layers.SpatialDropout1D(@.5) (x)
layers.AveragePooling1D(pool_size=2)(x)
layers.BatchNormalization() (x)

layers.Conv1D(16, kernel_size=(3), padding="same”, kernel_regularizer
=regularizers.12(1e-4))(x)

layers.BatchNormalization() (x)

keras.activations.silu(x)

layers.SpatialDropout1D(@.6) (x)

_main = layers.ConviD(16, kernel_size=(3), padding="same",

X X X X X X
1 | I 1 I R | O T B | 1 1

X X X X
1

67

kernel_regularizer=regularizers.12(1e-4))(x)
x_main = keras.activations.silu(x_main)
X_main = layers.SpatialDropout1D(@.5)(x_main)
x_main = layers.ConviD(16, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(le-4))(x_main)
x_main = keras.activations.silu(x_main)
x_main = layers.SpatialDropout1D(0.6)(x_main)

s conc = layers.Multiply()([x, x_main])

2 x_final = layers.MaxPooling1D(pool_size = 4, strides = 2)(conc)
» x_final = layers.Flatten()(x_final)
% X_final = layers.Dropout(0.4)(x_final)

37

38

40

41

42

44

out_ln_ic50 = Dense(kbins, activation=’softmax’, name=’LN_IC50’)(x_final)
out_auc = Dense(kbins, activation=’softmax’, name=’AUC’)(x_final)

s out_dr = Dense(kbins, activation=’softmax’, name=’Drug_Response’)(x_final

)

s out_rmse = Dense(kbins, activation=’softmax’, name=’RMSE’)(x_final)

out_zscore = Dense(kbins, activation=’softmax’, name=’Z_SCORE’) (x_final)

model = Model (inputs=inputs, outputs=[out_ln_ic50, out_auc, out_dr,
out_rmse, out_zscore])

3 model.compile(

optimizer="adam",
loss="categorical_crossentropy”,

n n n n

metrics=["categorical_accuracy"”, "categorical_accuracy”,

n n n n

categorical_accuracy”,"categorical_accuracy”, "categorical_accuracy”]

early_stopping = tf.keras.callbacks.EarlyStopping(monitor=’
val_LN_IC50_loss’, mode="min", patience=10,restore_best_weights=True)

; reduce_lr = ReduceLROnPlateau(monitor=’val_LN_IC50_loss’, factor=0.2,

patience=7, min_1r=0.000001)
model_checkpoint = ModelCheckpoint(”model_conv_softmax_1.keras", monitor=
"val_LN_IC50_loss"”, mode="min’)

; history = model.fit(

X_train,

y_train_dict_onehot,

validation_data=(X_val, y_val_dict_onehot),

epochs=100,

batch_size=64,

callbacks=[early_stopping, PlotLossesKerasTF(), reduce_lr,
model_checkpoint]

5)

Code extract 16: First adaptation of the regressor network in the process of obtaining
a classifier.

68

34

X X X X
1

s x_final

input_shape = (X_train.shape[1],)
inputs = Input(shape=input_shape)

layers.Dense(2048, activation="silu")(inputs)

layers.Dropout(0.5) (x)

layers.Reshape((16, 128))(x)

layers.Conv1D(16, kernel_size=(5), padding="same”, kernel_regularizer

=regularizers.12(1e-4))(x)

layers.BatchNormalization() (x)

keras.activations.silu(x)

layers.SpatialDropout1D(@.5) (x)

layers.AveragePooling1D(pool_size=2)(x)

layers.BatchNormalization() (x)

layers.Conv1D(16, kernel_size=(3), padding="same”, kernel_regularizer

=regularizers.12(le-4))(x)

layers.BatchNormalization() (x)

keras.activations.silu(x)

layers.SpatialDropout1D(@.6) (x)

_main = layers.ConviD(16, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(le-4))(x)

x_main = keras.activations.silu(x_main)

x_main = layers.SpatialDropout1D(0.5)(x_main)

Xx_main = layers.Conv1D(16, kernel_size=(3), padding="same",

kernel_regularizer=regularizers.12(le-4))(x_main)

X X X X X X X X X X
[I 1 1
|

2 X_main = keras.activations.silu(x_main)

x_main = layers.SpatialDropoutiD(@.6)(x_main)

» conc = layers.Multiply()([x, x_main])

x_final = layers.MaxPooling1D(pool_size = 4, strides = 2)(conc)
layers.Flatten() (x_final)
layers.Dropout(0.4) (x_final)

x_final

out_In_ic50 = Dense(kbins, activation=’softmax’, name=’LN_IC50’)(x_final)
out_auc = Dense(kbins, activation=’softmax’, name=’AUC’)(x_final)
out_dr = Dense(kbins, activation=’softmax’, name=’Drug_Response’)(x_final

)

51 out_rmse = Dense(kbins, activation=’softmax’, name=’RMSE’)(x_final)

out_zscore = Dense(kbins, activation=’softmax’, name=’Z_SCORE’)(x_final)

model = Model(inputs=inputs, outputs=[out_ln_ic50, out_auc, out_dr,
out_rmse, out_zscore])

3 model.compile(

optimizer="adam",
loss="categorical_focal_crossentropy”,

n n n n

metrics=["categorical_accuracy"”, "categorical_accuracy”,

n n n n

categorical_accuracy”,"categorical_accuracy”, "categorical_accuracy”]

69

40

41

42

44

early_stopping = tf.keras.callbacks.EarlyStopping(monitor=’
val_LN_IC50_loss’, mode="min", patience=14,restore_best_weights=True)

5 reduce_lr = ReducelLROnPlateau(monitor="val_LN_IC50_loss’, factor=0.2,

patience=7, min_1r=0.000001)
model_checkpoint = ModelCheckpoint("model_conv_softmax_2.keras", monitor=
"val_LN_IC50_loss”, mode="min’)

history = model.fit(
X_train,
y_train_dict_onehot,
validation_data=(X_val, y_val_dict_onehot),
epochs=100,
batch_size=64,
callbacks=[early_stopping, PlotLossesKerasTF(), reduce_lr,
model_checkpoint]

:3)

20

21

X X X X
1

Code extract 17: Testing a different function to check for changes in model
performance.

input_shape = (X_train.shapel[1],)
inputs = Input(shape=input_shape)

layers.Dense(2048, activation="silu")(inputs)

layers.Dropout(0.5) (x)

layers.Reshape((16, 128))(x)

layers.Conv1D(16, kernel_size=(5), padding="same”, kernel_regularizer

=regularizers.12(le-4))(x)

layers.BatchNormalization() (x)

keras.activations.silu(x)

layers.SpatialDropout1D(@.5) (x)

layers.AveragePooling1D(pool_size=2)(x)

layers.BatchNormalization() (x)

layers.Conv1D(16, kernel_size=(3), padding="same”, kernel_regularizer

=regularizers.12(1e-4))(x)

layers.BatchNormalization() (x)

keras.activations.silu(x)

layers.SpatialDropout1D(@.6) (x)

_main = layers.ConviD(16, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.l12(le-4))(x)

x_main = keras.activations.silu(x_main)

x_main = layers.SpatialDropoutiD(@.5)(x_main)

x_main = layers.ConvID(16, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(1e-4))(x_main)

x_main = keras.activations.silu(x_main)

X X X X X X
| 1 R | O 1 N || I

X X X X
1

70

22

46

47

48

49

62

63

64

% X_final

x_main = layers.SpatialDropout1D(0.6)(x_main)

conc = layers.Multiply()([x, x_main])

x_final = layers.MaxPoolingl1D(pool_size = 4, strides = 2)(conc)
x_final = layers.Flatten()(x_final)

layers.Dropout(0.4) (x_final)

s out_In_ic50 = Dense(kbins, activation=’softmax’, name=’LN_IC50’)(x_final)

out_auc = Dense(kbins, activation=’softmax’, name=’AUC’)(x_final)
out_dr = Dense(kbins, activation=’softmax’, name=’Drug_Response’)(x_final

)

s out_rmse = Dense(kbins, activation=’softmax’, name=’RMSE’)(x_final)

out_zscore = Dense(kbins, activation=’softmax’, name=’Z_SCORE’)(x_final)
model = Model(inputs=inputs, outputs=[out_ln_ic50, out_auc, out_dr,

out_rmse, out_zscorel)

model.compile(
optimizer="adam",

loss={
"LN_IC50": "categorical_crossentropy”,
"AUC": "categorical_crossentropy”,
"Drug_Response”: "categorical_crossentropy”,
"RMSE": "categorical_crossentropy”,
"Z_SCORE": "categorical_crossentropy”

3,

loss_weights={
"LN_IC50": 1.5,
"AUC": 1.0,
"Drug_Response”: 1.0,
"RMSE": 1.0,
"Z_SCORE": 1.0

+,

metrics={
"LN_IC50": "categorical_accuracy”,
"AUC": "categorical_accuracy”,
"Drug_Response”: "categorical_accuracy”,
"RMSE": "categorical_accuracy”,
"Z_SCORE": "categorical_accuracy”

}

early_stopping = tf.keras.callbacks.EarlyStopping(monitor=’
val_LN_IC50_loss’, mode="min", patience=10,restore_best_weights=True)

reduce_lr = ReducelLROnPlateau(monitor="val_LN_IC50_loss’, factor=0.2,
patience=7, min_lr=0.000001)

model_checkpoint = ModelCheckpoint(”model_conv_softmax_3.keras", monitor=

71

"val_LN_IC50_loss"”, mode="min’)
65

« history = model.fit(

67 X_train,

68 y_train_dict_onehot,

69 validation_data=(X_val, y_val_dict_onehot),

70 epochs=100,

71 batch_size=32,

7 callbacks=[early_stopping, PlotLossesKerasTF(), reduce_lr,

model_checkpoint]
7"7)

Code extract 18: Assigning importance to target variables for the purpose of
obtaining better results in LN _ICs.

1 @keras.saving.register_keras_serializable()
> class CombinedCrossEntropyMSE(tf.keras.losses.Loss):
def __init__(self, reduction="auto", alpha=1.0, beta=1.0, name="
combined_crossentropy_mse"):
1 super().__init__(name=name)
5 self.alpha = alpha
6 self.beta = beta
7 self.ce = tf.keras.losses.CategoricalCrossentropy(reduction="none

")
9 @classmethod
10 def from_config(cls, config):

11 return cls(**xconfig)

13 def call(self, y_true, y_pred):

14 valid_mask = tf.reduce_any(y_true != -1, axis=-1)
15 y_true = tf.boolean_mask(y_true, valid_mask)
16 y_pred = tf.boolean_mask(y_pred, valid_mask)

18 # Cross entropy loss (per sample)
19 ce_loss = self.ce(y_true, y_pred)

21 # Compute "soft"” class expectation (differentiable)

2 class_range = tf.cast(tf.range(tf.shape(y_pred)[-1]), tf.float32)
2 true_class = tf.reduce_sum(y_true * class_range, axis=-1)

2 pred_class = tf.reduce_sum(y_pred * class_range, axis=-1)

2 mse_loss = tf.square(true_class - pred_class)

28 # Final loss per sample

29 total_loss = self.alpha * ce_loss + self.beta * mse_loss

30 return tf.reduce_mean(total_loss)

72

5 input_shape = (X_train.shapel[1],)

inputs = Input(shape=input_shape)

layers.Dense(2048, activation="silu")(inputs)

layers.Dropout(0.5) (x)

layers.Reshape((16, 128))(x)

layers.Conv1D(16, kernel_size=(5), padding="same”, kernel_regularizer
=regularizers.12(1e-4))(x)

layers.BatchNormalization() (x)

keras.activations.silu(x)

layers.SpatialDropout1D(@.5) (x)
layers.AveragePooling1D(pool_size=2)(x)
layers.BatchNormalization() (x)

layers.Conv1D(16, kernel_size=(3), padding="same”, kernel_regularizer
=regularizers.12(le-4))(x)

layers.BatchNormalization() (x)

= keras.activations.silu(x)

layers.SpatialDropout1D(@.6) (x)

_main = layers.ConviD(16, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.12(1e-4))(x)

X X X X
1 mnmn

X X X X X X
I mn nmnu

X X X X
|

50 X_main = keras.activations.silu(x_main)
51 X_main = layers.SpatialDropout1D(@.5)(x_main)
5 X_main

layers.ConviD(16, kernel_size=(3), padding="same",
kernel_regularizer=regularizers.l12(le-4))(x_main)

53 X_main = keras.activations.silu(x_main)

X_main = layers.SpatialDropoutiD(@.6)(x_main)

55 conc = layers.Multiply()([x, x_main])

» x_final = layers.MaxPooling1D(pool_size = 4, strides = 2)(conc)
7 x_final
5¢ x_final

layers.Flatten() (x_final)
layers.Dropout(0.4) (x_final)

out_ln_ic50 = Dense(kbins, activation=’softmax’, name=’LN_IC50’)(x_final)
out_auc = Dense(kbins, activation=’softmax’, name=’AUC’)(x_final)

» out_dr = Dense(kbins, activation=’softmax’, name=’Drug_Response’)(x_final

)

s out_rmse = Dense(kbins, activation=’softmax’, name=’RMSE’)(x_final)

out_zscore = Dense(kbins, activation=’softmax’, name=’Z_SCORE’)(x_final)

; model = Model(inputs=inputs, outputs=[out_ln_ic50, out_auc, out_dr,

out_rmse, out_zscore])

model.compile(
optimizer="adam",
loss={

73

7 "LN_IC50": CombinedCrossEntropyMSE(alpha=1.0, beta=0.7),

73 "AUC": "categorical_crossentropy”,

74 "Drug_Response”: "categorical_crossentropy”,
75 "RMSE": "categorical_crossentropy”,

76 "Z_SCORE": "categorical_crossentropy”

77 +,

78 loss_weights={

79 "LN_IC50": 1.6,

80 "AUC": 1. @,

81 "Drug_Response”: 1.0,

82 "RMSE": 1 .@,

83 "Z_SCORE": 1.0

54 +,

8 metrics={

86 "LN_IC50": "categorical_accuracy”,

87 "AUC": "categorical_accuracy”,

88 "Drug_Response”: "categorical_accuracy”,
89 "RMSE": "categorical_accuracy”,

90 "Z_SCORE": "categorical_accuracy”

o1 3}

92)

early_stopping = tf.keras.callbacks.EarlyStopping(monitor=’
val_LN_IC50_loss’, mode="min", patience=10,restore_best_weights=True)
os reduce_lr = ReducelLROnPlateau(monitor="val_LN_IC50_loss’, factor=0.2,
patience=7, min_lr=0.000001)
9 model_checkpoint = ModelCheckpoint(”model_conv_softmax_4.keras"”, monitor=
"val_LN_IC50_loss"”, mode="min’)

=

s history = model.fit(

99 X_train,

100 y_train_dict_onehot,

101 validation_data=(X_val, y_val_dict_onehot),

102 epochs=100,

103 batch_size=64,

104 callbacks=[early_stopping, PlotLossesKerasTF(), reduce_lr,
model_checkpoint]

105)

Code extract 19: Definition of a custom error function, including categorical cross
entropy and MSE.

74

Bibliography

[1] National Cancer Institute. The cancer genome atlas (tcga), 2024. URL https://

www.cancer.gov/ccg/research/genome-sequencing/tcga. Accessed: 2025-06-
26.

[2] Genomics of Drug Sensitivity in Cancer Project. Genomics of drug sensitivity
in cancer (gdsc), 2024. URL https://www.cancerrxgene.org/. Accessed: 2025-
06-26.

[3] Yehudit Hasin, Marcus Seldin, and Aldons Lusis. Multi-omics approaches to
disease. Genome Biology, 18(1):83, 2017.

[4] Susana Garcia-Recio, Paola Zagami, Brooke M. Felsheim, Amy Wheless,
Kerry Thomas, Renato Trimarchi, Lisa A. Carey, and Charles M. Perou.
Understanding metastasis mixed-treatment responses through genomic
analyses. npj Breast Cancer, 11(1):9, 2025.

[5] Scott M. Lundberg and Su-In Lee. Shap (shapley additive explanations), 2024.
URL https://shap.readthedocs.io/en/latest/. Accessed: 2025-06-29.

[6] Samira Alipour. Genomics of drug sensitivity in cancer
(gdsc). https://www.kaggle.com/datasets/samiraalipour/
genomics-of-drug-sensitivity-in-cancer-gdsc, 2023. Accessed: 2025-
06-23.

[7] Sanger Institute. Cosmic: Catalogue of somatic mutations in cancer. https:
//cancer.sanger.ac.uk/cosmic/login, 2025. Accessed: 2025-06-23.

[8] Sanger institute. https://www.sanger.ac.uk/, 2024. Accessed: 2025-06-23.

[9] Scikit-learn developers. sklearn.preprocessing.OrdinalEncoder. Scikit-learn,
2025. URL https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.0OrdinalEncoder.html. Version 1.7.0.

[10] scikit-learn developers. sklearn.impute. KNNImputer. scikit-learn, 2024.
Accessed: 2025-06-23.

[11] Hey Amit. One-hot encoding explained, November 2024. URL https:
//medium.com/@heyamit1@/one-hot-encoding-explained-0b0130ccd78e.
Accessed: 2025-06-23.

[12] scikit-learn developers. sklearn.impute.train_test_split. scikit-learn, 2024.
Accessed: 2025-06-23.

[13] scikit-learn developers. scikit-learn: =~ Machine learning in python -
StandardScaler. https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html, 2011. Accessed: 2025-06-23.

75

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancerrxgene.org/
https://shap.readthedocs.io/en/latest/
https://www.kaggle.com/datasets/samiraalipour/genomics-of-drug-sensitivity-in-cancer-gdsc
https://www.kaggle.com/datasets/samiraalipour/genomics-of-drug-sensitivity-in-cancer-gdsc
https://cancer.sanger.ac.uk/cosmic/login
https://cancer.sanger.ac.uk/cosmic/login
https://www.sanger.ac.uk/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://medium.com/@heyamit10/one-hot-encoding-explained-0b0130ccd78e
https://medium.com/@heyamit10/one-hot-encoding-explained-0b0130ccd78e
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

[14] scikit-learn developers. scikit-learn: ~ Machine learning in python -
RobustScaler. https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.RobustScaler.html, 2011. Accessed: 2025-06-23.

[15] Léo Grinsztajn, Edouard Oyallon, and Gaél Varoquaux. Why do tree-based
models still outperform deep learning on tabular data? In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[16] Simon Miiller. Overcoming the limitations of tree-based
models in time series forecasting. Medium, February
2024. URL https://medium.com/@simon.peter.mueller/

overcoming-the-limitations-of-tree-based-models-in-time-series-forecasting-c2c5bd
Accessed on June 16, 2025.

[17] Piotr Migdat et al. livelossplot: Live training loss plot in jupyter notebook.
https://pypi.org/project/livelossplot/, 2025. Version 0.5.6; Accessed:
2025-06-16.

[18] Google and the TensorFlow Team. ModelCheckpoint. TensorFlow API
Documentation, . URL https://www.tensorflow.org/api_docs/python/tf/
keras/callbacks/ModelCheckpoint. Version 2.16.1; accessed: 2025-06-16.

[19] Google and the TensorFlow Team. EarlyStopping. TensorFlow API
Documentation, . URL https://www.tensorflow.org/api_docs/python/tf/
keras/callbacks/EarlyStopping. Version 2.16.1; accessed: 2025-06-16.

[20] Google and the TensorFlow Team. ReduceLROnPlateau. TensorFlow API
Documentation, . URL https://www.tensorflow.org/api_docs/python/tf/
keras/callbacks/ReducelLROnPlateau. Version 2.16.1; accessed: 2025-06-16.

[21] Google and the TensorFlow Team. MSE. TensorFlow API Documentation,
URL https://www.tensorflow.org/api_docs/python/tf/keras/losses/MSE.
Version 2.16.1; accessed: 2025-06-16.

[22] Google and the TensorFlow Team. tf.keras.metrics.RootMeanSquaredError.
TensorFlow API Documentation, . URL https://www.tensorflow.org/
api_docs/python/tf/keras/metrics/RootMeanSquarederror. Version 2.16.1;
accessed: 2025-06-16.

[23] Google and the TensorFlow Team. LogCosh. TensorFlow API Documentation,
URL https://www.tensorflow.org/api_docs/python/tf/keras/losses/
LogCosh. Version 2.16.1; accessed: 2025-06-16.

[24] Google and the TensorFlow Team. tf.keras.losses MAE. TensorFlow API
Documentation, . URL https://www.tensorflow.org/api_docs/python/tf/
keras/losses/MAE. Version 2.16.1; accessed: 2025-06-16.

[25] Google and the TensorFlow Team. Huber. TensorFlow API Documentation, .
URL https://www.tensorflow.org/api_docs/python/tf/keras/losses/Huber.
Version 2.16.1; accessed: 2025-06-16.

76

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://medium.com/@simon.peter.mueller/overcoming-the-limitations-of-tree-based-models-in-time-series-forecasting-c2c5bd71a8f1
https://medium.com/@simon.peter.mueller/overcoming-the-limitations-of-tree-based-models-in-time-series-forecasting-c2c5bd71a8f1
https://pypi.org/project/livelossplot/
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
https://www.tensorflow.org/api_docs/python/tf/keras/losses/MSE
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/RootMeanSquaredError
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/RootMeanSquaredError
https://www.tensorflow.org/api_docs/python/tf/keras/losses/LogCosh
https://www.tensorflow.org/api_docs/python/tf/keras/losses/LogCosh
https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAE
https://www.tensorflow.org/api_docs/python/tf/keras/losses/MAE
https://www.tensorflow.org/api_docs/python/tf/keras/losses/Huber

[26] Sercan O. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular
learning, 2020. URL https://arxiv.org/abs/1908.07442.

[27] Li-Wei Chang, Cheng-Te Li, Chun-Pai Yang, and Shou-de Lin. Learning on
missing tabular data: Attention with self-supervision, not imputation, is all
you need. 16(3), 2025. ISSN 2157-6904. doi: 10.1145/3729241. URL https:
//doi.org/10.1145/3729241.

[28] Alok Sharma, Edwin Vans, Daichi Shigemizu, Keith A. Boroevich, and
Tatsuhiko Tsunoda. Deepinsight: A methodology to transform a non-image

data to an image for convolution neural network architecture. Scientific Reports,
9(1):11399, 2019.

[29] M. S. Mathew, S. T. Kandukuri, and C. W. Omlin. Soft ordering 1-d cnn
to estimate the capacity factor of windfarms for identifying the age-related
performance degradation. In Proceedings of the PHM Society European Conference,
volume 8, page 9, June 2024. doi: 10.36001/phme.2024.v8i1.4028.

[30] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning, 2017. URL
https://arxiv.org/abs/1702.03118.

[31] Xudong Lin, Lin Ma, Wei Liu, and Shih-Fu Chang. Context-gated convolution,
2020. URL https://arxiv.org/abs/1910.05577.

[32] Towaki Takikawa, David Acuna, Varun Jampani, and Sanja Fidler. Gated-scnn:
Gated shape cnns for semantic segmentation, 2019. URL https://arxiv.org/
abs/1907.05740.

[33] Qi Zheng, Chang Yu, Jin Cao, Yongshun Xu, Qianwen Xing, and Yinxin Jin.
Advanced payment security system:xgboost, lightgbm and smote integrated,
2024. URL https://arxiv.org/abs/2406.04658.

[34] Mizuho Nishio, Mitsuo Nishizawa, Osamu Sugiyama, Ryosuke Kojima,
Masahiro Yakami, Tomohiro Kuroda, and Kaori Togashi. = Computer-
aided diagnosis of lung nodule using gradient tree boosting and bayesian
optimization. PLOS ONE, 13(4):e0195875, April 2018. ISSN 1932-6203. doi: 10.
1371/journal.pone.0195875. URL http://dx.doi.org/10.1371/journal.pone.
0195875.

[35] Scikit-learn developers. sklearn.model_selection.GridSearchCV. Scikit-learn,
2025. URL https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.GridSearchCV.html. Version 1.7.0.

[36] Scikit-learn developers. sklearn.model selection.RandomizedSearchCV. Scikit-
learn, 2025. URL https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.RandomizedSearchCV.html. Version 1.7.0.

[37] Scikit-learn developers. sklearn.preprocessing.OneHotEncoder. Scikit-learn,
2025. URL https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.0OneHotEncoder.html. Version 1.7.0.

77

https://arxiv.org/abs/1908.07442
https://doi.org/10.1145/3729241
https://doi.org/10.1145/3729241
https://arxiv.org/abs/1702.03118
https://arxiv.org/abs/1910.05577
https://arxiv.org/abs/1907.05740
https://arxiv.org/abs/1907.05740
https://arxiv.org/abs/2406.04658
http://dx.doi.org/10.1371/journal.pone.0195875
http://dx.doi.org/10.1371/journal.pone.0195875
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

[38] Scikit-learn developers. sklearn.feature_selection.RFE. Scikit-learn, 2025.
URL https://scikit-learn.org/stable/modules/generated/sklearn.
feature_selection.RFE.html. Version 1.7.0.

[39] Scikit-learn developers. sklearn.feature_selection.SelectFromModel. Scikit-learn,
2025. URL https://scikit-learn.org/stable/modules/generated/sklearn.
feature_selection.SelectFromModel.html. Version 1.7.0.

[40] T. Tony Cai and Rong Ma. Theoretical foundations of t-sne for visualizing high-
dimensional clustered data, 2022. URL https://arxiv.org/abs/2105.07536.

[41] Scikit-learn developers. t-sne, 2025. Accessed: June 20, 2025.

[42] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold
approximation and projection for dimension reduction, 2020. URL https://
arxiv.org/abs/1802.03426.

[43] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grofsberger. Umap:
Uniform manifold approximation and projection for dimension reduction.
https://umap-learn.readthedocs.io/en/latest/, 2025. Accessed: June 20,
2025.

[44] Yanyan Hu, Emilio Yagiie, Jing Zhao, Lin Wang, Emily Davies, Ruth O’Regan,
Angela Brodie, and Lesley-Ann Martin. Sabutoclax, pan-active bcl-2 protein
family antagonist, overcomes drug resistance and eliminates cancer stem cells
in breast cancer. Cancer Letters, 423:47-59, 2018. ISSN 0304-3835. doi: 10.1016/
j-canlet.2018.02.036.

[45] Simona D’Aguanno and Donatella Del Bufalo. Inhibition of anti-apoptotic bcl-
2 proteins in preclinical and clinical studies: Current overview in cancer. Cells,
9(5):1287, May 2020. ISSN 2073-4409. doi: 10.3390/ cells9051287.

78

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://arxiv.org/abs/2105.07536
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://umap-learn.readthedocs.io/en/latest/

	Introduction and motivations
	Core Knowledge
	Introduction
	Neural Networks
	Relevant layers for this research
	Regularization methods

	Predictions trees
	SHAP values

	Understanding the dataset
	Introduction
	Description of variables
	Analyzing the information
	Checking the feasibility of assigning values

	In search of solutions
	Solving our regression problem
	Predicting LN_IC50 using Neural Networks
	Application of XGBoost Regression Trees to our problem

	A classification problem
	Discovering the correct group using Neural Networks
	Testing XGBoost as a classifier
	SHAP: The reasons must be known.

	Conclusions
	Appendix
	Bibliography

