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The detection of gravitational waves (GW) has opened a new window to progress in our under-
standing of astrophysical events and objects. The instruments used for direct detection (interfer-
ometers) require high sensitivity due to the tiny signals these GWs generate. In addition, proper
characterisation of the detector is crucial for identifying noise sources and enhancing the perfor-
mance. This thesis explores the implementation of Deep Active Learning (DAL) to identify and
characterise short duration transient noise in the GW signal stream. We employ a convolutional
neural network (CNN) combined with the DBSCAN clustering algorithm to classify glitches de-
tected by interferometers. Moreover, an Attention Layer is implemented to highlight the relevant
areas of the images for the final classification. Our approach recognises patterns similar to pre-
viously identified signals and detects anomalous ones that could correspond to previously unseen
phenomena.
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I. INTRODUCTION

The concept of gravitational waves is a consequence
of Albert Einstein’s Theory of General Relativity [1]. In
this theory, gravity is described as the deformation of
the spacetime due to the presence of matter (or energy).
Its motion can generate small perturbations in this ge-
ometry, known as gravitational waves, which propagate
across the cosmos. As these waves traverse space, their
influence is experienced by other objects.

LIGO interferometers detected GWs for the first time
in 2015 [2]. When a gravitational wave passes through
Earth it distorts spacetime, altering the time required
for light to travel a given distance within the detector.
Therefore, these detectors use lasers to measure minute
deviations of the interferometer geometry as a function
of time. The typical deviations in length that need to be
measured are of one part in 10−21, requiring sophisticated
mechanisms and analysis methods that minimise noises
which reduce the sensibility and detection efficiency.

One important family of sources of noise in the col-
lected data is the presence of short-duration fluctuations
known as glitches. These degrade the quality of the data
and, therefore, their identification and characterisation is
essential for achieving optimal results. To complete this
task, Deep Active Learning (DAL) [3] techniques have
been employed, giving highly effective outcomes [4, 5].

In particular, the combination of a convolutional neu-
ral network (CNN) and a DBSCAN algorithm enables
the classification of glitches while also identifying pre-
viously unknown signals. Since the unidentified signals
must be manually examined by scientists to assess their
category, this procedure allows minimising the need of
treating with spurious cases. Also, the implementation of
a Spatial Attention layer in this process might help high-
lighting the main characteristics for each label so that
the identification is more straightforward.

For this study, we use the publicly available Gravity
Spy Training Set from Kaggle [6], a collection of labelled
spectrogram QT images recorded by the LIGO and Virgo
interferometers. It contains around 8000 event images,
each representing waveforms across 4 time intervals from
0.5s to 4s. One label corresponds to signals from merging
black holes, while the other 21 classes represent different
detector glitches. The first training is done on a subset of
about 250 images from 5 labels: 1080Lines, 1400Ripples,
Air Compressor, Scratchy and Paired Doves. Later, an
additional label, None of the Above, is introduced as un-
known signals and used throughout the study, along with
the remaining images of the previously known labels.

This final procedure constitutes the primary focus of
this thesis. We first present the relevant theoretical as-
pects of the key topics explored in this study in Sec-
tion II and Section III, as well as the characteristics and
processing of the employed data, with emphasis on the
information flow throughout the procedure. Finally, the
obtained results are shown in Section IV, followed by the
conclusions achieved from this research in Section V.
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FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left) and Livingston (L1, right) detectors
[2]. These images are obtained from the time series measured by the detectors after applying a Q-transform. This is a
time-frequency representation similar to the Fourier transform with adaptive resolution, where different frequency ranges are
represented in different time intervals. The signal can also be decomposed into frequency modes. The horizontal axis represents
the time of the signal, while the vertical axis shows the frequency (Hz). The colour encodes the intensity of the signal. Thus,
the initially detected strain time series is shown as the evolution of the intensity of frequency modes, making the characteristic
chirp form of a binary system merger visible.

II. GRAVITATIONAL WAVES PHYSICS

A. Description and sources

As already said, GWs are distortions in spacetime
caused by the movement of massive objects. In general,
any acceleration of a mass with non vanishing quadrupo-
lar moment generates this radiation, though not all cases
produce detectable effects. The sources can be classified
based on their motion characteristics as it follows [7]:

• Burst sources: Typically associated with core-
collapse supernovae, which are highly unpre-
dictable and their evolution is complex. The re-
sulting waveforms depend on the specific dynamics
of the individual object.

• Continuous sources: Primarily emitted by spinning
neutron stars, these waves arise from rotational mo-
tion. Even if they experience energy loss due to
gravitational radiation (leading to a gradual de-
crease in amplitude over time) the change is negli-
gible on short timescales, allowing them to be con-
sidered effectively continuous.

• Stochastic sources: Formed by the cumulative ef-
fect of several small perturbations that cannot be
analysed individually. These may originate from
the early universe or by the combined influence of
multiple astronomical systems. The detected signal
resembles white noise.

• Inspiral sources: Generated during the coalescence
of compact binary systems. As the objects spiral
closer together, both the frequency and amplitude
of the emitted waves increase, producing a charac-
teristic signal known as a chirp.

This work focuses on inspiral sources, as they are the
primary targets of current interferometers (LIGO, Virgo,

GEO300 and Kagra) and because our methodology
has been specifically developed for the classification of
glitches in their signals.

Inspiral sources. They are composed of two compact
objects, which accordingly to its kind are classified as bi-
nary neutron stars (BNS), binary black holes (BBH) or
neutron star-black hole (NSBH). Each configuration pro-
duces a distinct signal in terms of amplitude, frequency
and time to coalescence, although the general waveform
remains consistent.

Mathematically, following the derivations in [8] (sec-
tion 4.1), a binary source with masses m1 and m2
(m1 + m2 = mtotal) and separation R can be modelled
as an equivalent single-particle system (in the centre-of-
mass frame) with a reduced mass µ = m1m2

m1+m2
moving in a

circular orbit of radius R. Following the calculations, the
evolution of the emitted GWs’ frequency can be derived:

fgw(τ) = 1
π

(
5

256
1
τ

)3/8 (
GMc

c3

)−5/8
, (1)

where τ = tcoal − t (tcoal being the time of coalescence)
is the time to coalescence and Mc = µ3/5m

2/5
total is the

chirp mass. With this expression we are able to under-
stand the change in fgw through time. So, when time t
increases, τ = tcoal − t decreases and fgw increases, pro-
ducing the characteristic chirping form of the signal, as
it is illustrated in Fig. 1.

B. Detection: Interferometers

Gravitational waves coming from binaries of compact
objects can be detected by interferometers, which are
Michelson-Morley interferometers enhanced with Fabry-
Perot cavities to improve sensitivity in the typical fre-
quency range of emission of these objects.

As illustrated in Fig. 2, the detector splits a laser beam
into two paths using a beam splitter. These rays travel
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along the interferometer arms until they reach mirrors at
the ends, where they are reflected back. Upon recombi-
nation, the total signal is received by the system. When
a GW passes through, it alters the arm lengths (due to
spacetime distortion), leading to changes in the beams’
travel time. So the detection is performed by measuring
the phase shift between the split beams through interfer-
ence.

FIG. 2. Scheme of a Michelson-Morley interferometer with
Fabry-Perot cavities implemented [9].

A measurable property of light is the power of the ra-
diation P ∝ |Etot|2; the detected power is expressed as:

P = P0

2 [1 − cos ∆ϕMich(t)]. (2)

To maximise the variable P , ∆ϕMich (a phase shift related
to the geometry of the system) should be as large as pos-
sible. It can be expressed as ∆ϕMich = 2h(t − L

c )kLL,
where h = δL

L is the amplitude of the GW strain, kL is
the wave-vector of the laser and L represents the arms’
length of the interferometer. Because of the small scale
of GWs (h ∼ 10−21 and f ∼ 102 Hz for typical detected
compact binaries [8]) these arms should be around 700 km
long, which is impractical on Earth dimensions. Em-
ploying Fabry-Perot cavities solves the issue. They con-
sist of two highly reflective mirrors with a transmissive
substrate designed to trap the light beam inside for the
largest duration possible, effectively increasing the opti-
cal path length of the laser.

The improvement obtained by implementing the cavity
thanks to its impact on the storage time (with a high
reflection coefficient, light is easily reflected and stays
inside for a longer time) is described by the finesse F :

F = π
√

r1r2

1 − r1r2
, (3)

where r1, r2 are the reflection coefficients of both mir-
rors composing the cavity (0 < r1, r2 < 1). The phase
shift measured in the interferometer incorporating Fabry-
Perot cavities is:

∆ϕFP(t) = 2F
π

∆ϕMich(t). (4)

The phase shift of the interferometer can be increased by
a factor of 2F

π , as large as possible based on the cavity
mirrors reflectivity. This makes it possible to detect GWs
in terrestrial dimensions by combining both systems.

1. Noises

Interferometers have complex machinery with numer-
ous subsystems that must operate in sync to detect sig-
nals. However, this sophisticated network also intro-
duces many noise sources due to the physical limita-
tions of the design, requiring a wide range of attenuation
methods. In general, most detector noises are stationary
and frequency-dependent, meaning that for distinct fre-
quency ranges different sources will be dominant. The
main contributions of noise are [10]:

• Seismic noise: originated by ground vibrations. It
dominates around ∼ 1 Hz and it is reduced by
suspending the mirrors with multiple pendulums,
which decreases the noise by a factor of ∝ f−2 with
each additional pendulum.

• Thermal noise: generated by dissipation in the mir-
rors and their suspension chains. It is the most
important effect around ∼ 1 − 100 Hz.

• Shot noise: caused by fluctuations in the number
of photons from the laser hitting the detector in a
given time interval (since photons arrive in discrete
“packets” rather than continuously). It dominates
above 100 Hz.

There are many others, such as gravity gradient noise,
radiation pressure, elastic noise... These also contribute
and must be mitigated using different techniques in the
instrumentation. Furthermore, there is another type

FIG. 3. Time-frequency representation of the raw LIGO-
Livingston data for GW170817 event. A glitch is visible 1 s
before the coalescence time of the GW signal [11].

of noise that compromises the data: transient, short-
duration disturbances produced by the interaction be-
tween detector subsystems or by the surroundings that
may mimic GW or overlap them. These are called
glitches (an example is shown in Fig. 3). Their presence
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FIG. 4. Deep Active Learning scheme. The main figures and information flux are represented.

can bias estimates of GWs properties: the median rate of
glitches in the LIGO and Virgo interferometers through
the third observing runs (O3) were above 1 per minute.
So, at this rate, the probability of a glitch to compromise
a signal from a BBH is ∼ 10 % and it is almost certain
that a glitch will overlap a BNS signal [12].

If we take into account that GW signals are very weak
compared to all the remaining noises, this issue needs of a
proper solution. In the case of glitches, there is no direct
way of avoiding their presence through improvements in
instrumentation, so it is important to be able to identify
and classify them.

To complete this task, many promising options have
been proposed; but the one of our interest is the clas-
sification of glitches based on machine learning. This
method eases the human workload by quickly recognising
and labelling signals, saving hours of manual work, as the
algorithm effectively understands and attenuates known
glitches, allowing to focus on unexamined or anomalous
data that might lead to the discovery of new unwanted
noise patterns.

III. DEEP ACTIVE LEARNING

The main objective of machine learning is to derive
general patterns from a limited data set, in order to ob-
tain a classification of the analysed objects. The idea
is to generate a mapping process from the inputs to
the distinct labels that the mechanism is able to dis-
tinguish. Deep Active Learning (DAL) is an iterative
training paradigm that enables to do so by combining
the data efficiency of Active Learning with the represen-
tational power of Deep Learning models [3].

Concerning its application, DAL is particularly suited
for many scientific domains where labelling processes re-
quire expert validation. This is the case of gravitational
wave detection, in which manual annotation is not only
highly time-consuming but also difficult to adapt when
the data includes new unknown glitch types. By focus-
ing the labelling effort on the most informative samples,
DAL allows human labour to prioritise the anomalous
glitch images that emerge in the analysis.

The general workflow of DAL is illustrated in Fig. 4.
The whole dataset consists of two main subsets: (1) a
group of known data (images previously annotated by
experts with known labels) and (2) an additional pool of
unlabelled images, which may contain samples from the
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previous classes or entirely new/unseen ones.
The process starts with a small, labelled subset of the

known data to form the initial training set T0. From
here, the workflow proceeds as follows:

1. A CNN is initially trained using the labelled data
T0. The model learns to distinguish between the
classes present in the training images.

2. The trained CNN is then applied to an unseen
dataset, which might have examples of classes al-
ready present in the training set, but also some
samples of new, previously unseen classes.

3. Next, the whole combined dataset, containing both
T0 and the newly added images, is passed to the
DBSCAN clustering algorithm. DBSCAN groups
the data into clusters, unifying samples that corre-
spond to known classes and identifying outliers or
“anomalous” images, those not sufficiently similar
to any known category.

4. The unseen examples clustered by DBSCAN as be-
longing to previously known labels are incorporated
into the training set T0. In the next iteration, the
CNN is retrained using the expanded set, now in-
cluding both the original T0 and the newly incorpo-
rated examples. Meanwhile, the “anomalous” cases
are kept aside for human inspection.

5. A new iteration of the process with the updated
dataset begins.

As shown in Fig. 4 and just explained, the success of
the DAL framework in this context relies on two main
components: 1) A deep neural network, implemented as
a Convolutional Neural Network (CNN) and responsible
for learning the main features from input images. 2) A
clustering algorithm, DBSCAN, used to identify similar
samples and detect outliers. This allows the selection of
anomalous unlabelled signals for expert review.

A. CNN

Convolutional Neural Networks (CNN) are a technique
specifically designed to work with structured data such
as images, videos or audio spectrograms. Their goal is
to detect patterns and recognise complex structures hi-
erarchically in the inputs without human intervention.
This is done by applying filters (or kernels), which are
small windows that scan the image. For this end, this
method’s network is composed of multiple layers which
combine several techniques:

• Convolutional Layers: they extract local patterns
and spatial features by applying the kernels all over
the input image.

• Pooling Layers: they reduce the spatial dimensions
of the input, producing a smaller and more robust
representation that lowers computational cost.

• Flattening: it transforms multidimensional objects
into 1D vectors.

• Dense (Fully Connected) Layer: it takes the flat-
tened vector and learns high-level combinations of
the extracted features. Each neuron is connected
to all values from the previous layer and the model
makes predictions based on the most relevant fea-
tures for each label.

Some additional mechanisms can be integrated into the
CNNs to enhance the classifier performance:

a. Early stopping. It is a strategy commonly used
to prevent overfitting. The training is halted when the
model’s performance stops improving on the validation
set, preventing it from memorising the training samples
too precisely and becoming less effective on unseen data.
The stopping is performed after a given patience param-
eter, 2 epochs of worsening in our case.

b. Spatial Attention. In our architecture this
layer is placed between the input and the first convo-
lutional block. This mechanism helps the model focus on
the main features/patterns or the most relevant parts of
the images by assigning higher weights to important re-
gions and suppressing less informative ones. It allows the
network to pay attention to certain areas of the spatial
inputs. In other words, it teaches the CNN model where
to look in the image.

B. DBSCAN

DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) is an unsupervised clustering al-
gorithm that groups similar inputs into clusters without
requiring prior knowledge of the number of categories.
It is an appropriate approach for datasets with irregular
cluster shapes and noise, as it can identify core struc-
tures while also marking unrelated points as outliers.
This makes it particularly useful in gravitational wave
detection, where different glitch types may appear in un-
even amounts and unknown signals must be identified
and treated separately, as explained through Fig. 4.

The idea behind this method is to map each image to
a point in a high-dimensional Euclidean space, where the
dimensionality depends on the size of the images (the
number of pixels) and the number of channels (three in
the case of RGB images). Through this representation,
the algorithm studies how far apart these points are from
one another in the feature space. DBSCAN then evalu-
ates the density of points in a given local neighbourhood
using two main parameters:

• ε (epsilon): the maximum distance for which two
points are considered neighbours.

• minPts: the minimum number of neighbours a
point must have within distance ε to be considered
a core point.
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FIG. 5. Clusters obtained (right) through DBSCAN after evaluating ε and MinPts parameters [13].

In practice, images are grouped into clusters only
if they have a sufficient amount of similar neighbours
within the ε radius. Once a core point is found, all its di-
rectly density-reachable points are added to the cluster.
If an input does not have enough nearby neighbours on its
proximities (fewer neighbours than minPts), then it will
be classified as an outlier. This methodology is visually
represented in Fig. 5. However, it should be noted that it
is highly sensitive to the choice of its parameters, which
becomes more pronounced in high-dimensional spaces.
In such cases, the Euclidean distance used by DBSCAN
becomes less effective at distinguishing points, making it
harder to find clusters of similar points.

IV. RESULTS

Data processing prior to analysis. The employed
dataset [6] was initially divided into 3 subsets: train-
ing, validation and test. To make the images suitable
for our DAL model, they are reorganized using an algo-
rithm designed to select both the types of glitches and
the number of samples for each case. More specifically,
the user specifies the glitch type names and the desired
amounts through a text file. In this way, the training
set T0 described in Fig. 4 is explicitly defined accord-
ing to the needs of the analysis. All samples are chosen
randomly from the initially available images, ensuring
the performance of the DAL mechanism is not biased by
any specific data subset. After that, the components of
the code related to the CNN and DBSCAN algorithms
are incorporated and adapted to the requirements of this
project.

In this work, the initially studied dataset includes the
following classes and samples sizes: 1) Training set: it
contains 5 distinct labels, each of them with 80−120 im-
ages. The selected glitches are: 1080Lines, 1400Ripples,
Air Compressor, Paired Doves and Scratchy. 2) Target
set: this consists of an additional label named None of
the Above, which represents the unseen data that was al-
ready classified as unknown in the original dataset. This
category includes around 60 examples that could not be
associated with any of the known glitch types, since they
are neither similar to any of the studied labels nor show

consistency among themselves.
This reduced dataset has been intentionally chosen for

pedagogical purposes: to explain the procedure and to
enable a clear evaluation and understanding of all the
mechanisms of DAL. Once its correct functioning has
been validated in this controlled setting, further evalu-
ation on a larger scale is foreseen, outside the scope of
the Master’s project, in order to prepare the model for
deployment in production.

a. Performance of the Supervised Learning
component. A CNN has been built as explained in
Section III, incorporating a Spatial Attention layer. The
effect of this mechanism on our dataset is illustrated in
Fig. 6. For example, it can be observed that the model
without Spatial Attention does not classify properly this
sample corresponding to the Scratchy class, while the ver-
sion including the Spatial Attention layer properly iden-
tifies it, improving the “probability” parameter given to
the correct/true class by 3.12.

FIG. 6. Comparison between an original image (extracted
from the working dataset) and the same sample after the Spa-
tial Attention layer. At the same time, a model without the
Spatial Attention layer (left text) and a model with this layer
implemented (right text) analyse and classify the image, ex-
posing the “probability” for corresponding to the real class.

The training process uses ∼ 250 images (around 50
samples per label) highlighted by the Spatial Attention
mechanism and typically takes around 2 − 10 minutes
for the CNN to learn how to classify the specific imple-
mented glitch types with a final accuracy of > 0.98 %.
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FIG. 7. Normalized confusion matrix for one trained model. The observed results are representative of the general performance
and effectiveness of the CNN.

Once trained, the model is evaluated on the validation
set that takes around 20 − 30 objects from each class
(∼ 120 images in total) that were not used to train the
CNN. With this set, the classifier’s performance is eval-
uated through the confusion matrix (Fig. 7), which
compares the predicted and true labels on the validation
dataset. It provides a detailed picture of how well the
model distinguishes between the different glitch types,
offering insight into possible confusions during training.

As shown in Fig. 7, which corresponds to a representa-
tive result obtained with the trained model, the CNN suc-
cessfully learns the distinguishing features of each class
and is able to label (almost) all validation images cor-
rectly. This outcome is essential to ensure that the next
step, DBSCAN clustering, can have an appropriate func-
tioning and that images are correctly grouped.

Notably, the only misclassified image belongs to the
glitch type with the least representation (42 samples) in
the training set: Paired Doves. This is to be expected,
as a lower number of training images for a class makes it
harder for the model to capture its general and distinc-
tive features effectively. It could even suggest that the
training subset for this label is not comprehensive enough
to represent the entire class variability and may require
a wider range of examples.

b. Performance of the Unsupervised Learning
component. First, the preprocessing of the images
passed through the Spatial Attention layer takes approx-
imately 5 minutes for the 600 employed samples in this
second step (56 anomalous and 544 non-anomalous sam-
ples). These images are then processed with the DB-
SCAN algorithm and its clustering performance is anal-
ysed by observing the resulting outliers, which vary de-
pending on the main parameters (ε and MinPts).

To better understand the performance of the method,
three target configurations are considered:

1. All real outliers detected: All None of the
Above samples are correctly classified as anomalies,
though this often leads to many non-anomalous im-
ages also being misclassified.

2. No false outliers detected: This case avoids
misclassification of known classes, but it might miss
many real outliers. As it will be shown later, this
ideal case could not be achieved, so the closest
attainable case with minimal misclassification was
considered instead.

3. Intermediate case: Approximately 90 % of real
outliers are identified. This configuration has been
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Category Total Images Detected as Anomalies Anomaly Percentage (%)
Case 1 — ε = 0.968, MinPts = 19. 189 anomalies, 4 clusters
1080Lines 124 6 4.84
1400Ripples 124 0 0.00
Air Compressor 100 10 10.00
None of the Above 56 56 100.00
Paired Doves 76 47 61.84
Scratchy 120 70 58.33
Case 2 — ε = 4.827, MinPts = 7. 10 anomalies, 1 cluster
1080Lines 124 0 0.00
1400Ripples 124 0 0.00
Air Compressor 100 0 0.00
None of the Above 56 9 16.07
Paired Doves 76 1 1.32
Scratchy 120 0 0.00
Case 3 — ε = 1.108, MinPts = 24. 136 anomalies, 5 clusters
1080Lines 124 11 8.87
1400Ripples 124 0 0.00
Air Compressor 100 17 17.00
None of the Above 56 51 91.07
Paired Doves 76 12 15.79
Scratchy 120 45 37.50

TABLE I. Detected anomalies per category for three distinct DBSCAN configurations, each for the different proposed target
configurations. In every case, 56 anomalies and 544 non-anomalous samples were used.

chosen to represent a more realistic scenario in a
real production environment.

The results for these three approaches are shown in de-
tail in Table I and a high-level summary is provided in
Table II. Each scenario uses a distinct DBSCAN configu-
ration, exposing the significant impact of the parameter
selection on the final outcome.

Paying attention to Table I, each scenario specifies the
employed parameters ε and minPts, as well as the total
anomalies found and the formed clusters. Apart from
that, for each class the number of images employed is
specified, and also those detected as anomalies (even if
they are not) and their percentage.

On the one hand, Case 1 corresponds to the scenario
where all actual outliers (i.e., all samples in the None
of the Above category) are correctly identified, achiev-
ing a full 100 % (56 out of 56) detection rate. In this
configuration, 189 anomalies are found and, therefore,
133 false positives are classified as outliers in addition
to the 56 real anomalies. More specifically, 47 samples
from Paired Doves and 70 from Scratchy are labelled as
anomalous, which represent 61.84 % and 58.33 % of all
their samples, respectively. These percentages are signif-
icant and cause a large number of non-anomalous images
to be wrongly labelled. The difficulty in classifying ap-
propriately these sets can happen because of a smaller

size of its dataset (for example, Paired Doves only con-
tains 76 samples, whereas other labels are composed of
around 100 − 120 images), since the model has received
less representative information from this category. More-
over, if the category has a high internal variability within
its signals (which might happen to the Scratchy subset),
it becomes more difficult for the clustering algorithm to
group them accurately. Overall, Case 1 represents a re-
strictive strategy that prioritises capturing all true out-
liers, even at the expense of introducing a large volume
of data wrongly assigned to the anomalous category and,
therefore, increasing the dataset passed to experts for
human analysis.

On the other hand, Case 2 aims to minimise false
positives as much as possible. It seeks the configuration
with the lowest number of wrongly categorised outliers.
As shown in Table I, a case with no false outliers could
not be achieved. A total of 10 anomalies are found: 9
real ones and 1 false positive corresponding to the Paired
Doves class. With these results, it can be said that only
16.07 % of the None of the Above samples are flagged as
outliers. The rest have been wrongly clustered together
with other signals and will not be analysed by human
experts, leaving key outliers undetected.

Finally, Case 3 represents a compromise. It does not
require 100 % accuracy for the detection of None of the
Above. In this way, the number of total flagged anomalies
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Case True anomalies detected (%) False anomalies detected (%) Data reduction rate (%)
1 100.00 24.45 31.50
2 16.07 0.18 1.67
3 91.07 15.63 22.67

TABLE II. Summary of anomaly detection performance across the three DBSCAN configurations. True anomalies detected
refers to the proportion of None_of_the_Above images correctly flagged as anomalies (out of 56 samples), false anomalies
detected refers to the proportion of non-anomalous images wrongly classified as anomalies (out of 544 samples, being 544 the
total non-anomalous images in the analysis) and data reduction rate indicates the proportion of the total dataset flagged as
anomalous for further human analysis (out of 600 samples).

is reduced from 189 (Case 1) to 136, at the expense of
detecting 91.07 % of the real anomalies instead of 100 %.
Nevertheless, this percentage still represents a high level
of accuracy: 51 outliers out of 56 are correctly identified
from None of the Above. The number of false positives
is now 85 and, like in Case 1, the class with the high-
est number of false positives is again Scratchy with 45
samples out of 120, which corresponds to 37.50 % of its
data. For other categories, the number of wrongly flagged
anomalies is lower: 11 for 1080Lines, 17 for Air Compres-
sor and 12 for Paired Doves (all of them representing less
than 20 % of all their samples).

A final observation can be made regarding the
1400Ripples class, which seems to always be correctly
categorised. As shown in Table I, it remains unaffected,
regardless of the approach used, and its classification is
always correct (0 out of 124 anomalies), suggesting a high
internal coherence and separability from other classes.

With the aim of providing a high-level overview of the
results obtained from the DBSCAN mechanism across
the three proposed configurations, different percentages
are shown in Table II. This analysis allows for a better
understanding of the results explained in Table I.

It can be observed that only Case 1 detects 100 % of
the true anomalies, but it also shows a high percentage of
false positives detected, with 24.45 % of non-anomalous
samples labelled as outliers (133 false positives from 544
non-anomalous samples). These two figures lead to a re-
duction of the dataset to be analysed by human experts
from the initial set to 31.50 %. Case 2, in contrast, shows
very low percentages for both real outliers found, 16.07 %
(9 out of 56), and non-anomalous samples misclassified
as outliers, 0.18 % (1 out of 544). In this situation, only
1.67 % of the initial dataset is sent for human analysis
but, as explained before, most of real anomalies are left
behind and will not be studied by scientists. Finally,
Case 3 shows a more balanced behaviour: 91.07 % of
real outliers are correctly detected and the percentage
of non-anomalous images wrongly classified as outliers is
notably reduced compared to Case 1. Here, only 15.63 %
of non-anomalous data is labelled as outliers (85 out of
544). This reduction in misclassification also decreases
the amount of data sent for human analysis: only 22.67 %
of the initial dataset is classified as anomalous and, there-
fore, prepared to be studied by experts.

This comparative analysis highlights the balance be-

tween thoroughness and precision. While Case 1 suc-
ceeds in detecting all real outliers, it comes at the cost of
an expensive review process with a high number of mis-
leading candidates. In contrast, Case 2 is extremely
selective but misses a substantial portion of relevant
anomalies. Case 3 offers a more balanced outcome, cap-
turing the majority of meaningful outliers while avoiding
excessive misclassifications and, thus, reducing the hu-
man effort required.

V. CONCLUSIONS

With the results presented, it is shown that a Deep Ac-
tive Learning approach offers significant advantages for
data analysis in gravitational wave interferometers, par-
ticularly in the challenge of glitch classification. This
method reduces the human effort involved in labelling all
incoming samples by focusing on a smaller, more mean-
ingful subset that potentially includes previously unseen
glitch signals.

Focusing first on the supervised learning component,
the classifier, it demonstrates an adequate ability to
distinguish among different glitch images by effectively
learning their main characteristics. The integration of
the Spatial Attention layer enables the model to con-
centrate on the most relevant features within each class,
enhancing accuracy and reducing computational time.
Achieving an accuracy above 98 % supports the practi-
cal implementation of the classifier, although some glitch
types, such as Paired Doves, may require additional at-
tention due to their lower representation in the dataset.

Regarding the unsupervised learning component, its
performance should be interpreted with a broader per-
spective. The implementation of a clustering mecha-
nism helps identify anomalies throughout the dataset,
although the specific outcome depends heavily on the
selected configuration. Referring back to the obtained
results, in scenarios where missing anomalies is not ac-
ceptable, Case 1 would be preferred (even if it comes
with the cost of a higher number of false positives and
increased human analysis). However, if the goal is to
avoid an overwhelming volume of false positives, a more
balanced configuration, such as Case 3, might be more
appropriate.
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Overall, this type of mechanism proves useful in prob-
lems with a continuous appearance of new, unknown re-
sults and where expert human analysis is still necessary
to classify each case. It has already been shown in other
scientific areas, like medical image analysis, that a Deep
Active Learning approach can help experts in identifying
different pathologies while easing their workload. The
same applies in the present context, where the detectors
(interferometers) may produce previously unseen glitch
signals (often due to maintenance issues) which are pre-
cisely the ones experts should be reviewing to recognise
new types of spurious signals. This would lead to im-
provement and acceleration in the investigation area of
gravitational waves, since this approach avoids the need
to manually examine the whole dataset, which may in-
clude many already known glitches.

All things considered, in this work, the next step would
be to improve the performance of the unsupervised com-
ponent. As mentioned before, small changes in the pa-
rameters can lead to very different results. This high
sensitivity may be due to the high dimensionality of the
feature vectors (i.e., the image representations fed into
DBSCAN), as the Euclidean distance becomes less ef-
fective at distinguishing nearby samples. Therefore, to
overcome the present limitations in DBSCAN, such as
its pronounced sensitivity to parameter variations and
the struggle with clusters of distinct densities, a more re-
fined clustering mechanism like HDBSCAN (Hierarchical
DBSCAN) or similar alternatives should be considered.

REFERENCES

[1] A. Einstein, H. A. Lorentz, H. Minkowski, and H. Weyl,
The Principle of Relativity (Dover Publications, 1920).

[2] B. P. Abbott, R. Abbott, and T. D. Abbott (LIGO Sci-
entific Collaboration and Virgo Collaboration), Observa-
tion of Gravitational Waves from a Binary Black Hole
Merger, Phys. Rev. Lett. 116, 061102 (2016).

[3] C. M. Bishop and H. Bishop, Deep Learning: Founda-
tions and Concepts (Springer, Cham, 2024).

[4] M. Razzano and E. Cuoco, Image-based Deep Learning
for Classification of Noise Transients in Gravitational
Wave Detectors, Classical and Quantum Gravity 35,
095016 (2018).

[5] S. Bini, G. Vedovato, M. Drago, F. Salemi, and G. A.
Prodi, An autoencoder neural network integrated into
gravitational-wave burst searches to improve the rejec-
tion of noise transients, Classical and Quantum Gravity
40, 135008 (2023).

[6] Kaggle, Gravity Spy (Gravitational Waves) Dataset,
https://www.kaggle.com/datasets/tentotheminus9/
gravity-spy-gravitational-waves (2023).

[7] LIGO Scientific Collaboration, Gravitational Wave
Sources, https://www.ligo.caltech.edu/page/
gw-sources.

[8] M. Maggiore, Gravitational Waves, Vol. 1: Theory and
Experiments (Oxford University Press, 2007).

[9] M. Pitkin, S. Reid, S. Rowan, and J. Hough, Gravita-
tional Wave Detection by Interferometry (Ground and
Space), Living Reviews in Relativity 14, 10.12942/lrr-
2011-5 (2011).

[10] G. Cella and A. Giazotto, Invited Review Article: In-
terferometric gravity wave detectors, Review of Scientific
Instruments 82, 101101 (2011).

[11] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acer-
nese, K. Ackley, and C. Adams, GW170817: Observa-
tion of Gravitational Waves from a Binary Neutron Star
Inspiral, Physical Review Letters 119, 10.1103/phys-
revlett.119.161101 (2017).

[12] D. Davis, T. B. Littenberg, I. M. Romero-Shaw, M. Mill-
house, J. McIver, F. Di Renzo, and G. Ashton, Subtract-
ing glitches from gravitational-wave detector data during
the third LIGO-Virgo observing run, Classical and Quan-
tum Gravity 39, 245013 (2022).

[13] I. Khater, I. Nabi, and G. Hamarneh, A Review
of Super-Resolution Single-Molecule Localization Mi-
croscopy Cluster Analysis and Quantification Methods,
Patterns 1, 100038 (2020).

https://archive.org/details/principleofrelat00eins
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1007/978-3-031-45468-4
https://doi.org/10.1007/978-3-031-45468-4
https://doi.org/10.1088/1361-6382/aab793
https://doi.org/10.1088/1361-6382/aab793
https://doi.org/10.1088/1361-6382/acd981
https://doi.org/10.1088/1361-6382/acd981
https://www.kaggle.com/datasets/tentotheminus9/gravity-spy-gravitational-waves
https://www.kaggle.com/datasets/tentotheminus9/gravity-spy-gravitational-waves
https://www.ligo.caltech.edu/page/gw-sources
https://www.ligo.caltech.edu/page/gw-sources
https://doi.org/10.1093/acprof:oso/9780198570745.001.0001
https://doi.org/10.1093/acprof:oso/9780198570745.001.0001
https://doi.org/10.12942/lrr-2011-5
https://doi.org/10.12942/lrr-2011-5
https://doi.org/10.1063/1.3652857
https://doi.org/10.1063/1.3652857
https://doi.org/10.1103/physrevlett.119.161101
https://doi.org/10.1103/physrevlett.119.161101
https://doi.org/10.1088/1361-6382/aca238
https://doi.org/10.1088/1361-6382/aca238
https://doi.org/10.1016/j.patter.2020.100038

	Deep Active Learning applied to gravitational waves
	Abstract
	Contents
	Introduction
	Gravitational waves physics
	Description and sources
	Detection: Interferometers

	Deep Active Learning
	CNN
	DBSCAN

	Results
	Conclusions
	References


		2025-09-08T14:11:07+0200
	STAMMER GOLDARACENA JOHANNA - 72854214N




