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Vehicle Related Compounds (VRCs) are considered emerging contaminants arising from road traffic. These
compounds consist of a complex mixture of chemicals related to additives used in various parts of the vehicle
such as brakes, tires or different vehicle fluids. The objective of this study was to investigate the occurrence of
VRCs in surface waters in one of the longest rivers in Europe (Tagus River, Spain). Samples (n = 89) were
collected during 2020-2022 from thirteen locations along the entire river in annual and seasonal campaigns and
analyzed by liquid chromatography coupled to high-resolution mass spectrometry. A qualitative suspect work-
flow including an initial suspect list of 153 environmentally relevant VRCs was developed. Up to 26 compounds
presented detection frequencies (DF) above 20 % in the investigated river waters. Vulcanizers, cross-linkers,
bittering agents or corrosion inhibitors stand out among the main classes of additives where hexa(methox-
ymethyl)melamine (HMMM) and derivatives, denatonium benzoate (DB), benzothiazole-2-sulfonic acid (BTSA)
and 1-H-benzotriazole (BTR) were the most frequently detected compounds (DF > 75 %). Among the high in-
tensity suspects, the vulcanizers triisopropanolamine (TIPA) and 1,3-diphenylguanidine (DPG) and the corrosion
inhibitor 5-methyl-1H-benzotriazole (Me-BTR) were also prominent. The detection of some tire-related markers
and the fate of most of the identified VRCs highlighted a common anthropogenic origin, although variable
sources for some of them are possible. This study illustrates the capabilities of suspect screening in assessing the
presence of VRCs in river water and its potential as a monitoring tool to provide insights into the pollutant load
influenced by parameters such as the urbanization degree.

1. Introduction

Road travel is currently one of the most common ways of mobility at
a regional level comprising around 70 % of passenger and freight
transport in Europe (Eurostat, 2024). Emission of greenhouse gases such
as CO2, CO or NOy have been historically associated with pollution from
road traffic. Nevertheless, the fingerprint from vehicles is much broader
and the scientific community and recent regulations such as the future
EURO 7 (European Commission, 2022) also have focused on
non-gaseous emissions. For instance, tire and road wear, brake abrasion,
fuel or leakage of other fluids used in automobiles (i.e. coolants or
antifreeze) are well-known sources of vehicle-related compounds
(VRCs) (Maurer et al., 2023). Among the latter, vehicle tires are one of
the most representative carriers of VRCs, as dozens of additives are
added to the rubber to minimize degradation and improve its properties
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(Johannessen et al., 2022a). Ultimately, these additives are released as
pollutants to the environment and distributed into soil (Klockner et al.,
2021; Li et al., 2023; Wang et al., 2024), air (Cao et al., 2022; Johan-
nessen et al., 2022b; Wang et al., 2022), snow (Challis et al., 2021;
Maurer et al., 2023; Seiwert et al., 2022) or water (Peter et al., 2022;
Rauert et al., 2022a, 2022b; Zhang et al., 2023), where they can have a
significant environmental impact (Tian et al., 2021b).

Aquatic ecosystems are precisely one of the main receptors of VRCs
acting as ultimate sinks where complex mixtures of several compounds
have been reported (Rauert et al., 2022a, 2022b; Tian et al., 2020).
Run-off near the source and urban stormwater are processes that play an
important role in the arrival of VRCs to the water bodies (Chen et al.,
2024; Peter et al., 2020), concretely, up to 20 % of the non-airborne
Tire-road Wear Particles (TRWPs) can be transported to surface waters
(Baensch-Baltruschat et al., 2021). A fact that exacerbates the problem is
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that not only the additives reach the aquatic ecosystem, but also related
impurities or transformation products generated after release do (Chen
et al., 2024; Hu et al., 2022; Peter et al., 2020). In some cases, these
transformation products can be more harmful than the parent com-
pounds. A representative example of this scenario was the high mortality
rate observed in coho salmon associated to the degradation of the tire
antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine
(6PPD) into a quinone-type derivative (6PPD-Q) (Tian et al., 2021b),
which has been proven to be also toxic not only to other salmonids
(French et al., 2022), but also to other fish species (Brinkmann et al.,
2022; French et al., 2022). In recent years, studies on additional species
have revealed significant toxic effects related to 6PPD and 6PPD-Q such
as neuro-, hepato- or reproductive toxicity in mammals (Hua and Wang,
2023), oxidative damage and physiological disruption in invertebrates
(Zhou et al., 2025) or phototoxicity and oxidative stress in algae (Yan
et al., 2024).

Furthermore, special attention has been paid to other bicyclic N,N"-p-
phenylenediamines (PPDs) antioxidants and their degradation products
(Cao et al., 2022), as well as, to other kind of VRCs with similar origin
(Zhang et al., 2023). Among them, guanidine vulcanizers such as 1,
3-diphenylguanidine (DPG) and 1,3-di-o-tolylguanidine (DTG)
(Bautista et al., 2024; Rauert et al., 2022a), compounds related to the
cross-linker hexa(methoxymethyl)melamine (HMMM) (Alhelou et al.,
2019; Seiwert et al., 2020), benzothiazoles (Miiller et al., 2022; Zhang
et al., 2023) or benzotriazoles (Herrero et al., 2013) are ubiquitous and
predominant VRCs in the environment, where high concentrations have
been observed in surface waters (Alhelou et al., 2019; Johannessen
et al., 2021; Rauert et al., 2020). The detection of VRCs in the envi-
ronment is even more relevant because some of the previous contami-
nants also pose toxic and adverse effects for different organisms
(Boisseaux et al., 2024; Obanya et al., 2025; Shi et al., 2019; Thodhal
Yoganandham et al., 2025; Xu et al.,, 2024; Zhou et al., 2025). For
example, DPG has shown acute toxic effects that affect development and
behavior in aquatic organisms and has demonstrated in vitro genotox-
icity (Thodhal Yoganandham et al., 2025). Benzotriazoles have also
been found to have sublethal effects as endocrine disruptors, as well as,
hepato- and neurotoxicity in fishes (Shi et al., 2019; Xu et al., 2024) and
have shown to alter the molting frequency in invertebrates (Shi et al.,
2019). Similarly, some benzothiazoles have been classified as potential
carcinogenic substances and are capable of inducing oxidative stress in
aquatic organisms (Obanya et al., 2025).

Regarding the European legislative framework for VRCs, in many
cases the initial use of automotive additives is regulated as individual
compounds in production processes by REACH regulation. However,
later on, there is a significant legislative gap related to their environ-
mental fate (Trudsg et al., 2022). The growing concern about VRCs
occurrence and possible associated risks has led to the inclusion in early
2025 of 6PPD and 6PPD-Q in the 5th Watch List of the Water Framework
Directive (European Commission, 2025). Nevertheless, many other
VRGs still remain out of spotlight, and this is where efforts and advances
of the scientific community in the early identification of emerging pol-
lutants can contribute to fulfill this void (Klockner et al., 2021; Zhao
et al., 2023).

Vehicle additives and their related compounds reach the aquatic
environments as part of complex cocktails of compounds where, addi-
tionally, they co-occur with other contaminants (Tian et al., 2021a). It is
therefore necessary to develop specific analytical methods for the
monitoring of VRCs in aquatic matrices. Target liquid chromatography
MS/MS is often selected as a suitable technique for determining con-
centration of polar and/or mid-polar VRCs and have provided infor-
mation on the concentrations of these compounds in aquatic matrices
(Zhang et al., 2023) and surface river waters (Rauert et al., 2022a; Zhang
et al., 2023) in different regions. However, target analysis leaves out of
the picture many other potential contaminants such as contaminants of
emerging concern, impurities and/or transformation products. Suspect
and non-targeted screening using LC coupled to high-resolution mass
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spectrometry (HPLC-HRMS) are wide-scope alternatives to identify a
greater number of compounds not included in target methods. These
procedures are increasingly being used for the analysis of urban
micropollutants such as VRCs, as they provide a more open strategy that
is highly valuable for obtaining a first overview of environmental sam-
ples (Kang et al, 2024). Studies in aquatic compartments have
demonstrated the utility of these broad spectrum screenings for con-
ducting exploratory analyses and for assessing and monitoring water
quality (Kang et al., 2024; Peter et al., 2022; Tarabek et al., 2024). The
detection frequency, number of compounds and HRMS peak areas are
considered as qualitative indicators to assess the ubiquity and occur-
rence of contaminants in several matrices (Dewapriya et al., 2023; Kang
et al., 2024; Peter et al., 2022; Tarabek et al., 2024). For example, these
parameters allow to establish temporal trends and variations (Tian et al.,
2021a) and/or to evaluate the level of contamination and characteristics
of a given sample (Tarabek et al., 2024). In particular, suspect screening
may mitigate those challenges more commonly encountered in
non-targeted analysis, such as the large amount of information, the high
number of features or the identification of true unknowns, by focusing
on a specific list of hundreds or even thousands of pre-selected or
prioritized compounds (Been et al., 2021; Tian et al., 2021a). This makes
suspect analysis a powerful tool for the monitoring and screening of a
wide range of previously prioritized contaminants. This strategy has
been successfully applied in recent years to the analysis of VRCs in
aquatic ecosystems (Kang et al., 2024; Seiwert et al., 2020; Tian et al.,
2020, 2021a).

In that sense, there is a need to expand knowledge about the presence
of VRCs in European aquatic ecosystems where wide-scope analyses to
characterize micropollutants not covered by target screening are still
scarce. The aim of this study is to contribute to the field, in terms of
compound coverage and temporal scope, by carrying out a compre-
hensive analysis using a suspect screening approach based on HPLC-
HRMS to assess the occurrence of VRCs in surface waters from the
Tagus River basin in Spain.

2. Material and methods
2.1. Study area and sample collection

The study area comprises the Tagus River basin which is one of the
longest fluvial water bodies of the whole Iberian Peninsula (1,007 km)
(Instituto Geografico Nacional (IGN), 2025). The basin has its origin in
the center of the peninsula where the Tagus River and its tributaries flow
through important municipalities such as Guadalajara (Castilla-La
Mancha; 0.27 million inhabitants, 2021), Madrid metropolitan area (3.3
million), Toledo (Castilla-La Mancha; 0.71 million) and Céceres
(Extremadura; 0.39 million) (Instituto Nacional de Estadistica (INE),
2025). In general, the Tagus River basin has a relatively constant flow
throughout the year, as it is regulated to prevent it from falling below
the established ecological flow.

Because of its geographical location, road traffic, associated with
both professional and recreational travels, is the main form of transport
(Observatorio del Transporte y Logistica en Espana (OTLE), 2025) and a
major contributor to the anthropogenic impact in the area. Vehicle
travels are mainly concentrated around the main urban centers with
average vehicle densities in 2022 of 58,434 vehicles/day (vh/day) in
Madrid, 9,546 vh/day in Castilla-La Mancha and 6,786 vh/day in
Extremadura (Ministerio de Transportes y Movilidad Sostenible, 2022a).

In the current study, 89 river surface water samples were collected
between 2020 and 2022 at thirteen locations (S1 to S13) along the basin
(Fig. 1 and Table S1). Three annual sampling campaigns were carried
out in autumn (October-November) of each year and, in addition,
quarterly campaigns (winter, spring, summer and autumn) were per-
formed in 2022 to assess possible seasonality. Average rainfalls within
the basin showed that wet weather periods usually occur during
March-April and October-November with average monthly rainfall
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Fig. 1. Location of the selected sampling points S1 to S13 in the Tagus River basin.

exceeding 2-3 mm (Sistema Automatico de Informacion Hidrologica
(SAIH Tajo). Ministerio para la Transicion Ecolégica y el Reto
Demografico. Confederacion Hidrogréfica del Tajo, 2025).

Samples were classified according to the river flow, number of in-
habitants and average daily traffic as sites of low, medium and high
anthropogenic impact (Text S1). Table S2 and Fig. S1 provide infor-
mation about their classification and road networks around each loca-
tion. Water samples (2L) were collected in polypropylene (PP) bottles
previously cleaned with acetonitrile/methanol. After collection samples
were immediately transported to the laboratory and frozen at —20 °C
until their preparation and analysis within the same week. Further de-
tails related to study area and sampling collection and preservation can
be found in a previous work (Royano et al., 2023).

2.2. Sample preparation

Samples were processed in a previous study using a generic SPE
methodology (Johannessen et al., 2021; Rauert et al., 2020, 2022a;
Royano et al., 2023) and the extracts were retrospectively analyzed for
the screening of VRCs. Briefly, 1 L of pre-filtered surface water samples
were extracted and purified on Oasis HLB cartridges (6 mL, 500 mg;
Waters, Milford, MA, USA) adequate for extraction of medium-polarity
analytes (Johannessen et al., 2021). Cartridges were previously pre-
conditioned with 10 mL of both methanol and Milli-Q water. Samples
were loaded and passed through SPE cartridges and dried under nega-
tive pressure for 1 h. Analytes were eluted with 10 mL of methanol and
nitrogen-dried to 300 pL in a TurboVap evaporator and, finally, were
transferred to glass amber vials. Field blanks were extracted in parallel
for each set of samples.

Samples were spiked before extraction with internal standards
(ISTDs) available at the time in the laboratory (Tables S3 and S4). These
standards were used for normalization of peak areas of detected VRCs in
a similar approach as reported in the literature (Kang et al., 2024). In
addition, after sample treatment, extracts were spiked with injection
standards (ISS) and instrumental analysis was immediately conducted.
Good extraction efficiencies (70-120 %) were obtained for different
internal standards available at the time of sample preparation in the
laboratory (Royano et al., 2023). These values were in accordance with
those observed following similar procedures for different VRCs (Rauert

et al., 2022a). See quality assurance and quality control details at sup-
plementary material for more information (Text S2).

2.3. Instrumental analysis

Samples were analyzed by ultra-high performance liquid chroma-
tography coupled to HRMS (UHPLC-QTOF HRMS). Chromatographic
separation was carried out in a UHPLC SCIEX ExionLC™ AC system
(SCIEX, MA, USA) using a C18 Securityguard column (2.1 x 4.6 mm)
and a Luna® Omega C18 (1.6 pm, 100 A, 100 x 2.1 mm i.d) as analytical
column from Phenomenex (Torrance, CA, USA). Milli-Q water (2 mM
ammonium formate; 0.1 % formic acid) and methanol (2 mM ammo-
nium formate; 0.1 % formic acid) were used as mobile phases at a flow
rate of 0.35 mL/min for a total run of 22 min. Gradient details and more
information about the chromatographic conditions are included in
Table S5.

The chromatographic system was coupled to a X500R QTOF MS/MS
mass spectrometer equipped with an electrospray ionization (ESI)
source. Positive ionization mode (ESI") was preferred for the analysis
due to a greater number of features and higher efficiency provided for
VRCs detection (Peter et al., 2018). MS/MS high-resolution data were
acquired using Data Independent Acquisition method (DIA) that allows
obtaining more information and a potential retrospective analysis of the
data. Mass spectral runs were performed in the range of 100-1,100 Da
for TOF-MS survey and 40-1,100 Da for MS/MS scans in 23 windows.
Collision energy (CE) was set at a compromise value of 35 V with a CE
spread of +15 V. Complementary analyses were also performed in Data
Dependent Acquisition (DDA) to improve the mass spectral quality in
confirmation experiments. Comprehensive details regarding mass
spectrometric acquisition are shown in Tables S6 and S7.

2.4. Data processing

All samples were processed using a suspect screening workflow as
described in Text S3 and depicted in the general scheme shown in
Fig. S2.

A comprehensive review of the extant literature yielded an initial list
of 153 suspect compounds, which included relevant environmental
VRCs (Table S8). Mass spectral information of suspects was compiled
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from scientific papers, property mass spectral libraries (NIST, SCIEX All-
in-one HRMS) and online mass spectral databases (e.g., MassBank
Europe, MassBank of North America, m/z cloud, Human Metabolome
Database) including precursor and fragment information to increase
confidence in identification.

Features were identified based on the widely accepted 5-confidence
level Schymanski scale (Schymanski et al., 2014) (identification levels;
IL, 1 to 5), considering a 70 % match with libraries (when available), a
maximum accurate mass error of 5 ppm and an isotopic pattern differ-
ence among 5-20 % (Zhang et al., 2021). When reference mass spectra
were not available for automatic software processing, manual inspection
was performed by comparison with compiled mass spectra from litera-
ture or online databases (Kang et al., 2024). In-silico fragmentation
using ChemSpider tool within SCIEX OS was also used as additional
evidence for structural confirmation. Identification workflow followed
in the current study was performed according to details provided in
Fig. S3.

Reference standards (n = 25) included in Table S3 were used for
confirmation of identified compounds in the proposed suspect approach.
Unambiguous identification of the compounds detected in the samples
was based on the criteria described above (i.e. library match, mass error,
isotopic profile) and, in addition, on the coincidence of their retention
time (RT40.3 min) under the same analytical conditions.

Feature-by-feature manual review was conducted to check peak
integration, identification and MS interpretation, if needed. Blank sub-
traction was performed for each feature reported in the peak table and
only those features 10 times above the average field blank samples were
considered (Krauss et al., 2019). Then, peak areas were normalized by
sample-specific ISTD ratio using the average peak area of ISTDs detected
in the same sample (Peter et al., 2022) (Table S4). The use of peak areas
is considered a valid strategy as qualitative indicator for characterizing
the pollutant burden, assessing general trends and/or identifying dif-
ferences between sampling points (Kang et al., 2024; Peter et al., 2022;
Tarabek et al., 2024). This approach can also support the identification
of potential sources of emerging contaminants (Peter et al., 2022). The
number of detected compounds per sample and detection frequency (DF,
%) were also used in the current study as indicators of pollution burden.
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In this case, DF for each compound is defined as the number of de-
tections of a suspect feature, identified according to Schymanski’s scale,
divided by the total number of samples.

3. Results and discussion

A total of 46 compounds out of the initial suspect list of 153 VRCs
were identified at different confidence levels (Table S9; Fig. S4). A
detailed list of the normalized areas for VRCs detected in the analyzed
samples is included in Table S10, while mass spectra for all of them are
compiled in supplementary material-3.

3.1. Chemical characterization

The majority of the VRCs detected in river waters are related to tires
(n = 40), while the rest (n = 6) are used in vehicles for other purposes (e.
g. vehicle fluids such as coolants, antifreeze, fuel) (Johannessen et al.,
2022a). Among them, we identified parent additives (1 antioxidant, 10
vulcanizers, 4 corrosion inhibitors, 1 cross-linker, 4 antislipering agents,
1 stabilizer, 1 lubricant, 1 bittering agent), but also an important num-
ber of miscellaneous compounds such as impurities (2) and trans-
formation products (13).

Fig. 2 shows the normalized areas of the 26 VRCs with DFs above 20
% (Table S11). Box plots for all the 46 identified compounds (Fig. S5), as
well as their individual contribution (Figs. S6 and S7) are detailed at
supplementary material. In terms of the total number of compounds
detected in all samples, the Tagus River surface water was strongly
dominated by tire additives used as vulcanizers (sum of all detected
compounds, 344, 25 %), corrosion inhibitors (156, 11 %) and trans-
formation products (434 compounds, 31 %) (Figs. S8 and S9).

3.1.1. Predominant compounds

The compounds which generally presented the highest normalized
areas were DPG, 5-methyl-1H-benzotriazole (Me-BTR), 1-H-benzotria-
zole (BTR), triisopropanolamine (TIPA) and denatonium benzoate
(DB) (DF > 60 %). Most of them are used as tire additives though other
automotive uses cannot be excluded (Li et al., 2023).
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Fig. 2. Box and whisker plots of the normalized area (logarithmic scale) of the 26 VRCs with DF > 20 % in river water in the different sampling campaigns (A: annual

and B: seasonal).
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BTR, Me-BTR and DPG have been ubiquitously detected in surface
waters from different parts of the world (Rauert et al., 2022a; Tarabek
et al., 2024), including Spain (Herrero et al., 2013) and in many cases
co-ocurring at high concentrations in the same ecosystem (Li et al.,
2023; Rauert et al., 2022a; Tian et al., 2020). In contrast, although their
environmental levels and distribution do not appear to be negligible
(Peter et al., 2020), TIPA and DB have been analyzed less frequently in
vehicle-related environmental samples.

DB is primarily used as a food additive due to its exceptional bittering
properties, but also added to coolants or antifreeze in the automotive
industry as a deterrent to prevent ingestion (Peter et al., 2020). In the
current study, DB was detected in more than 80 % of the analyzed
samples with significant peak intensities, especially in urban locations
(e.g. S3 and S4), being in agreement with recent studies in snowmelt
(Maurer et al., 2023) and stormwater (Peter et al., 2020) from roads. The
ubiquity and environmental concentrations found in the aquatic system
might be supported by its persistency and the difficulties to enhance its
degradation in wastewater treatment plants (Lege et al., 2019; Maurer
et al., 2023).

BTR and Me-BTR are used as corrosion inhibitors in rubber-based
products and their presence in the environment has been linked to
road traffic when detected in environmental matrices, such as urban air
(Johannessen et al., 2022b), roadside soils (Li et al., 2023) or aqueous
matrices including surface waters (Herrero et al., 2013; Rauert et al.,
2022a; Tian et al., 2020). As it is shown in Fig. 3F, Me-BTR was
consistently detected in greater contribution in river waters. Interest-
ingly, both analytes remain almost undetected in low anthropogenic
areas such as S1, S6 and S11, while an important contribution (half of
the total normalized area) was observed at S13. It could mainly be due to
the high solubility of BTR and Me-BTR compared with other VRCs,
which are distributed primarily during storm events (Tian et al., 2020).
This could explain why they are found in areas far from the major urban
centers (Tian et al., 2021a).

TIPA (DF = 62 %) and DPG (DF = 64 %) are both vulcanizers used as
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accelerators in the vehicle industry (Chen et al., 2024; McMinn et al.,
2024). Related to the latter, DTG (DF = 27 %) was also detected in the
Tagus River. The contributions of DTG were relatively lower (Fig. 3A), a
fact that could be related to its lower solubility and seems to be
consistent with concentrations found in Spanish rivers (Schulze et al.,
2019). DPG has been recognized as indicator of tire contamination in
waters (Zahn et al., 2019) and also found as the predominant compound
in surface waters from Australian urban tributaries (Rauert et al.,
2022a), leachates and roadway runoff (Chen et al., 2024; Peter et al.,
2018), snowmelt from Canada (Challis et al., 2021) or stormwater runoff
in China (Zhang et al., 2023). Interestingly, in the current study, the
detection of DPG in S10, S12 and S13 in 2022 resulted in a higher DF and
greater contribution to the total normalized area, which could be related
to the increased rainfall observed in areas downstream of the basin this
year. DPG is well known for its sorption capacity to particulate matter
like TRWPs (Kang et al., 2024; Xie et al., 2024), thus its distribution
strongly depends on rainfall events. Therefore, concentrations in water
bodies may undergo important temporal variations depending on the
periods of drought, the precipitation regime or the magnitude of the
runoff processes around each sampling (Miiller et al., 2022). In the
Tagus River, seasonal samplings during 2022 revealed higher DPG areas
in the wetter season (March and December, Fig. S10) compared to the
dry period (Mann-Whitney U test, p < 0.05; Fig. S11). On the other
hand, TIPA has been classified as an industrial compound with possible
uses in vehicles (Peter et al., 2020), but it is rarely described in the tire
wear literature. Its origin from tires could be related to the rubber crumb
(U.S. EPA & CDC/ATSDR, 2019) that is sometimes added to asphalt to
improve its elasticity and durability, although recently it has been
detected in Tire-wear Particles (TWPs) lixiviates (McMinn et al., 2024),
which might be a more likely source for aquatic environments. It is
therefore plausible to be detected with high frequency in river samples
due to runoff during storm events (Peter et al., 2020), especially
considering its water solubility. In contrast to DPG, the normalized areas
of TIPA were higher in urban areas in 2020, but decreased in subsequent
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years (Kruskal-Wallis H test, p < 0.05; Fig. S6).

3.1.2. Antioxidants

Antioxidants are added to tires and other products (Cao et al., 2022)
to protect the rubber from oxidative degradation caused by factors such
as oxygen, ozone, heat, and ultraviolet light. Among them, PPDs such as
6PPD have proven to be particularly effective and it is therefore not
surprising that their presence and that of their transformation products
has been reported in the environment (Hua and Wang, 2023).

In the present study, 6PPD was not detected in river waters, but
traces of 6PPD-Q were found in few samples from 2020 to 2021 (DF =9
%). 6PPD-Q (Fig. S12) was among the minority compounds showing
peak intensities below 5 x 10* cps and low average contributions (<1 %
to the total normalized area in each sample). This result would be
coherent with the much lower concentration and detection frequency
found in river waters for 6PPD in comparison with 6PPD-Q
(Johannessen et al., 2021; Zhang et al., 2023), probably due to the
stability and short half-life of 6PPD (Lane et al., 2024). The presence of
6PPD-Q is relevant due to it has been recognized as a tire marker in other
environmental matrices (Klockner et al., 2021). It has been previously
reported in watersheds of different countries (Challis et al., 2021;
Johannessen et al., 2021; Rauert et al., 2022b), but its study in Spain had
been limited to recycled tire rubber materials (Duque-Villaverde et al.,
2024).

A feature eluting at 12 min was detected in 53 of the samples (6PPD
TP274; DF = 60 %) with relatively large peak intensities and a mass
spectra that showed characteristic fragmentations of bicyclic amines
(Fig. S13). Peak intensity of this feature was 3-fold higher than that of
6PPD-Q. 6PPD TP274 was found in TWPs and stormwaters by Peter et al.
(2018) and later confirmed by Zhao et al. as an ozonation product of
6PPD from a ring cleavage of the phenylenediamine ring resulting in an
unsaturated dicarbonyl diamide structure (Zhao et al., 2023). The
occurrence of 6PPD TP274 is remarkable, as it has been detected in air
(Johannessen et al., 2022b), road dust (Klockner et al., 2021), road
run-off and stormwater (Hu et al., 2022; Peter et al., 2018; Zhao et al.,
2023) and it has been proposed as a plausible abundant marker for tire
contamination (Hu et al., 2022). The results provide additional data on
its environmental fate in the aquatic environment and the studied
watershed.

Zhao et al. (2023) suggested that the 6PPD TP274 could be formed
from N-cyclohexyl-N'-phenyl-1,4-phenylenediamine (6QDI), but the
latter chemical was not identified in river samples from this study.
Similarly, other PPDs and transformation products remain undetected,
although they were included in the original suspect list (Table S8).

3.1.3. Cross-linkers

In tires, cross-linker additives are used to improve rubber properties
such as strength, durability and elasticity. HMMM stands out among
them, although it is also used in other applications in coatings and
plastics products (Alhelou et al., 2019).

In samples from the Tagus River, HMMM has been by far the most
frequently detected compound (Fig. S14, DF = 91 %), being within the
15 most intense peak features in each sample, a behavior also observed
by other authors (Kang et al., 2024; Krauss et al., 2019; Peter et al.,
2018). The normalized areas and contributions of HMMM showed some
variability between points along the river which may be influenced by
anthropogenic activity and possible industrial discharges (Dsikowitzky
and Schwarzbauer, 2015). Its occurrence has been also reported in river
waters from Australia (Rauert et al., 2020), North America (Peter et al.,
2018), Asia (Peng et al., 2018) or Europe (Alhelou et al., 2019) with
concentrations even up to the range of pg/L. However, to date, its
presence in Spain has only been associated with wastewater from an
automobile industry (Consejo et al., 2005).

Other structurally related compounds belonging to the same family
have been identified in the analyzed samples (see Figs. S15-519). For
example, it is remarkable the detection of 3 analytes with large peak
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areas (DF > 70 %, IL 2a) identified as d-HMMM, hexamethylolmelamine
pentamethyl ether (HMPE) and tetra(methoxymethyl)melamine
(TMMM) with strong positive correlations among them (rs > 0.95, p <
0.01; Table S12), suggesting a common origin thereof. The degradation
of HMMM has been addressed previously, pointing out d-HMMM, HMPE
and TMMM as possible biotransformation products of the parent com-
pound (Alhelou et al., 2019; Johannessen et al., 2021). Transformation
products of lower molecular weight and with an even number of
methoxy groups have a higher water solubility and stability, which may
lead to an increasing persistence and mobility (Alhelou et al., 2019) and
may explain the greater normalized areas observed for HMPE and
TMMM in comparison with the formylated analogue d-HMMM.

A fourth less intense peak (DF = 22 %) was identified as di
(methoxymethyl)melamine (DMMM, Fig. S19). The eluting region of
this feature was consistent with its log D and its mass spectra showed
fragments from [CsH7Ng]1 ™ (151.0727) and [C4H7Ng] ™ (139.0735) units
(Alhelou et al., 2019). Interestingly, this compound was predominantly
detected in samples from 2020 (DF = 61 %) and 2021 (DF = 69 %) in
comparison with 2022 (DF = 3 %). Other minor peaks (IL 3; DF < 10 %)
were observed in river samples presumed to be double
diformylated-HMMM (dd-HMMM), penta(methoxymethyl)melamine
(PMMM) and double diformylated-PMMM (dd-PMMM) based on com-
mon m/z mass fragments of the methoxy-methyl-melamine family and
their coherent relative position in the chromatograms (Figs. S20 and
521). These compounds have been also detected in lower concentrations
than the major HMMM derivatives in environmental samples (Bobeldijk
et al., 2002; Johannessen et al., 2021; Krauss et al., 2019; Peter et al.,
2018) and TWP leachates (Miiller et al., 2022; Peter et al., 2018).

Transformation products belonging to the whole degradation chain
have been reported in surface waters in European (Alhelou et al., 2019;
Krauss et al., 2019) and North American rivers (Peter et al., 2018) with a
significant (more than half) contribution compared to the HMMM. It is
in accordance with the behavior observed in the Tagus River based on
normalized peak areas (Fig. 3D), where HMMM contribution was fol-
lowed by HMPE > TMMM > d-HMMM > DMMM. This result evidences
the largest presence of methoxy-methyl-melamine derivatives in the
Spanish fluvial ecosystem.

No significant annual and seasonal differences were obtained for this
family of compounds based on Kruskal-Wallis H test (p > 0.05; Fig. 522).

3.1.4. Vulcanizers and transformation products

Vulcanizers are used in the automobile industry to improve physico-
mechanical properties of the materials by accelerating or retarding the
vulcanization reaction during polymer synthesis. It constitutes the
largest group of compounds (n = 10; 3 guanidines, 4 amines, 2 ureas and
1 benzothiazole) in the analyzed samples having a whole significant
contribution (Fig. S9).

The vulcanizer retarder 1,3-diphenylurea (DPU; DF > 40 %) was
found simultaneously with other urea compounds with similar struc-
tural backbone, but a more diffuse use in tires like 1-cyclohexyl-3-phe-
nylurea (CPU) and 1,3-dicyclohexylurea (DCU) (DF > 50 %) (Peter
et al., 2018). These contaminants have been described as common pol-
lutants in water samples affected by traffic related pollution and often
co-occur with other VRCs such as HMMM (Peter et al., 2018; Rauert
et al., 2020). Interestingly, a strong correlation between the aforemen-
tioned urea additives with cross-linkers related to HMMM was observed
(Table S12), indicating a possible common origin in the Tagus River.

Benzothiazole (BT) has been related with tire contamination and
classified as a vulcanization accelerator (Zhang et al., 2023) and/or a
possible transformation product (Miiller et al., 2022). This compound
was rarely detected in the Tagus River (only 4 samples: 2020 -S2, S6, S9-
and 2022 -S10-). In general, low intensities and poor peak shapes were
observed, possibly due to the fact that its analysis is also susceptible by
gas chromatography. Its presence in vehicle-impacted matrices does not
seem to be as dominant and widespread as that of other VRCs, but it has
been found in high concentrations (0.2-15 pg/L) in runoff water samples
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(Zhang et al., 2023).

Four other compounds structurally related to BT were detected in
samples from the Tagus River classified as vulcanizers, transformation
or reaction products (Fig. 3E). 2-benzothiazole sulfonic acid (BTSA)
presented the highest frequency of detection (78 %) and a high
normalized peak area (among the top 10 most abundant compounds),
which is coherent with previous investigations and may be considered
one of the most recalcitrant compounds of the tire-related benzothiazole
derivatives (Maurer et al., 2023; Seiwert et al., 2020). As for other VRCs,
peak intensities were typically higher near urban centers, but a higher
dispersion was observed with occasional detections also at points of
lower anthropogenic influence (S1, S6, S11 and S13).

2-hydroxybenzothiazole (2-OH-BT), 2-aminobenzothiazole (2-ABT),
2-(methylthio)benzothiazole (MTBT), and 2-morpholin-4-yl-benzothia-
zole (24-MoBT) presented a lower DF and co-exist in aquatic matrices
in relevant concentrations (Kloepfer et al., 2005; Zhang et al., 2023).
2-OH-BT, a transformation product of 2-mercaptobenzothiazole, was
also identified as the compound with the highest contribution after
BTSA, a fact coherent as reported elsewhere (Zhang et al., 2023).

3.2. Spatio-temporal distribution and sources

Samples collected at different sampling points along the basin were
compared to identify possible trends or factors contributing to VRC
occurrence in the Tagus River basin such as specific characteristics and/
or possible local sources of contamination.

Higher median values were observed for those locations with a high
anthropogenic impact (p < 0.05; Fig. 4), particularly, where the main
urban settlements are located (city of Madrid; S2, S3, S4 and S5). Among
them, those points located in the metropolitan area (S3 and S4) stand out
in terms of normalized area and number of detected compounds when
compared with S2 (upstream) and S5 (downstream). As would be ex-
pected, these results clearly evidence that population density and road
traffic are major sources of these pollutants in the aquatic ecosystem.
Some of the VRCs detected in this study such as DPG, methoxy-methyl-
melamines, 3-cyclohexyl-1,1-dimethylurea (C-DMU) or dibenzylamine
(DBA) have indeed been proposed as chemical indicators of urban water
quality as they have shown differences in runoff samples according to
the urbanization level (Peter et al., 2022).

Notably, S7, S8 and S9, located downstream of the city of Madrid,
showed a lower pollutant load in terms of normalized area, but a high
number of detected VRCs (up to 27 per sample). S7, located in the
Jarama River (Tagus River tributary), collects the flow from the city of
Madrid. However, the normalized areas observed at this point decrease
compared to S5 due to the dilution associated with the fresh input of the
Tagus River from less polluted areas (S6). Site S8 is the same river as S7
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with no additional inputs among these two locations, then rather similar
normalized areas and chemical profiles were observed between these
points (Fig. S23). S9 has significantly lower traffic and population
density than the previous points, but the low flow of the river at this
point contributes to median areas similar to that observed upstream.
Downstream (S10 to S13), the distance from the main sources (roads and
large urban centers), dilution by new inputs from areas with less traffic,
and possible degradation processes result in lower normalized areas.
VRCs detected in these less urbanized areas could also have some
contribution from agricultural activities (Tian et al., 2021a).

No general temporal or seasonal differences were obtained consid-
ering both the total number of compounds and normalized areas (p >
0.05; Figs. S24 and S25), although higher areas have been observed for
few individual compounds in wet weather samples (6PPD TP274, DPG,
CPU and TIPA; p < 0.05). This general behavior could be influenced by
several factors. On one hand, the Tagus River is a heavily dammed river
and, as other Mediterranean basins, its flow is highly regulated to ensure
the ecological biodiversity and water quality (Royano et al., 2023). On
the other hand, traffic conditions around the watershed tend to decrease
during summer (Ministerio de Transportes y Movilidad Sostenible,
2022b) when precipitations are minimal, while the opposite occurs
during the wet period, thereby minimizing seasonal differences. Limi-
tations in establishing spatio-temporal trends for some VRCs due to
different possible sources for these compounds have been reported in
literature (Rauert et al., 2020).

Further data analysis to characterize the chemical profile of the
sampling points was performed using Principal Component Analysis
(PCA) (Tables S13 and S14). The first component (PC1, 55 % of the
variance; Fig. S26) may be related to tire derived compounds and the
anthropogenic impact at each sampling location since less impacted
locations clustered with negative contributions of PC1. The results in
this component revealed similar weights for several VRCs (Table S13)
which suggest similar sources, transformation processes and/or envi-
ronmental fate (Wang et al., 2025). In PC2 (11 % of the variance), DTG
shows a significant contribution to this component pointing a potential
anthropogenic origin related to vehicular traffic, but less associated to
tires in this study. Indeed, DTG separated from other guanidines such as
DPG, a compound with which it has shown a weak correlation in other
studies in traffic-related samples (Li et al., 2023). The corrosion in-
hibitors BTR and Me-BTR also stand out in this component and remain
separated from other VRCs, which could be related to its distribution by
other mechanisms beyond storm water runoff (Tian et al., 2020) or their
widespread use in various products (Xie et al., 2024). Other non-tire
compounds as the bittering agent DB (Peter et al., 2020) or 2-N-dibuty-
laminoethanol (2-DBAE), used as a possible stabilizer in fuels (ECHA,
2025), also have a strong weight in PC2. Interestingly, in PC3 (8 %), the
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samples from the urban location S4, are grouped mainly in the negative
part of the loading plot (Figs. S27 and S28) which would point local
pollution sources. The origin from vehicles appears less in this compo-
nent, probably due to multiple sources of some VRCs (Li et al., 2023;
Tian et al., 2021a; Xie et al., 2024). For example, positive contribution to
this component was observed in the score plot for N-hexyl-N’phenylurea
and DBA. The former shows one of the weakest correlations with other
VRCs (Table S12), suggesting a more diffuse use in vehicles. DBA is used
as a vulcanizing agent in tires, although other possible direct and indi-
rect sources have been proposed (Kuntz et al., 2024).

4. Conclusions

A wide variety of VRCs with different uses in the automobile industry
have been reported using a suspect analysis workflow applied to surface
river waters collected from one of the largest fluvial ecosystems in the
Iberian Peninsula. 26 of the detected VRCs showed DF > 20 %, among
which, vulcanizers, corrosion inhibitors or transformation products
stand out, with some of these being reported for the first time in Spanish
surface waters.

This analysis revealed the widespread distribution (DF > 60 %) and
prevalence of compounds such as DPG, Me-BTR, BTR, TIPA and DB.
Additionally, the presence of certain markers of contamination by tire-
derived compounds was identified, including the transformation prod-
uct of the antioxidant 6PPD, 6PPD TP274, and the cross-linker HMMM.
The latter was the most frequently detected compound in the analyzed
samples (DF > 90 %), and, alongside it, several transformation products
belonging to the same family, such as d-HMMM, HMPE, TMMM and
DMMM (DF > 20 %) have also been identified.

The qualitative approach used in this work allowed to obtain a
general overview of the distribution and contaminant load in the
analyzed river waters. Normalized areas were consistently higher in
urbanized locations in comparison with agricultural and remote ones,
indicating that higher traffic density around major urban centers is a key
factor to VRC occurrence. Nevertheless, further research is required to
better characterize the environmental fate and concentration levels of
these compounds within the European aquatic environment.
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