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Abstract

Background: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare and severe 

blistering skin disorder caused by loss-of-function mutations in the type VII collagen gene 

(COL7A1). The COL7A1 c.6527insC mutation is curiously prevalent amongst RDEB individuals 

and is found worldwide in Europe and the Americas. Previous research has suggested the 

possibility of a Sephardic Jewish origin of the mutation, however RDEB individuals are not known 

to have predominant Jewish ancestry.

Methods: In this study, a global cohort of RDEB individuals with the c.6527insC founder 

mutation from Spain, France, Argentina, Chile, Colombia, and the USA were investigated by 

autosomal genotyping, pairwise identical-by-descent matching and a local ancestry analysis. Age 

estimation analysis was performed to determine when Jewish founders introduced the c.6527insC 

mutation into Iberian and Native American populations (~900 CE and 1492 CE, respectively).

Results: Sephardic ancestry was identified at the haplotype spanning the c.6527insC mutation 

in 85% of the individuals, despite mixed ancestry elsewhere in the genome and no known recent 

Sephardic ancestry. Identical-by-descent matching between this RDEB subpopulation and a known 

crypto-Jewish community in Belmonte, Portugal was also ascertained, providing support for 

crypto-Jewish ancestry in this RDEB subpopulation.

Conclusion: The identification of this unique RDEB subpopulation unified by the single most 

prevalent c.6527insC mutation holds great potential to facilitate promising new RDEB therapies 

using CRISPR Cas 9 gene and base editing. The identification of a single guide RNA allowing 

efficient and safe editing of this variant would represent a unique drug to treat a large cohort of 

patients with the same founder mutation.

Background

Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare and severe blistering skin 

disorder caused by mutations in the type VII collagen gene (COL7A1) 1–3. RDEB exhibits 

pronounced mutational heterogeneity and most COL7A1 mutations recur quite infrequently 
4, yet the COL7A1 c.6527insC mutation is intriguingly prevalent 5. While the exact 

mechanism underlying the c.6527insC mutation has not been fully elucidated, it is known 

that premature termination codons (PTCs) mediate mRNA decay, leading to null alleles and 

a deficiency of functional type VII collagen 1, 6. The great majority of RDEB individuals 

with the c.6527insC mutation exhibit a very severe phenotype, except for rare cases with a 

mild phenotype 7. The recent investigation of several RDEB Hispanic populations from 

Spain and other Spanish-speaking populations in Europe and the Americas suggested 

common ancestry, inherited at least in part through Sephardic migration, among individuals 

carrying the c.6527insC mutation 8.

Jewish people have faced complex waves of migrations during their extensive and dynamic 

history, resulting in elaborate population genetic patterns, and providing insight into general 

patterns of health and disease in society 9, 10. The majority of Sephardic Jews emigrated 
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from Spain during the time of the Spanish Inquisition to other European countries, North 

Africa, the Middle East and the Americas, along with a number of pathogenic mutations. 

Many who did not leave Spain during the Inquisition converted to Catholicism while 

continuing to observe Judaism in secrecy, creating crypto-Jewish communities. The presence 

of surviving crypto-Jewish descendants has been established in an earlier study of paternal 

lineages across the Iberian Peninsula 11.

RDEB individuals carrying the c.6527insC mutation with otherwise unknown Jewish 

ancestry from Spain, France, Argentina, Chile, Colombia, and the USA were investigated 

in detail and considerable Sephardic ancestry at the region of the c.6527insC mutation was 

unambiguously identified. The findings in this study strongly support crypto-Jewish roots as 

part of RDEB history.

Methods

Participant selection and sample collection of individuals with the c.6527insC mutation

A total of 132 RDEB homozygous and compound heterozygous patient samples from Spain, 

France, Argentina, Chile, Colombia and the United States with the c.6527insC mutation in 

COL7A1 were used in this study. Their genotypes were previously identified using various 

sequencing technologies and subsequently confirmed by Sanger sequencing (Table S1) 5, 12–

14. Out of these, 126 were used in the final analysis (see “Autosomal genotyping and kinship 

estimation” below). In addition, five Sephardic individuals (two kept in the final analysis) 

from the endogamous community of Belmonte, Portugal were included to evaluate the 

genetic relationship of RDEB-carrying individuals with a uniquely preserved crypto-Jewish 

community with thriving modern Sephardic people.

Autosomal genotyping and kinship estimation

Autosomal genotyping was performed by Gene by Gene, Ltd., on a customized version 

of the Infinium Global Screening Array-24 v3.0 BeadChip, and analyzed with the Family 

Finder autosomal DNA test 15. This array includes approximately 700,000 SNPs for the 22 

pairs of autosomal chromosomes and chromosome X. We used KING v2.2.4 16 to estimate 

kinship coefficient between each pair of 137 samples initially considered in the study. 

Individuals were removed from further analysis if they were third degree relatives or closer, 

resulting in a final total of 126 c.6527insC-carriers and two Belmonte individuals.

Local ancestry analysis

Local population ancestry was estimated for the 126 unrelated individuals carrying one or 

more copies of the c.6527insC mutation. Samples were first imputed to the Illumina Human 

OmniExpress BeadChip array SNP set for compatibility with all reference data. We used 

IMPUTE2 17 and the 1000 Genomes 18 reference panel with a union of SNPs from both 

chip types, and an imputation probability threshold of 0.9. Next, we used Eagle v2.4.1 19 

for long-range phasing of haplotypes, and to impute any remaining no-calls. For a reference 

panel, we used an extensive collection (104,521) of FamilyTreeDNA (hereafter “FTDNA”) 

customers spanning each major worldwide population. With a genotyping rate of 0.988 

and all SNPs present in the phasing panel, we phased and imputed 637,645 SNPs across 
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chromosomes 1 through 22. One positional Burrows–Wheeler transform (PBWT) phasing 

iteration using the default auto-selection process.

A reference panel for local ancestry classification was constructed to represent population 

ancestries from each major continent, as well as various Jewish and non-Jewish populations 

in Europe. We included nine reference populations in total: Sub-Saharan African, Native 

American, East Asian, South Asian, North European, South European, Ashkenazi Jewish, 

Sephardic Jewish from Turkey, and Sephardic Jewish from Morocco (Table 1) 18, 20–23. 

Sample size disparities can adversely influence machine learning accuracy, so we randomly 

chose an approximately equal number of samples from each population. The two smallest 

sample sizes available were Turkish Sephardic (n=53) and Moroccan Sephardic (n=38), and 

inordinately small sample sizes can also be problematic. Therefore, we compromised on a 

sample size of 53 for all populations and used all available samples of Moroccan Sephardic.

We used a method similar to RFmix 24 for local classification but adapted by FTDNA 

for their proprietary tool myOrigins v3.0 23. This method for classifying phased segments 

into populations was found to be more accurate than RFmix, and the subsequent step 

of smoothing out classification errors with a conditional random field is identical to that 

described in RFmix. We classified each 500 SNP segment, using a sliding window to move 

each overlapping segment across each chromosome in increments of 200 SNPs. A hidden 

Markov model (HMM) was used to correct switch errors implicit in imperfect phasing, by 

predicting the true (hidden) diploid phase of each maternal and paternal segment, given the 

observed order of population labels 23. The transition probabilities used were as follows: no 

strand flip (0.850; e.g., 1/2 to 1/2), strand flip (0.000; e.g., 1/2 to 2/1), partial overlap (0.128; 

e.g., 1/2 to 1/3), partial overlap and strand flip (0.017; e.g., 1/2 to 3/1), other (0.005; e.g., 1/2 

to 3/4). Results were processed and plotted using custom scripts with R v4.1.2 25.

Pairwise identical-by-descent matching

We used the Family Finder algorithm to perform a SNP-wise comparison for each pair of all 

128 individuals to find shared segments, defined as runs of SNPs sharing at least one allele. 

Seed segments were formed from at least 900 adjacent matching SNPs, and extended in both 

directions, to merge with adjacent segments. Unqualified segments were then discarded, 

if they did not contain at least 480 SNPs, a genetic distance of 2 centimorgans (cM), or 

a density of 105 SNPs/cM. We used the linkage map (build 37) from the 1000 Genomes 

Project 18. Given the potentially very distant identical-by-descent (IBD) matches expected 

amongst descendants of a centuries-old Jewish diaspora, we used custom filters to determine 

whether two individuals “match.” A match is defined as two people with at least 5 cM 

in common and allowing for shared segments ≥ 2 cM. We summarized pairwise matches 

overall, and those with segments overlapping the c.6527insC mutation, in R v4.1.2 25.

Triangulation

We used triangulation as an additional validation to more conservatively assess IBD 

matching between all 128 samples. Triangulation 26 is the transitive property of shared 

DNA: segments that are shared IBD between three or more individuals from a recent 

common ancestor should match pairwise between all three, at an overlapping genetic 
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location. Any segments with a total overlap between group members of < 2 cM were 

removed. We constructed a dendrogram based on a hierarchical structure analysis of total 

shared triangulated DNA to find clusters of more closely related individuals. This assumes 

all individuals have recent common ancestry through just one genealogical line, through 

which they inherited the c.6527insC mutation. We used the hclust and dendrogram functions 

in base R, with the complete linkage method to find similar clusters 25. Distances were 

computed as 1 − cM/cMmax .

Age estimates for c.6527insC-containing haplotypes

We used two independent methods to estimate the date that c.6527insC was introduced, 

first from Sephardic people into Iberia, and later into the Americas. First, we applied 

the “Gamma” method 27, 28. The basic theory is that, under the Haldane recombination 

model 29, the length between recombination breakpoints is a random Poisson process, 

and exponentially distributed with rate of 1.0. This simple model does not account for 

interference (inhibition of one crossover by another) so is not perfectly accurate. However, 

at shorter genetic distances, the likelihood (and effect) of multiple recombination events 

is negligible. The logic is as follows: a mutation is inherited within a haplotype, which is 

iteratively broken into smaller segments with each successive meiosis. The mean distance 

from mutation to one of its two flanking recombination breakpoints is 1/τ Morgans, or 100/τ
cM, where τ is the time to most recent common ancestor (TMRCA) in units of generations. 

Note: the TMRCA for a group of mutation-carriers may be (substantially) younger than the 

TMRCA of the mutation itself, since it only considers a small subset of all mutation-carriers, 

past and present. Therefore, the length of the entire segment is distributed as Gamma 2, τ , 

with expected length 2/τ Morgans, or 200/τ cM.

The method of Gandolfo28 corrects for the bias of small sample size of segment lengths 

li, with a bias correction factor, b n = 2n − 1 /2n. Using this correction, they estimate the 

TMRCA as:

τ = b n 2n
∑i = 1

n li

Exact confidence intervals are then calculated from τ/τ . This calculation assumes that 

all mutation-carriers are unrelated (“independent”) since their TMRCA, i.e., no close 

cousin relationships, which would break the distributional assumption of independent 

and identically distributed samples. A second “correlated” version of the calculation 

accounts for the possibility of reticulating history, using the bias correction factor 

b n ∗ = 2n/ 1 + n − 1 ρ , where ρ is the mean pairwise correlation between segment lengths, 

and l  and s2 are respectively the mean and variance of segment lengths:

ρ = nl − s2 2n + 1
nl + s2 n − 1
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For the Sephardic-Spanish time estimate T1 , we used the population segment edges derived 

from myOrigins v3.0. Segment boundaries were defined as start and end points of a 

Sephardic segment spanning the mutation at position 48,611,297 on chr3 30. For compound 

heterozygotes, we only used the haplotype carrying the c.6527insC mutation. This haplotype 

was determined by IBD matching to c.6527insC-homozygous individuals and selecting the 

best match (i.e., having the fewest nucleotide mismatches). For the American time estimate 

T2 , we used the maximum of pairwise IBD matching segments derived from Family 

Finder. Only segments from New World individuals were used for T2.

The second age estimate method we applied was Alder v1.03 31, which uses patterns 

of linkage disequilibrium (LD) decay to compute time since an admixture event. Alder 

builds upon previous methods 32, 33 which show that admixture LD scales with time 

since admixture t , genetic distance d , and the initial difference D0  in allele frequencies 

between mixing populations:

Dt ≈ e−tdD0

The method fits a least-squares curve to patterns of exponential LD decay, to solve for 

the number of generations since admixture, and then calculates confidence intervals by 

jackknifing each chromosome.

We used Alder to estimate T1 as the admixture date between Sephardic and Iberian 

references, with Old World RDEB individuals as the admixed population. We then estimated 

T2 as the admixture date between Native American references and Old World RDEB 

individuals, with New World RDEB individuals as the admixed population. For both 

estimations, we considered a range of genetic distances between 0.05 and 50 cM. We 

converted g generations with generation time to years before present as × g + 1 , to account 

for the unknown age of participants.

Importantly, each of the events we tested (T1 and T2) actually consists of two potentially 

different time periods: (a) the TMRCA of an IBD segment, and (b) the potentially later time 

of population admixture. For example (T2), the ancestral population of Sephardic-Iberian 

mutation donors could have lived in Europe for some time prior to colonization of the 

Americas, and subsequent intermixing with Native Americans. Gamma gets at (a) whereas 

Alder gets at (b). However, (a) and (b) should converge on the same time period if the 

population size of donors was small. Although we hereafter refer to T1 and T2 as each being 

a single time period, we note the possibility that Gamma could overestimate the admixture 

time compared to Alder.

Results

Local ancestry analysis

myOrigins v3.0 analysis found a strong signal of Sephardic population ancestry spanning 

the c.6527insC mutation (Fig. 2). Out of 164 haplotypes carrying the mutation (38 
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homozygotes; 88 heterozygotes), 136 (83%) were found to be Sephardic, and 142 (87%) 

were found to be Jewish more generally. In contrast, only 15% (95% CI: 8–22%) of the 

entire genome was Sephardic, and only 22% (95% CI: 13–30%) of the entire genome was 

Jewish (yellow line in Fig. 2b). Many heterozygotes did not have overlapping Sephardic 

ancestry on their second haplotype (Fig. S1), which included a range of other RDEB-causing 

mutations (Table S1), suggesting that the c.6527insC mutation in particular shows this 

pattern. As expected, the main difference between New and Old-World individuals was a 

high prevalence of Native American segments in the New World, but also higher Iberian 

ancestry. No other Sephardic spikes of ancestry were observed elsewhere in the genome 

(Fig. 2b). This is consistent with our two-step model of Sephardic heritage for this mutation 

(Fig. 1b).

Pairwise identical-by-descent matching

Out of 8,128 possible pairs of matching participants (128 × 127/2), 1,203 pairs (15%) were 

found to have matching segments after applying a 5 cM minimum IBD threshold (Fig. 3). 

Given the potentially long time elapsed since the cohort shared a common ancestor, and the 

wide variance of IBD overlap after just a few generations, many null matches were expected. 

Out of 15% of matching pairs, 1,035 of 1,203 (86%) matched at a segment spanning the 

c.6527insC mutation. We performed a one-sample Wilcoxon ranked-sign test to determine 

that 1,035 matches spanning c.6527insC is significantly higher than the genome-wide mean 

of 30 or 3% (W = 0, p < 0.005, n = 100). The Chilean samples showed the highest incidence 

of pairwise matching, probably owing to higher post-Columbian shared ancestry and/or 

endogamy. Notably, the two included Belmonte Sephardic samples (with no mutation; last 

two columns of Fig. 3) matched many mutation-carrying samples (with no previously known 

Sephardic ancestry).

Triangulation

We found a general pattern of autosomal clustering within countries of origin for most 

study participants (Fig. 4). Proximate countries in the New World (Argentina, Chile, and 

Colombia) and Old World (Spain, Portugal, France) were found on many adjacent branches 

of the hierarchical tree, suggesting shared post-Columbian ancestry between geographically 

close individuals. Interestingly, one French individual was found nested in a clade of Chilean 

individuals (BP52019) whereas 1 Chilean (MK40783) and 2 Argentinean samples were 

found nested in Spanish clades (MK65370 and MK65374). Most New World (particularly 

Chilean) clades were much more recently related than clades in other countries, consistent 

with our IBD results.

Age estimates for c.6527insC-containing haplotypes

Both Gamma and Alder methods of age estimation supported a pre-Columbian introduction 

of c.6527insC-containing haplotypes into Iberia (T1), and subsequent post-Columbian 

introduction by this admixed population into the Americas (T2; Table 2). Given the evidence 

from IBD and triangulation analysis of recent shared ancestry in the Americas, we favor the 

“correlated” genealogy approach of the Gamma method, however we report “independent” 

values for completeness. Generation times have varied considerably between eras and 
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cultures, and we report several calendar dates based on generation times of 20, 25, and 30 

years per generation. However, here we assume 30 years, because recent estimates suggest a 

value between 26–30 34.

The Gamma method estimated T1 to occur in 990 (95% CI: 371–1610) CE, whereas Alder 

estimated an earlier time of 767 (95% CI: 308–1226) CE. Although there is a 200-year 

difference in these mean estimates, their 95% confidence intervals are highly overlapping 

(Fig. S2), and both estimates coincide with the so-called Golden Age of Jews in Spain. 

As noted in the methods, the Gamma method estimates the TMRCA of an IBD segment, 

whereas Alder estimates the potentially later time of population admixture. Convergent 

estimates by these two approaches likely implies a small donor population size.

The Gamma method estimated T2 to occur in 1702 (95% CI: 1539–1859) CE, whereas 

Alder estimated an earlier time of 1665 (95% CI: 1650–1679) CE. These estimates are 

more consistent and have tighter confidence intervals, but are noticeably later than the 

post-Columbian era beginning in 1492 CE. This leaves the possibility that Jews carrying 

the c.6527insC mutation in Europe first assimilated there before migrating to the Americas 

generations later. This is consistent with our hypothesis (Fig 1b) and supported by the fact 

that more European than Native American segments flank the c.6527insC segment (Fig. 

2a). A one-tailed binomial test confirmed that flanking segments to the mutation were more 

European than expected by chance (p=2.62×10−12).

Conclusion

Genetics, culture, history and religion have unified the Jewish people since their origins 

in the Middle East more than 5,000 years ago 35. The c.6527insC mutation in modern 

Jews originally dates to ~1300 BCE with successive admixture amongst ancient Iberians 

occurring in ~900 CE and with Native Americans ~1492 CE (Fig. 1a and 1b). It is still 

present in Spain today. Endogamy historically predominated in Jewish populations, giving 

rise to a high prevalence of genetic diseases. Previously unknown as prevalent in Jewish 

populations, RDEB was only recently recognized to have an association with Sephardic 

communities 8. The RDEB population in this study from Spain, France, Argentina, Chile, 

Colombia, and the USA, previously unknown to have Jewish origins, unambiguously 

demonstrate considerable Sephardic ancestry at the region surrounding the c.6527insC 

mutation (Fig. 2a & 2b). An unequivocal Sephardic lineage in this population can be 

explained by shared ancestors who underwent forced conversions to Catholicism on the 

Iberian Peninsula during the Spanish Inquisition. Crypto-Jewish communities emerged at 

this time of massive persecution so families could secretly maintain their Jewish faith while 

outwardly professing adherence to Catholicism. Descendants of crypto-Jews frequently lost 

their Jewish identity over time, however genetic diseases present in these communities 

consistently survived. The c.6527insC mutation undoubtedly has Jewish origins, arriving 

from the Middle East ~900 CE (estimates ranging from 767–1101 CE; Table 2) during the 

“golden age”, when Jewish life was flourishing on the Iberian Peninsula (Fig. 1b). Thus, 

our results are broadly consistent with our hypothesized time course (Fig. 1b). The mixing 

of RDEB individuals with Native American individuals has estimated dates ranging from 
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1665–1725 CE (Table 2), during a post-Columbian era that saw the emergence of many 

crypto-Jewish communities.

The Spanish Inquisition is among the fiercest examples of a system enforcing religious 

intolerance and propagating genetic homogeneity, with consequences clearly still relevant to 

our world today 36. It is estimated that persecuted Jewish individuals during the Inquisition 

represented approximately one-third of early Spanish immigrants and the propagation of a 

rare genetic disease, such as RDEB, in Iberian exile communities can be attributed, at least 

in part, to a founder effect 37, 38. To date, there is scarce knowledge about Sephardic crypto-

Jewish descendants, due to limited data from the original source of Sephardic Jews on the 

Iberian Peninsula combined with the challenge of identifying the existent communities today 
39. Communities in Portugal (Belmonte and Bragança) and Mallorca (Chueta) have known 

crypto-Jewish ancestry. Interestingly, individuals from the Belmonte community were shown 

to distantly match RDEB individuals carrying the c.6527insC mutation, substantiating 

crypto-Jewish ancestry (Fig. 3 & 4).

The migration patterns of RDEB individuals with the c.6527insC mutation notably 

resemble the Sephardic Diaspora map after 1492 CE (Fig. 1a). While Sephardic ancestry 

predominates overwhelmingly at the region surrounding the c.6527insC mutation in this 

RDEB population, traces of Ashkenazi ancestry are also evident (Fig. 2a). The combination 

of both Sephardic and Ashkenazi ancestry at this region, suggests that the mutation predates 

Sephardic and Ashkenazi admixture during the Middle Ages 10. Jewish people have lived on 

the Iberian Peninsula as far back as the Roman Empire and the c.6527insC mutation can be 

traced back even further to pre-Roman communities on the Iberian Peninsula 14.

Waves of Jewish people, including RDEB ancestors, migrated to the Americas from Europe 

after 1492 CE and greatly shaped the modern day Latin American population structure 37. 

The European, Native American and Sephardic admixture represented by the c.6527insC 

mutation reflects the migration of Jewish-Iberian people escaping the Iberian Peninsula 

during the Inquisition 38, 40. The c.6527insC mutation is widespread in the Americas 

and recently was identified as the most frequent RDEB variant in Brazil 41. While many 

individuals did leave for the Americas, the majority in this RDEB subpopulation are 

Spanish, indicating a strong example of Jewish families remaining in Spain throughout 

the duration of the Inquisition. Many of those individuals who did leave Spain, settled in 

remote areas of Europe and the Americas where they were less likely to be discovered and 

exposed. A number of mutations were brought to the Americas via these routes, including 

the pathogenic growth hormone receptor (GHR) mutation in Laron syndrome, observed in 

the isolated Lojano community in Ecuador, a population known to have the influence of 

Sephardic crypto-Jewish ancestry 38.

One particular region in North America well-known to attract immigrants who wished to 

maintain their Jewish practices under less scrutiny in the New World while demonstrating 

a veneer of Catholicism was the isolated San Luis Valley in northern New Mexico and 

southern Colorado 42. This region of the USA supports a population structure with greater 

frequencies of genetic diseases well-known in Jewish populations, including Pemphigus 

Vulgaris, Bloom Syndrome and BRCA1/BRCA2 associated breast cancer, suggesting those 
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fleeing the Inquisition may have brought Jewish founder mutations to contemporary 

Hispanic populations 40, 43. The 185delAG mutation in BRCA1 was identified at a 

surprisingly high frequency in non-Jewish Colorado families originating in the San Luis 

Valley and similar to the RDEB population, were found to have Jewish ancestry 43, 44.

Interestingly, one of the RDEB individuals is heterozygous for c.6527insC and 

c.7485+5G>A, a mutation predominantly found in the San Luis Valley, harboring multiple 

RDEB mutations potentially integrated in crypto-Jewish communities. Further studies will 

elucidate the extent of RDEB mutations associated with Jewish ancestry.

This unique group of RDEB individuals carrying the c.6527insC mutation unambiguously 

exhibits collective Sephardic ancestry, and may also represent the largest set of RDEB 

individuals ever reported with a single mutation in an otherwise remarkably heterogeneous 

disease. The recognition of this unique RDEB sub-population highlights the patterns of 

this rare genetic disease and illuminates the genetic architecture of the Sephardic Jewish 

population. Furthermore, recognition of the RDEB subpopulation unified by the single 

most prevalent c.6527insC mutation will enhance the efficient implementation of CRISPR 

Cas 9 gene and base editing therapies. The identification of a single guide RNA allowing 

efficient and safe editing of this variant would represent a unique drug to treat a large 

cohort of patients with the same founder mutation. At present, the therapies accomplished in 

preclinical settings, including the ex vivo and in vivo correction of c.6527insC by multiple 

gene editing strategies, cultivate great optimism for the future of promising treatments for 

RDEB and other rare diseases 45–50.
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What is already known on this topic:

The origins of RDEB mutations have not been precisely identified and common 

Sephardic ancestry has been suggested.

What this study adds:

Our study elucidates common Sephardic ancestry for RDEB individuals carrying the 

c.6527insC mutation in Spain, France, Argentina, Chile, Colombia, and the USA.

How this study might affect research, practice or policy:

We report the most comprehensive study to date of RDEB individuals carrying a single 

mutation (c.6527insC) with a unique shared history, findings which hold great potential 

to accelerate promising new RDEB therapies.

Warshauer et al. Page 15

J Med Genet. Author manuscript; available in PMC 2025 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Sephardic Local Ancestry Spans c.6527insC mutation. (A) Results of myOrigins V.3.0 

analysis showing local and overall population ancestry for chromosome 3. All 126 unrelated 

carriers of the c.6527insC mutation are shown for the haplotype that is most Sephardic at 

position 48,611,297. Turkish and Moroccan Sephardic ancestry are merged into one group 

for display due to lower sample sizes and genetic similarity. Country of origin is denoted by 

rainbow colours, and genotype is denoted by circles. (B) Genome-wide population ancestry 

aggregated across all 126 samples. Both haplotypes are included for homozygotes, and 

one haplotype (best match to homozygotes) is included for heterozygotes. A peak of 83% 

Sephardic ancestry is found at chr3, position 48,611,297.
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Figure 2. 
Sephardic diaspora and the c.6527insC mutation. (A) Geographic representation of 

Sephardic Diaspora during post-Columbian history (after 1492 CE). Routes and locations 

are only approximate and likely incomplete. (B) Conceptual historical model of the 

c.6527insC mutation, with hypothesised times to be tested. First (T 0), the mutation arose 

in a single ancestor during the Iron Age.14 Next (T 1), a group of Sephardic individuals 

with high prevalence of the mutation migrated to Iberia where they admixed with local 

Spaniards. This may have occurred during the Golden Age of Jews in Spain.8 14 Finally 

(T 2), many post-Columbian diaspora ensued following the Spanish Inquisition, including 

converso Sephardic individuals who migrated to the Americas. Importantly, this model 

predicts the mutation to be overlapped by primarily Sephardic DNA segments in both Old 

and New World individuals.
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Figure 3. 
Pairwise IBD matching. Family finder pairwise matching with relevant thresholds applied 

between all pairs of 128 samples (including two Belmonte samples). Any IBD match 

spanning the c.6527insC mutation is shown by plasma colours denoting the segment length 

in cM. If a pair matches but without spanning the mutation, an empty box is shown. 

Rainbow colours denoting country of origin are identical to those in figure 1, except that 

Belmonte samples are shown in black. IBD, identical-by-descent.
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Figure 4. 
Autosomal relationships of study participants. Hierarchical clustering tree showing 

proximity of the relationship for all 128 individuals in the study. Clustering was performed 

using total cM for all triangulated DNA segments, that is, those matching between three 

or more individuals. The vertical axis is normalised between 0 and 1. Rainbow colours for 

circles denote country of origin and are identical to those in figure 3. Rainbow colours for 

tree branches denote clusters.
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Table 1.
Reference populations used for local ancestry classification, and their sources.

Target Population* Proxy Population† N‡ Citation§

Sub-Saharan African Nigerian 53 Siva 2008

Native American
Native American groups in South America: 
Cachi, Colla, Quechua, unknown tribal 
affiliation in Ecuador, Peru, and Bolivia

53 Eichstaedt et al. 2014; Pagani et al. 2016; Mallick et 
al. 2016; Maier et al. 2021

East Asian South Han Chinese 53 Maier et al. 2021

South Asian Dravidian 53 Siva 2008

North European British 53 Maier et al. 2021

South European Iberian 53 Maier et al. 2021

Ashkenazi Jewish Ashkenazi Jewish 53 Maier et al. 2021

Sephardic Jewish in Turkey Sephardic Jewish in Turkey 53 Maier et al. 2021

Sephardic Jewish in Morocco Sephardic Jewish in Morocco 38 Maier et al. 2021

*
Continental or regional population of interest

†
Specific reference population used in local ancestry analysis

‡
Sample size; all non-Jewish reference populations were capped to the largest Jewish sample size

§
Study from which reference samples were drawn
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Table 2.
Age estimates for admixture of c.6527insC mutation into Iberia and Americas.

Admixture 
Event* Method† Assumption‡ Generations BP§

Calendar Date (20 
Y/G)¶

Calendar Date (25 
Y/G)¶

Calendar Date (30 
Y/G)¶

Sephardic + 
Spanish Gamma

‘Independent’ 
genealogy 29.7 (26.4–33.5)

1408 (1333–1475) 
CE

1254 (1160–1338) 
CE

1101 (988–1201) 
CE

Sephardic + 
Spanish Gamma

‘Correlated’ 
genealogy 33.4 (12.8–54.1)

1334 (922–1748) 
CE

1162 (647–1679) 
CE 990 (371–1610) CE

Sephardic + 
Spanish Alder - 40.9 (25.6–56.2)

1186 (880–1492) 
CE 976 (594–1359) CE 767 (308–1226) CE

American + Span-
Seph Gamma

‘Independent’ 
genealogy 8.9 (7.5–10.6)

1824 (1790–1853) 
CE

1774 (1732–1810) 
CE

1725 (1674–1767) 
CE

American + Span-
Seph Gamma

‘Correlated’ 
genealogy 9.7 (4.5–15.1)

1809 (1701–1914) 
CE

1755 (1620–1886) 
CE

1702 (1539–1859) 
CE

American + Span-
Seph Alder - 10.9 (10.4–11.4)

1784 (1774–1794) 
CE

1725 (1712–1737) 
CE

1665 (1650–1679) 
CE

*
Which modeled admixture event, either T1 or T2

†
Age estimation method

‡
Assumption of Gamma method

§
Mean estimated age in generations before present, with 95% CI

¶
Mean estimated age in calendar year (see assumed generation time), with 95% CI
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