

1 **U(VI) speciation studies by Raman spectroscopy technique in**
2 **the production of nuclear fuel**

3 AUTHORS NAMES AND AFFILIATIONS:

4 **Laura. J. Bonales^{1,2}, Nieves Rodríguez-Villagra^{2*}, Iván Sánchez-García², Oscar. R.**
5 **Montoro³**

6 ¹Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir km. 4, 28850 Madrid (Spain).

7 ²Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT).

8 Avda. Complutense 40, 28040, Madrid (Spain).

9 ³MALTA-Consolider Team, Dpto. Química Física, Facultad de Ciencias Químicas,

10 Universidad Complutense de Madrid, 28040 Madrid (Spain).

11 **ABSTRACT**

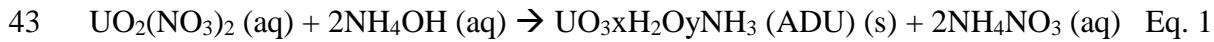
12 One key intermediate solid product in the industrial production of the UO₂ for fabrication
13 of common nuclear fuel is the ammonium diuranate or ADU. Its composition and
14 morphology are crucial for industrial operations since this determines the quality of UO₂
15 powder. In this work we demonstrate that Raman spectroscopy technique is a power tool
16 to characterize the precipitation of ADU and to monitor the precipitation reaction
17 progress, being able to follow the U(VI) speciation and to correlate these results with the
18 features of the obtained solid.

19 Thereby, here we propose the use of the Raman spectroscopy technique in the production
20 of nuclear fuel in order to monitor the speciation of U(VI) during the ADU precipitation
21 with dual-purpose; in one hand, to improve the safety in the fuel management and on the
22 other hand, for the quality control for the manufacturing industry in nuclear power.

23
24 **KEYWORDS:** Nuclear fuel fabrication; quality control; fuel management; Ammonium
25 diuranate; Raman spectroscopy technique, Uranium (VI) speciation.

26 **Corresponding Author:** Nieves Rodríguez-Villagra (nieves.rodriguez@ciemat.es)

27 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT).


28 Avda. Complutense, 40. 28040 - Madrid (SPAIN). Tel. +34 913466290

29

30 **1. INTRODUCTION**

31 Nuclear fuel is commonly composed of ceramic UO₂ pellets, which are industrially
32 obtained by conventional powder fabrication, consisting of pelletizing of UO₂ powder,
33 followed by high temperature sintering in hydrogen atmosphere [1]. This process involves
34 the generation of large quantities of UO₂ powder, and it can be obtained by dry or wet
35 processing routes [2-6]. One of the wet chemical industrial methods for preparing UO₂
36 powders is the ammonium diuranate (ADU) process [7], named this way because ADU
37 is the first intermediate in solid powder formed in the flow sheet of the UO₂ production.

38 In this process, ADU can be precipitated from the reaction of a pure uranyl nitrate solution
39 with ammonia (either gaseous or aqueous solution) [8, 9]. Then, the precipitate is
40 converted first to U₃O₈, and thereafter reduced with hydrogen to UO₂ powder [1]. Thus,
41 the ADU precipitation can be produced from uranyl nitrate and ammonium hydroxide by
42 the following reaction [2]:

44 where uranyl solution reacts with ammonia and precipitation occurs when the
45 concentration of the product (ADU) exceeds its solubility limit.

46 As it is described by Equation 1, the ADU stoichiometry is not constant. Therefore, the
47 term “ammonium diuranate” is actually a misnomer [10], but it remains of common use.
48 Controversies over the real composition or stoichiometry of ADU have sparked some
49 studies [7-11] and references therein [12, 13].

50 The ADU composition along with its morphology is characteristics particularly important
51 for industrial operations since, as it is well-known, these characteristics affect the desired
52 quality of UO₂ powder obtained. For instance, the agglomeration of the ADU precipitate
53 persists throughout calcination to U₃O₈ and the subsequent reduction to UO₂ at
54 temperatures ~ 600 °C [12]. Therefore, it is not surprising that a multitude of publications

55 dealt with the effect of different parameters that determine the ADU characteristics [13-
56 15]. In the 1970s, Janov *et al.* [13] reported that increasing pH decreased agglomerate
57 size. Woolfrey [14] pointed out that the thermal decomposition of ADU was affected not
58 only by the morphology of the ADU powders, but also by its composition (ammonia and
59 nitrate content); consequently, the rate of reduction of U_3O_8 to UO_2 increases with
60 increasing the ammonia content. In a more recent study, Murty *et al.* [15] have shown the
61 influence of the temperature on the growth rate and particle size of the ammonium
62 diuranate powder. Low temperatures lead to low precipitation rates, which favor the
63 dispersion of the precipitated particles (smaller agglomerates size) and therefore,
64 preferred in view of the sinterability requirement of the final uranium dioxide powders.
65 Moreover, in the last few years, some authors have tried to analyze the progress of the
66 ADU precipitation [16, 17]. These authors study the reaction of uranyl nitrate and
67 ammonia. Paik *et al.* [17] investigated the effect of ammonium nitrate concentration on
68 ADU precipitation, finding that as the time and the excess ammonium nitrate increase,
69 the pH also increases, leading to the formation of more number of phases and more
70 agglomerates, in agreement with the study shown by Janov *et al.* [13]. A similar result
71 was found by Manna et al. [16], who observed that ADU produced with aqueous ammonia
72 was denser than ADU performed with gaseous ammonia. In all of these studies, the ADU
73 precipitate was the main focus of the research, but not in the uranyl solution. The
74 speciation of U(VI) as the progress of the ADU precipitation was not the focus of these
75 mentioned studies. This speciation must be directly related to the precipitation mechanism
76 and then to the different ADU particles obtained, as Tomazic *et al.* [18] assumed more
77 than 40 years ago. These authors proposed the presence of anionic uranyl hydroxo
78 complexes on ADU precipitation at alkaline pH.

79 Uranyl speciation as a function of pH has been studied from the 1980s by using Raman
80 Spectroscopy technique (RS), and more recently by Müller *et al.* [19] using Attenuated
81 Total Reflection Fourier-transform infrared- ATR FT-IR. Toth and Begun [20] measured
82 the Raman spectra of UO_2^{2+} ion as a function of pH adjusted with HNO_3 and NaOH
83 solutions and identifying the ions: UO_2^{2+} , $(\text{UO}_2)_2(\text{OH})_2^{2+}$, and $(\text{UO}_2)_3(\text{OH})_5^+$ with the
84 different symmetric stretching band, ν_I as a fingerprint. Several works can be found
85 concerning the speciation of uranyl ion using RS; Brooker *et al.* [21] noted that the
86 stretching modes of monodentate and bidentate nitrate to the uranyl cation could be
87 differentiated; Maya and Begun [22] studied the stability of the uranyl ion in the presence
88 of carbonate; Trung *et al.* [23] in a variety of inorganic and organic ligands and Dargent
89 *et al.* [24] studied the uranyl-chloride complex under hydrothermal conditions. In
90 addition, the feasibility of RS for the estimation of the relative abundance of uranyl
91 species over the pH range relevant to ADU precipitation has been established [25,26].
92 None of the above mentioned works were particularly focused on ADU precipitation
93 reaction.

94 In this work, the use of the Raman spectroscopy technique is proposed for tracking the
95 ADU precipitation from a $\text{UO}_2(\text{NO}_3)_2$ solution, by adding different quantities of NH_4OH
96 solution throughout the pH range from ~2 to ~9 in ambient atmosphere. Special attention
97 is focused not only on the characteristics of the obtained ADU, but also on the
98 quantification and speciation of U(VI) during the reaction progress related to the ADU
99 precipitate characteristics.

100 **2. EXPERIMENTAL PART**

101 **2.1. Chemicals**

102 Aqueous solutions were prepared using ultra-pure Milli-Q water (Millipore, $18.2 \text{ M}\Omega\cdot\text{cm}$
103 from a MilliPore ELIX system) with TOC (Total Organic Carbon) lower than 5–10 ppb.
104 Uranyl nitrate hexahydrate, $\text{UO}_2(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, was supplied by Fluka and ammonium
105 hydroxide (NH_4OH , 30%) from Panreac, and both are used without further purification.
106 The sample preparations and analysis were run under ambient conditions.

107 **2.2. Characterization techniques**

108 **Raman spectrometer**

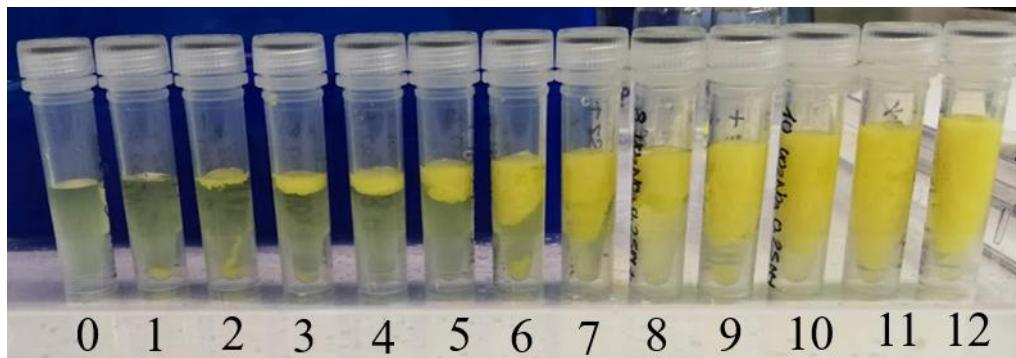
109 Raman spectra were acquired by using a Horiba LabRam HR evolution spectrometer
110 (Jobin Yvon Technology). The 532 nm laser beam (nominal power 50 mW) was focused
111 onto the sample through the 5x or 100x objectives, for liquid and solid samples
112 respectively, of an Olympus BX41 microscope. The scattered radiation was then collected
113 in backscattering geometry, dispersed using a 600 grooves/mm holographic grating and
114 recorded by a CCD detector (256 x 1024 pixels). The resolution of the instrument was
115 better than $0.48 \text{ cm}^{-1}/\text{pixel}$. For the analysis of aqueous solutions, small aliquots were
116 housed in a home-made cuvette designed to measure liquid samples (a more detailed
117 description can be found elsewhere [27]). A typical spectrum from 400 to 4000 cm^{-1} range
118 was obtained within 4-5 seconds of acquisition time and 10 accumulations for solid
119 samples and 60 seconds of acquisition time and 3 accumulations for liquid samples. All
120 acquired spectra were recalibrated using a Neon emission light. The excitation laser
121 power was minimized to 1 mW to prevent the alteration of the solid samples. For the

122 analysis of each sample, the average of 8 spectra recorded at different locations was
123 acquired over the wavenumber range from 400 to 1560 cm⁻¹.

124

125 **X-Ray diffractometer**

126 XRD characterization was performed by means of a Philips PANalytical X'Pert MPD
127 diffractometer using Cu K α 1 radiation ($\lambda = 1.54056$ Å) and operating at 45 kV and 40
128 mA. A Bragg– Brentano configuration geometry was used. The 2 θ range covered was
129 from 20° to 120° at 0.04° scanning steps.


130 **Complementary techniques**

131 Inductively Coupled Plasma - Quadrupole Mass Spectrometry ICP-MS, Thermo Fischer
132 Sci ICAP-Qc model with collision cell (QCell) and KED mode (He- Kinetic Energy
133 Discrimination), were used in order to analyses the total U content of the aqueous
134 samples. A DuoPUR acid purification system (Milestone) was used for guaranteed
135 reagent further purification of HNO₃ (65%). A standard uranium solution 100 µg/mL
136 (Inorganic Ventures, MSU, 99.98% of purity) was used for preparation of eight
137 concentration levels (0, 0.05, 0.1, 0.5, 1, 5, 10, and 50 µg/L), which were used for
138 establishing calibration curves to determine the unknown [U]. The standard stock solution
139 of ¹⁹³Ir (1000 µg/mL; Merck) was used for the preparation of 100 µg/L internal standard
140 solution. Instrumental operating parameters were optimized using a 1 µg/L ICP multi-
141 element standard solution (Tune B, Thermo Fischer) containing Ba, Bi, Ce, Co, In, Li and
142 U. All standards were used without further purification and prepared in 2% (v/v) HNO₃.
143 The solution pH was measured using a pH meter Metrohm 808 Titrando with a pH Glass
144 Electrode (Metrohm). The pH electrode was calibrated with commercial pH buffer
145 solutions (Reagecon pH 4 and 7).

146 The ADU precipitated surface morphology has been examined by means of a TM4000
147 Plus SEM by HITACHI, using a working voltage of 15 kV. The microscope is equipped
148 with a Back-Scattering Electrons (BSE) detector, which provides clear images about
149 powder surfaces, and a Secondary Electrons (SE) detector, which gives information about
150 the relief of the surfaces.

151 **2.3. ADU precipitation procedure**

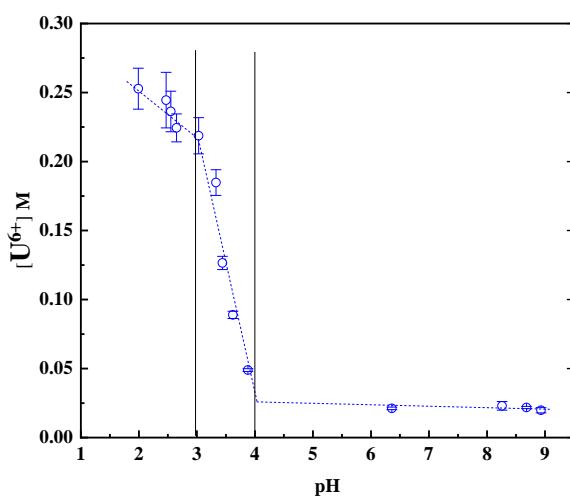
152 ADU precipitation reactions were carried out by adding dropwise different aliquots of
153 0.442 M NH₄OH to a fixed sample volume of 500 µL of uranyl nitrate solution, 0.251 M
154 UO₂(NO₃)₂ in individual batch tubes (BRAND®, PP) with a total volume of 2 mL (see
155 Table 1). The reaction was performed on uranyl nitrate solutions resulting from sample 1
156 (25µL of ammonia addition) to sample 12 (maximum concentration achieved of NH₄OH),
157 in a gradual flocculation of a dense yellow phase (Figure 1). After waiting 15-20 min and
158 shaking each batch solution for 5 min with a Vibromatic shaker, the solid was separated
159 from the supernatant by filtration using ultracentrifugation (Amicon Ultra-4 3k
160 Centrifugal Filter, Millipore 1 - 2 nm) for 60 min. The filtered ADU was naturally dried
161 at ambient conditions. Aliquots of each batch solution were taken for: i) elemental
162 analysis with ICP-MS to determine the U total concentration at each addition of ammonia
163 in the filtrate, ii) Raman spectra measurements for U-speciation in solution and iii) pH
164 measurements in the filtrate. The collected ADU powder was characterized by XRD, RS
165 and SEM techniques.

166

167 **Figure 1.** Photograph of precipitation reaction containing an initial volume of 500 μL
 168 0.251 M $\text{UO}_2(\text{NO}_3)_2$ and progressively increase of solution of 0.442 M NH_4OH .

169

170 **Table 1.** Volume of solution of 0.442 M NH_4OH added to a 0.251 M $\text{UO}_2(\text{NO}_3)_2$
 171 solution of 500 μL in each batch reactions, pH and $\text{NH}_4^+/\text{U}^{6+}$ ratio. (* $[\text{NH}_4^+]_{\text{theor}}/[\text{U}^{6+}]_{\text{ICP-}}$
 172 MS values were obtained by calculating the NH_4^+ concentration theoretically, whereas the
 173 $[\text{U}^{6+}]$ was quantified by ICP-MS by withdrawing a liquid aliquot of each sample, and
 174 after being conditioned with 10% HNO_3 solution)

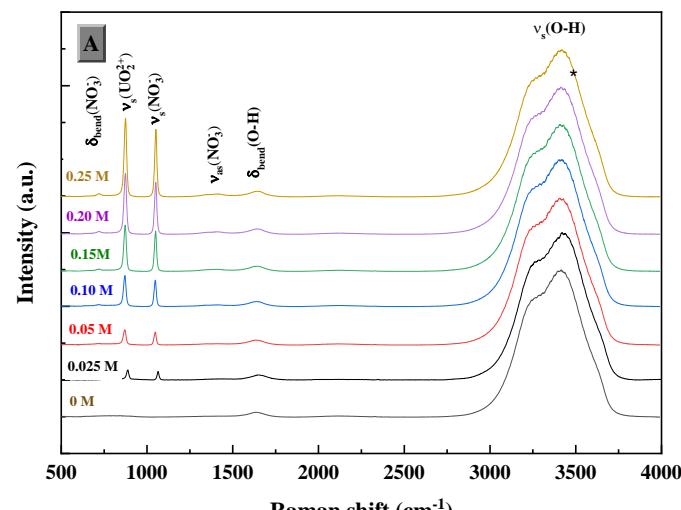

<i>Batch sample ID</i>	<i>Volume of NH_4OH added/ μL</i>	<i>pH</i>	<i>$[\text{NH}_4^+]_{\text{theor}}/[\text{U}^{6+}]_{\text{ICP-MS}}$ Ratio*</i>
0	0	1.99	0.0
1	25	2.46	0.1
2	50	2.55	0.2
3	75	2.65	0.3
4	100	3.03	0.3
5	150	3.33	0.6
6	200	3.44	1.0
7	250	3.62	1.7
8	300	3.88	3.4
9	350	6.36	8.6
10	400	8.26	8.5
11	450	8.68	9.6
12	500	8.93	11.2

175

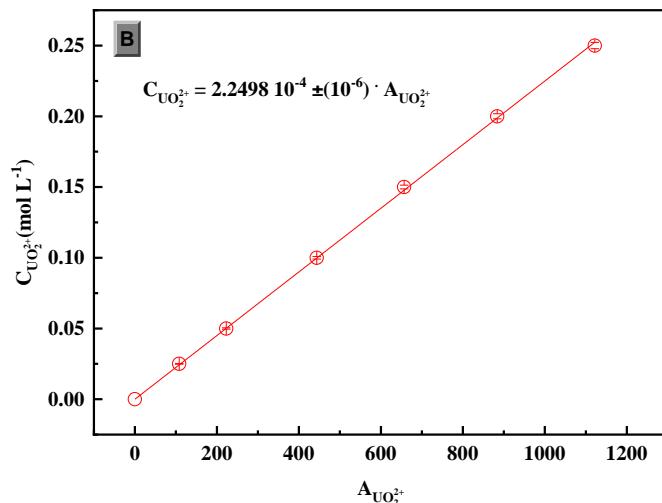
176

177 **3. RESULTS**178 **3.1. Analysis of uranyl nitrate solutions as a function of NH₄OH added**179 **Determination of U concentration**

180 Changes in the U⁶⁺ concentration were monitored for each batch solution by ICP-MS and
181 RS. Uranium concentrations measured by ICP-MS *vs.* pH in the filtered yellow solutions
182 are plotted in Figure 2. Concentration errors were calculated by multiplying RDS (relative
183 to measured concentration values) by a coverage factor of 95%. In this figure, two
184 inflection points were observed (see vertical lines) leading to three regions: firstly, a
185 gradual decrease of measured uranium concentration with pH up to sample 4 (100 μ L,
186 pH ~3); a sharp decrease (up to pH ~3.9), and a third and final region, from sample 9 (350
187 μ L, pH ~6.4), where a complete uranyl precipitation is achieved.


188

189 **Figure 2.** Uranium concentration (filtered) as a function of pH resulting from the 0.442
190 M NH₄OH addition to uranyl nitrate solutions. Dot lines indicate visual guides.


191

192 The reactions were also studied by measuring the decrease in the concentration of the
193 uranyl and nitrate ions in the supernatant of each aqueous batch solution by using

194 quantitative Raman spectroscopy (QRS) [28, 29]. For this purpose, a series of $\text{UO}_2(\text{NO}_3)_2$
 195 (aq.) Raman spectra were collected from solutions at the following concentrations: 0,
 196 0.025, 0.05, 0.10, 0.15, 0.20, and 0.25 M, in the $400\text{--}4000\text{ cm}^{-1}$ wavenumber spectral
 197 range, see Figure 3.A. Note that all spectra were normalized with the isosbestic point of
 198 water located at 3468 cm^{-1} [30].

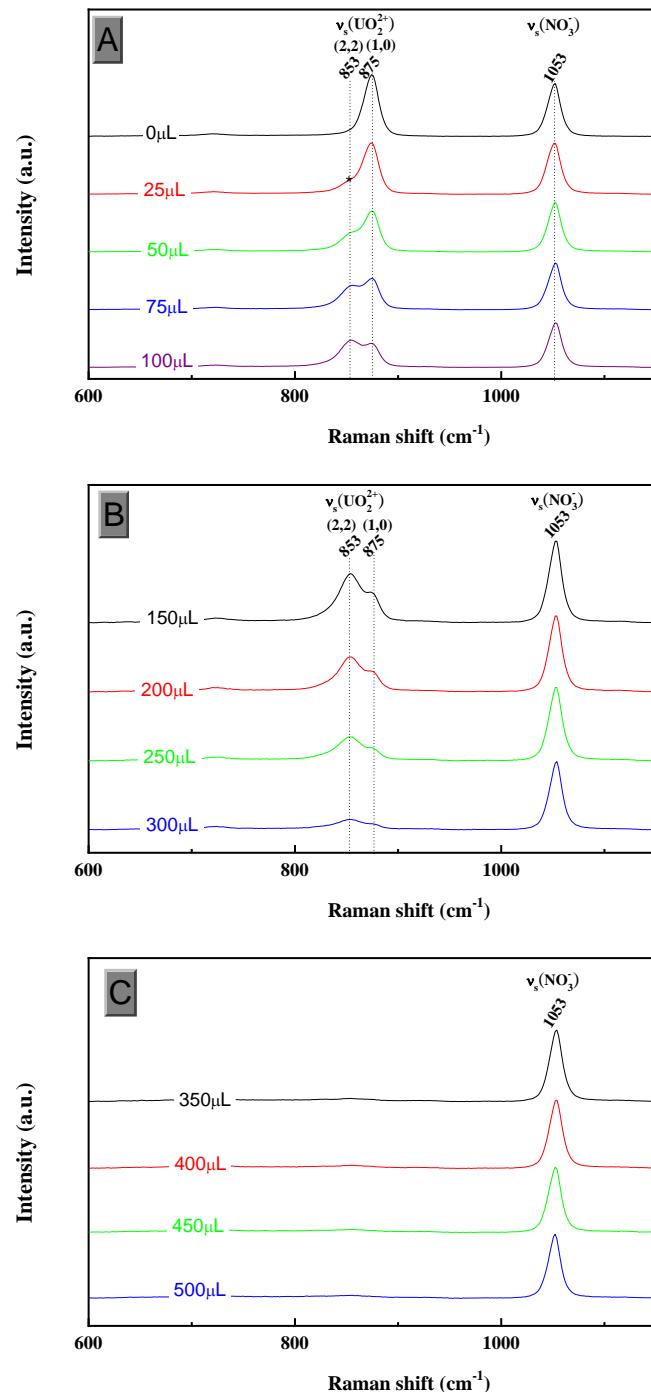
199

200
 201 **Figure 3. A)** Raman spectra of $\text{UO}_2(\text{NO}_3)_2$ (aq.) solution at concentration of 0, 0.025,
 202 0.05, 0.10, 0.15, 0.20, and 0.25 M. The asterisk indicates the isosbestic point of water
 203 located at 3468 cm^{-1} . **B)** Calibration curve of uranyl ion.

204 In Figure 3.A, the assignation of the main bands is indicated as following:

205 - Broad bands at high frequencies (2800–3400 cm⁻¹) correspond to the OH-bond
206 stretching, $\nu_s(\text{O-H})$ [31] and the band at ~1630 cm⁻¹ to the OH bending, $\delta_{\text{bend}}(\text{O-H})$ [31].

207

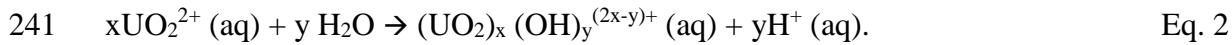

208 - The intense narrow band at ~ 874 cm⁻¹ has been assigned to the uranyl stretching
209 symmetric vibration, $\nu_s(\text{UO}_2^{2+})$ [20].

210 - The band at ~708 cm⁻¹ corresponds to the in plane deformation of the NO_3^- ,
211 $\delta_{\text{bend}}(\text{NO}_3^-)$ [32]; the intense band located at around 1037 cm⁻¹ corresponds to the
212 N-O stretching of the NO_3^- ion, $\nu_s(\text{NO}_3^-)$ [33]; and the broad bands at ~1400 cm⁻¹
213 are assigned to the asymmetric stretching bands of the nitrate ion, $\nu_{\text{as}}(\text{NO}_3^-)$ [32].

214 As can be seen, as the concentration of the uranyl nitrate increases, spectra do not present
215 any new Raman bands and the relative intensity of the bands keeps constant. Brooker *et*
216 *al.* [21] found different behavior because the concentration range was distinct, *i.e.*, up to
217 2.29 M, being the most concentrated solution in this study 0.25 M. Since these peaks do
218 not overlap, Raman analysis of the integrated intensity gives us a measure of the
219 concentration by the construction of a calibration curve (see Figure 3.B) [27].

220 Figure 4 shows the obtained Raman spectra of each batch. As can be appreciated, a new
221 band appears as a shoulder at ~853 cm⁻¹ (see asterisk in Figure 4.A) in the first addition
222 (25 μ L). Henceforth and up to 150 μ L, the intensity of such additional band increases,
223 whereas the band at ~ 875 cm⁻¹ $\nu_s(\text{UO}_2^{2+})$ decreases. From this added volume on, both
224 bands decrease until they vanish at ~ 350 – 500 μ L (Figure 4.B and C). This fact agreed
225 with the flat zone of uranium concentration in solution quantified by ICP-MS (see Figure
226 2). The new band at ~ 853 cm⁻¹ also corresponds to the symmetric vibration to the uranyl
227 ion, $\nu_s(\text{UO}_2^{2+})$, as was addressed by Toth and Begun [20], who first observed a redshift
228 as the pH increases by the NaOH addition to a uranyl aqueous solution. The shift of this

229 band indicates a different environment of the uranyl ion, *i.e.* distinct
230 speciation/complexation.

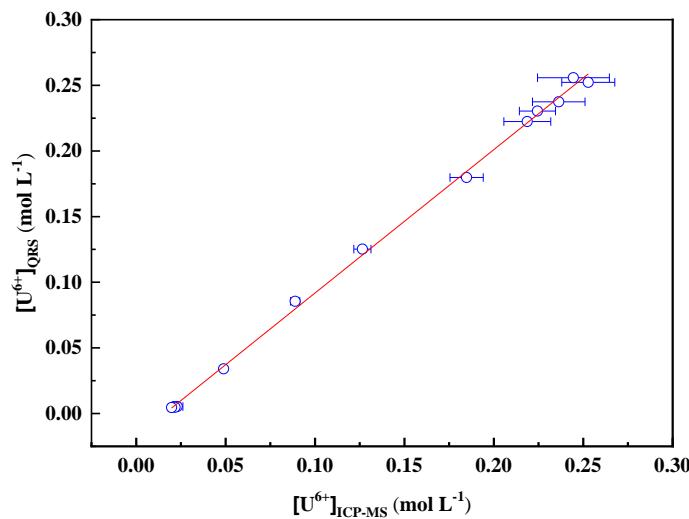

231

232

233

234 **Figure 4.** Raman spectra of each batch reaction (see Table 1) of the clear supernatant
235 liquid. Fig. 4.A shows the spectra obtained after the addition up to 100 μL of NH₄OH
236 (pH ~ 3). Spectra corresponding to the addition up to 300 μL (pH from 3.3 to 3.9) and
237 up to 500 μL (pH from 6.4 to 8.9) are shown in Figures 4.B and 4.C respectively.

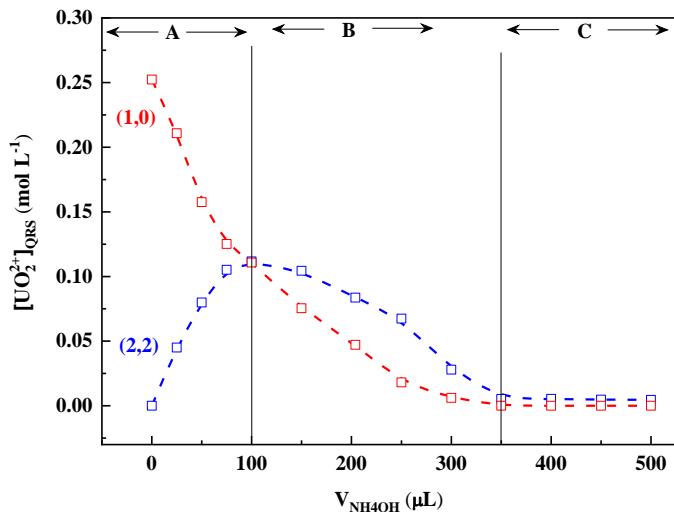
238 Quiles and Burneau [25] have described this behavior due to the formation of hydroxo
239 complexes with a stoichiometric coefficient (x, y) formed as a function of pH by the known
240 reaction (Eq. 2):



242 These authors found the Raman shift, 870, 853, and 835 cm^{-1} for the complex with a
243 stoichiometric coefficient (1,0), (2,2), and (3,5) respectively. Note that the hydrated
244 uranyl ion, written UO_2^{2+} for simplicity, is then named (1,0) and is considered as
245 “uncomplexed” in water. The different values observed in the $\nu_s(\text{UO}_2^{2+})$ are directly
246 related to the strengthening/weakening of the U-O bond. Thus, the increase in the Raman
247 wavenumber reveals a stronger U-O bond, with a shorter length [34]. Thereupon, the U-
248 O distance increases for the different ions as the ratio of the stoichiometric coefficient
249 x/y, increases, (1,0) > (2,2) > (3,5). As a first approach, we have tentatively assigned the
250 $\nu_s(\text{UO}_2^{2+})$ at $\sim 875 \text{ cm}^{-1}$ to the free ion in the complex (1,0), and the one at *ca.* 853 cm^{-1}
251 to the ion in the complex (2,2), $(\text{UO}_2)_2(\text{OH})_2^{2+}$. Assuming this assignation, the overall
252 changes observed in Figure 4 indicates that as the amount of NH_4OH added increases up
253 to 150 μL , the complex (1,0) decreases and the (2,2) complex increases; then both
254 decrease until the uranyl ion concentration is negligible.

255 **3.2. Elemental analysis vs QRS of uranyl nitrate solutions. Solution speciation**

256 The concentration of (1,0) complex can be calculated in a straightforward manner from
257 the calibration curve obtained from spectra shown in Figure 4. For the (2,2) complex
258 analysis, the same calibration curve was applied by assuming that the molar scattering
259 coefficient of the $\nu_s(\text{UO}_2^{2+})$ remained unchanged regardless of its complexation, as was
260 highlighted in [25]. To test this hypothesis, we compared the uranyl ion total
261 concentration obtained by QRS, $[\text{U}^{6+}]_{\text{QRS}}$ vs. the total U(VI) concentration obtained by
262 ICP-MS, $[\text{U}^{6+}]_{\text{ICP-MS}}$ in solution after each ammonia addition. Each data point is for a

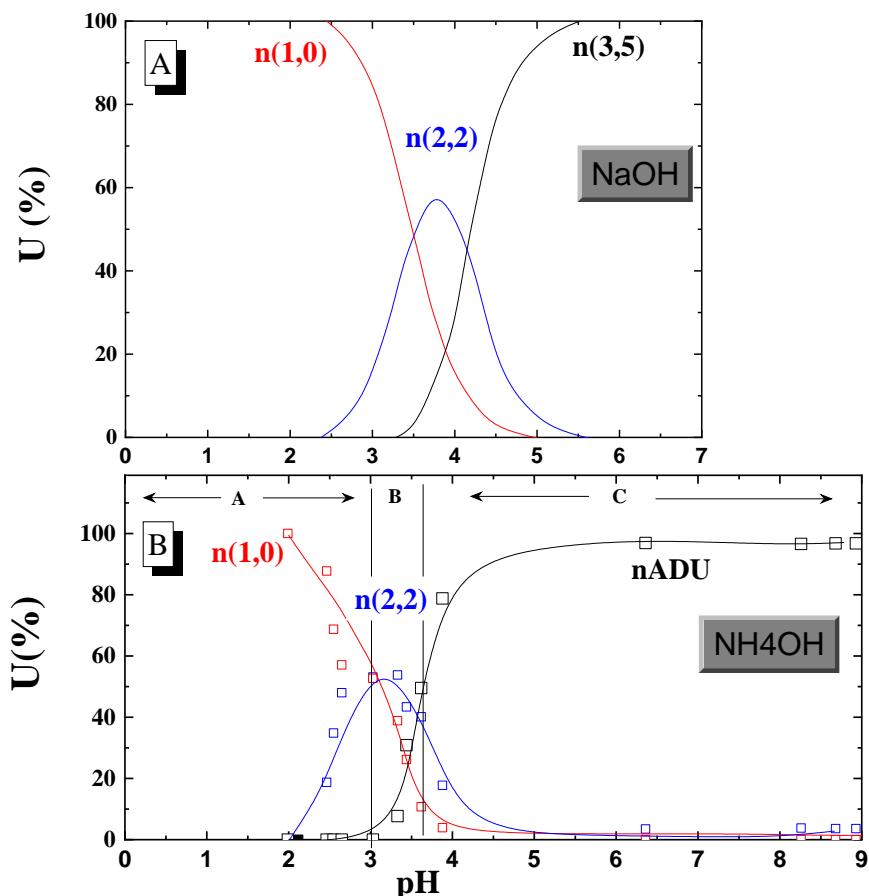

263 single measurement. This comparison from both approaches is shown in Figure 5. The
 264 result adjusts to a linear correlation function of slope $=1.09 \pm (0.01)$ with a coefficient of
 265 determination (R^2) equal to 0.998 and Pearson's $R = 0.999$. This result verifies that the
 266 molar scattering coefficient does not change for the two uranyl ions, (1,0) and (2,2) and
 267 therefore, it is possible to calculate the uranyl concentrations ions by using the same
 268 calibration curve.

269
 270 **Figure 5.** Correlation of the uranyl concentration dataset obtained by QRS and by using
 271 ICP-MS.

272 Figure 6 shows the obtained concentrations of uranyl ions as a function of the NH₄OH
 273 addition to a uranyl solution of 0.251 M. As it can be seen, the concentration of UO₂²⁺
 274 ion decreases continuously, whereas (UO₂)₂(OH)₂²⁺ concentration increases up to a
 275 maximum and then decreases. Figure 6 has been divided into three regions, region A,
 276 from 0 to 100 μ L, in which the $[UO_2^{2+}] \geq [(UO_2)_2(OH)_2^{2+}]$, at 100 μ L, $[UO_2^{2+}]$
 277 $=[(UO_2)_2(OH)_2^{2+}] = 0.11$ M; region B from 100 to 350 μ L, in which the $[UO_2^{2+}] \leq$
 278 $[(UO_2)_2(OH)_2^{2+}]$, and region C, at volume addition > 350 μ L, where $[UO_2^{2+}]$ and
 279 $[(UO_2)_2(OH)_2^{2+}]$ are very low.

280

281


282 **Figure 6.** Concentration of uranyl ions as a function of the added volume of NH₄OH.

283 (1,0) complex indicates the UO₂²⁺ ion and (2,2) indicates the(UO₂)₂(OH)₂²⁺ ion.

284 Once we had analyzed this general behavior, we performed a reliable QRS analysis to
 285 obtain (i) the concentration of each uranyl ion and (ii) the concentration of uranyl
 286 precipitated, both as a function of the NH₄OH addition and pH. Quantification of the
 287 relative abundance of each ion and the amount of precipitate formed as a function of pH
 288 have been calculated as a molar fraction from the data shown in Figure 6. This
 289 representation is observed in Figure 7 where $n(1,0)$ is the molar fraction of the complex
 290 UO₂²⁺ calculated as $(n\text{UO}_2^{2+}/n(\text{total}))100$; $n(2,2)$ is the molar fraction of the complex
 291 (UO₂)₂(OH)₂²⁺ and it was calculated as $(n\text{UO}_2(\text{OH})_2^{2+}/n(\text{total}))\cdot100$, and $n\text{ADU}$ is
 292 referred to the molar fraction of the precipitated calculated as $n(\text{total}) - n(1,0) - n(2,2)$. In
 293 this figure, we have also stated by vertical lines the regions mentioned in Figure 6. For
 294 the sake of comparison, the effect of the addition of NaOH and NH₄OH in the presence
 295 of the different species, can be observed. Figure 7.A shows the well-known phase diagram
 296 reproduced from ref. [20], whereas in Figure 7.B is represented the empirical phase
 297 diagram obtained in this work. From this comparison, it is apparent that the distribution
 298 of uranyl ions is very similar in both systems, *i.e.*

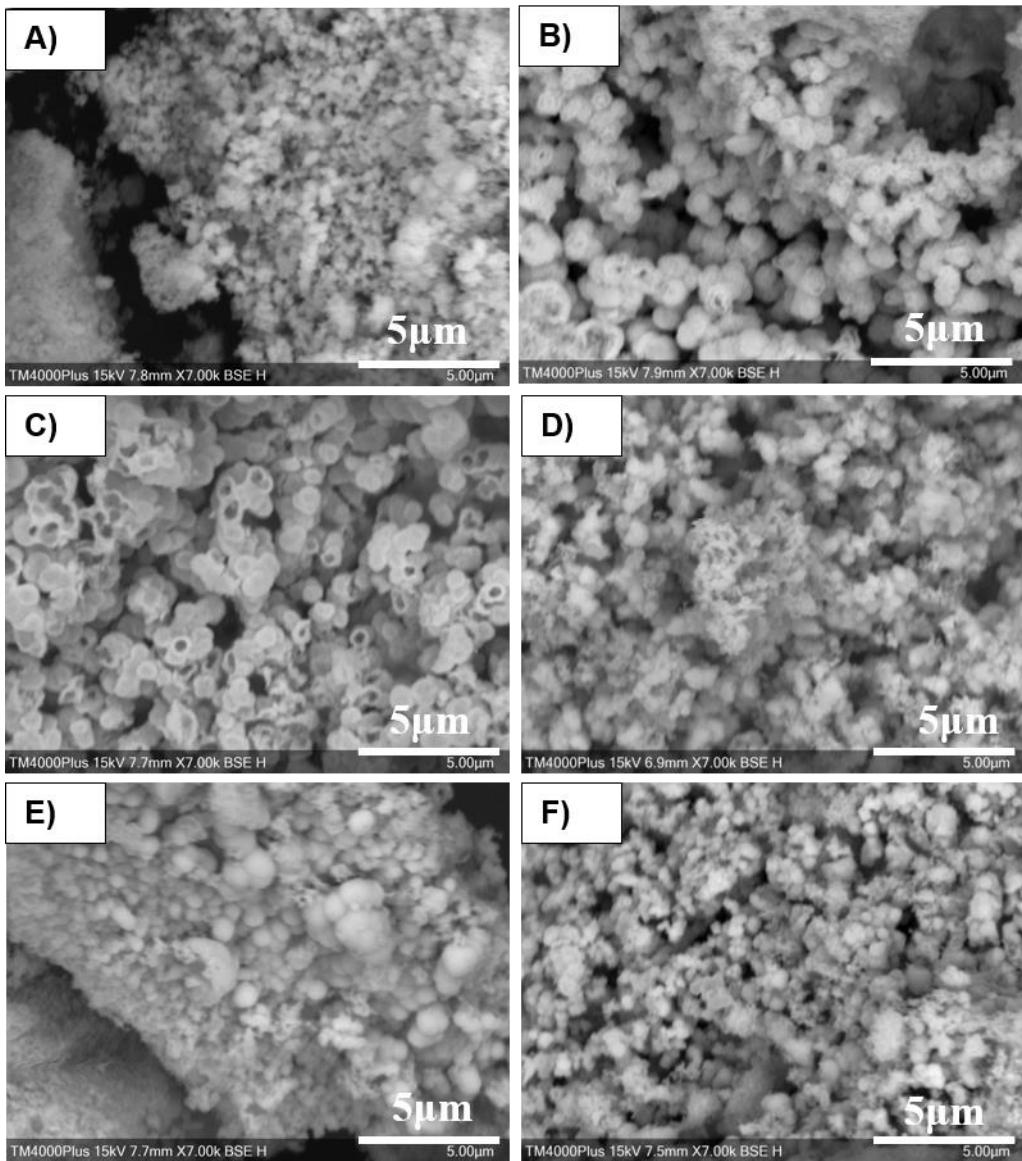
299 - At pH \sim 3.5 (3.8 for NaOH and 3.3 NH₄OH), the (2,2) compound, when complex
 300 reaches its maximum concentration, is the dominant species (\sim 60% for NaOH
 301 and 55% for NH₄OH).

302 - At pH $>$ 3.5, (1,0) and (2,2) complexes decreases. But more important regarding
 303 the precipitation of ADU are the found similitudes between the complex $n(3,5)$
 304 and the $n(ADU)$, both increases exponentially from pH $>$ 3 (pH = 3.2 for NaOH
 305 and pH = 3.0 for NH₄OH), reaching maximum values at around pH \sim 5-6. For
 306 NaOH at pH $>$ 5.5, the (3,5) complex dominates at 100%, whereas at pH $>$ 6 in
 307 the NH₄OH reaction studied, we found 96 % of ADU precipitated and less than 4
 308 % of (2,2) complex in the supernatant solution.

309
 310 **Figure 7.** Uranium (VI) speciation diagrams as a function of pH: A) by adding NaOH
 311 (upper graph, reproduced from [20]) and B) by adding NH₄OH (bottom graph) from this
 312 work. Color lines in the bottom graph are visual guides.

313 **3.3. Solid phase identification**

314 After the precipitation reaction of the different batch, we filtered the supernatant and
315 selected several crystal specimens for molecular analysis by SEM (Figure 8), XRD and
316 RS (Figure 9.A. and 9.B.), respectively. At the first addition, the solution became turbid
317 and a yellow gelatinous phase was detected. In the first four samples, the amount of
318 colloidal particles was quantitatively low, being impossible to be recovered from the
319 ultrafilters. No particular differences were found in the yellowish color of the ADU
320 samples.

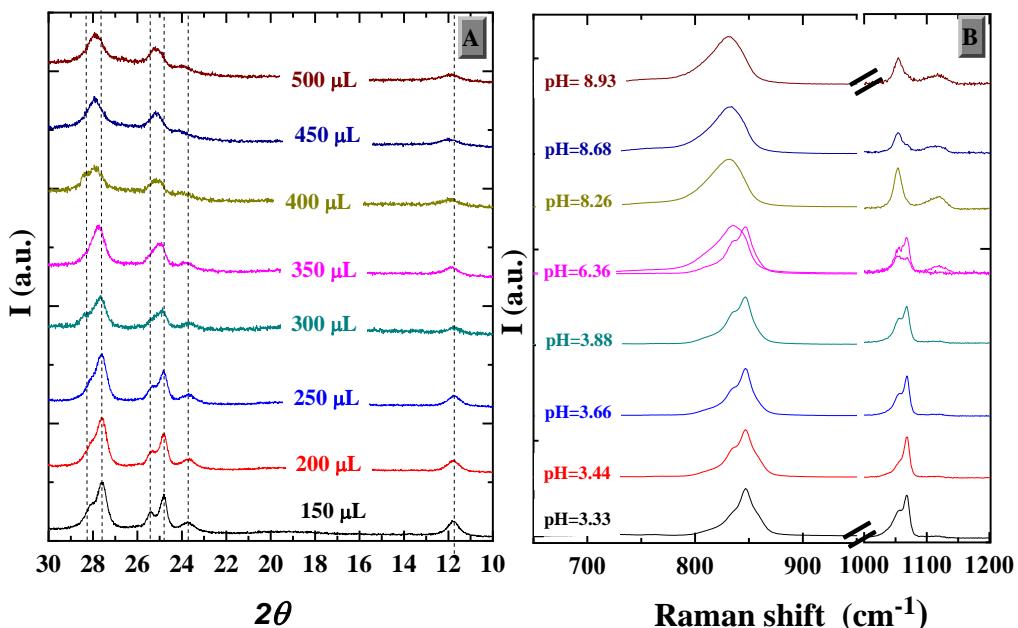

321 **Morphological analysis**

322 Representative SEM images acquired for these samples can be seen in Figure 8. In
323 general, clumped massive agglomerates with a wide range of submicron particle were
324 found across the larger compacted solids at all pH range evaluated. The micro- and nano-
325 spherical particles displayed very similar morphologies consisting of a rounded habit
326 arranged in irregular clumps. Overall, in the qualitative morphological characterization
327 in this study, any readily identifiable difference in the resulting products as a function of
328 the pH was identified, exhibiting identical shape.

329 Our main conclusion from these images is that the higher the pH of the ammonium
330 diuranate precipitated, the higher the dispersion of size range of the agglomerates were
331 obtained, which may affect the final densities of sintered pellets. In addition, higher pH
332 (*i.e.* from pH ~ 8.6) leads to lower primary agglomerates size, as expected, which would
333 be undesirable, keeping in mind sinterability specifications of final UO₂ powder.

334

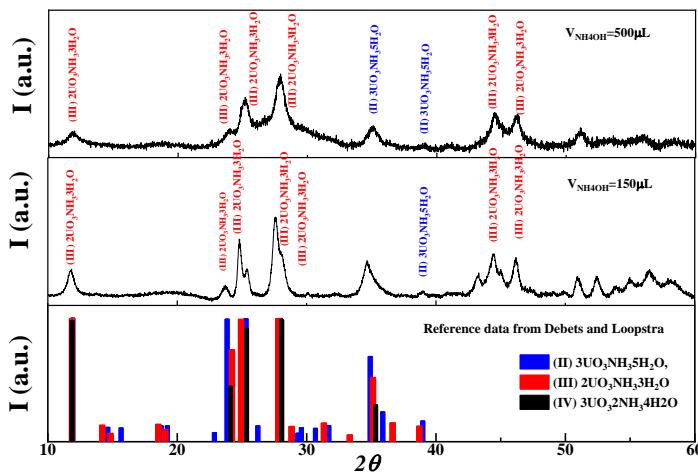
335



336

337 **Figure 8.** Representative SEM images of ADU powder particle precipitated at
 338 increasing amounts of NH₄OH added (pH 3 to 8.9) to constant uranyl nitrate solution of
 339 each solid obtained. Spheroidal type forms are shown from all ADU identified:
 340 A) ADU-4 (100 μL of 0.251 M UO₂(NO₃)₂) and pH = 3.03; B) ADU-7 (250 μL of
 341 0.251 M UO₂(NO₃)₂) and pH = 3.62; C) ADU-8 (300 μL of 0.251 M UO₂(NO₃)₂) and
 342 pH = 3.88; D) ADU-9 (350 μL of 0.251 M UO₂(NO₃)₂) and pH = 6.36; E) ADU-10
 343 (400 μL of 0.251 M UO₂(NO₃)₂) and pH = 8.26; F) ADU-12 (500 μL of 0.251 M
 344 UO₂(NO₃)₂) and pH = 8.93. Note that it is the same scale for images.

345 **XRD analysis**


346 Regarding the XRD diffractograms shown in Figure 9.A, a peak broadening was observed
 347 at pH 3.88 (300 μ L NH₄OH) resembling an amorphous phase (considerably more
 348 pronounced at higher pHs), in contrast with well-defined Bragg peaks in X-ray diffraction
 349 of ideal crystalline substances [35]. Although this fact obscures a reliable quantitative
 350 analysis of the precipitates, it is possible to determine that ADU precipitated at higher pH
 351 contains more amount of ammonia than ADU precipitated at acidic conditions due to the
 352 fact that the crystallinity of ADU decreases markedly with increasing the ammonia
 353 content, as indicated by Debets and Loopstra [36]. It is noteworthy that the four existing
 354 compounds in the system NH₃-UO₃-H₂O were well defined by Cordfunke in 1962 [37]
 355 and its corresponding X-ray power diagrams were indexed a year later by Debets and
 356 Loopstra [36]. Thereby, the formulae of these compounds are: (I) UO₃ 2H₂O, (II) 3UO₃
 357 NH₃ 5H₂O, (III) 2UO₃ NH₃ 3H₂O and (IV) 3UO₃ 2NH₃ 4H₂O being the first two
 358 compounds orthorhombic and the two latter hexagonal.

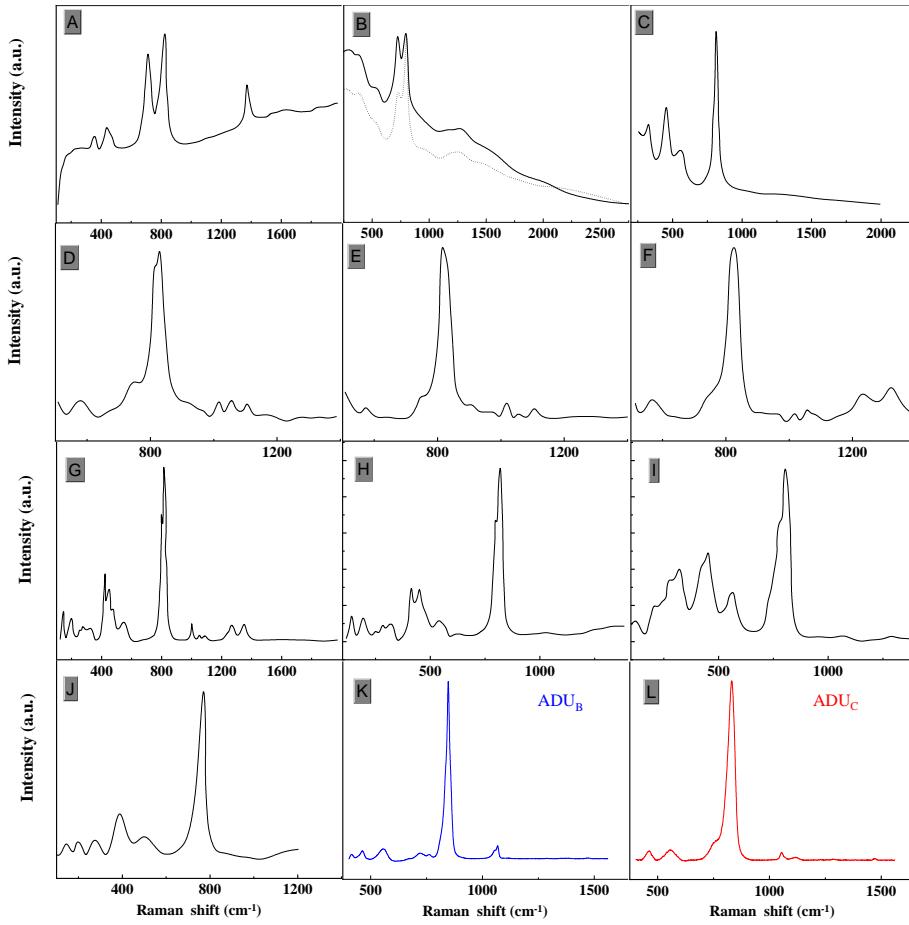
359

360 **Figure 9.** XRD diffractograms (A) and Raman spectra (B) of each solid obtained in
 361 batch from 5 to 12.

362 A qualitative analysis was carried out by comparing the diffractograms of the precipitated
 363 compounds with the diffraction pattern published by Debets and Loopstra [36]. The ADU
 364 obtained in this work can be described by the combination of the compounds (II) 3UO_3
 365 $\text{NH}_3 \text{5H}_2\text{O}$ and (III) $2\text{UO}_3 \text{NH}_3 \text{3H}_2\text{O}$, in agreement with the results shown by Paik *et al.*
 366 [17]. As an example, Figure 10 shows the XRD analysis profile of the ADU compounds
 367 prepared by adding a volume of 150 and 500 μL of NH_4OH at acidic and basic pH,
 368 respectively.

369

370 **Figure 10.** XRD analysis profile of the ADU compounds prepared by adding a volume
 371 of 150 and 500 μL of NH_4OH to a 0.251 M $\text{UO}_2(\text{NO}_3)_2$ solution.


372

373 Raman analysis

374 In Figure 9.B, it becomes clear that two different Raman spectra patterns can be
 375 distinguished: one pattern from a NH_4OH volume addition from 150 up to 350 μL and
 376 another up to a volume $> 350 \mu\text{L}$. It should be noted that these volume ranges correspond
 377 to the regions B and C, respectively, of the uranium (VI) speciation diagram (Figure 7.B).
 378 Therefore, the solid precipitated from the solution in region B and C is now called ADU_B
 379 and ADU_C , respectively. It is noteworthy that close to neutral pH ~ 6.36 , corresponding
 380 to the 350 μL addition, we have obtained a mixture between the two mentioned patterns

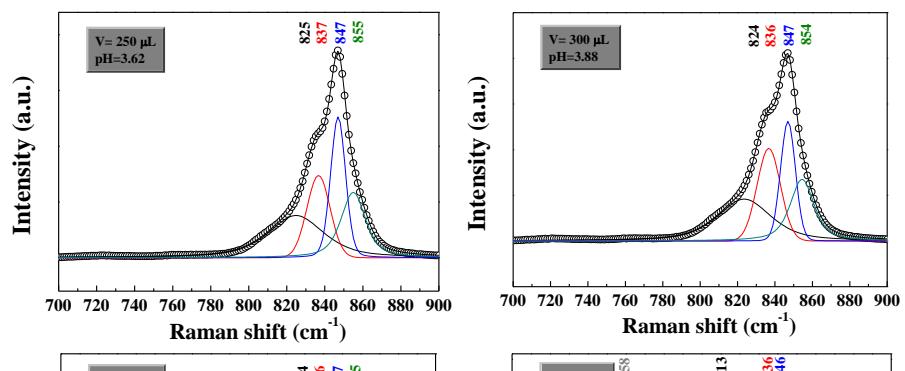
381 in the RS analysis. The Raman spectra of this sample have been acquired at different
382 locations, and both patterns corresponding to the ADU_B and ADU_C were found. Thus, the
383 Raman spectra shown in this figure corresponds to the average of the acquired spectra
384 separately, whereas the others are the average of the total spectra obtained in each sample.
385 As opposed to the detailed knowledge of the XRD corresponding to the existing
386 compounds in the system $\text{NH}_3\text{-UO}_3\text{-H}_2\text{O}$, no previous data of Raman spectra related to
387 its stoichiometry or composition exist, as far as we know. In Figure 11 (K and L), Raman
388 spectra of the precipitated ADU_B and ADU_C are compared with some of the ones found
389 in literature (Figure 11.A-J). The inconsistency of the Raman data reflected in Figure 11
390 is presumably due to the fact that authors referred ADU or even yellowcake to different
391 mentioned solids in the system $\text{UO}_3\text{-NH}_3\text{-H}_2\text{O}$. Thus, the Raman spectra reported in
392 previous studies do not determine the specific composition, either an assignation of each
393 band, with the exception of uranyl symmetric bands. Symmetric stretches of UO_2^{2+} ion,
394 which are observed in multiple U-bearing minerals [38], are found in the region of 750-
395 900 cm^{-1} . This band has been traditionally used as a fingerprint of most of them [39], *i.e.*,
396 this band appears at *ca.* 750-850 cm^{-1} for uranyl in the system $\text{NH}_3\text{-UO}_3\text{-H}_2\text{O}$. Besides, it
397 can be observed the $\nu_\text{s}(\text{UO}_2^{2+})$ in a few cases shows an internal structure of several very
398 closely spaced sub-peaks, which most likely pointed to a varying environment around the
399 uranyl ion within the same material.

400

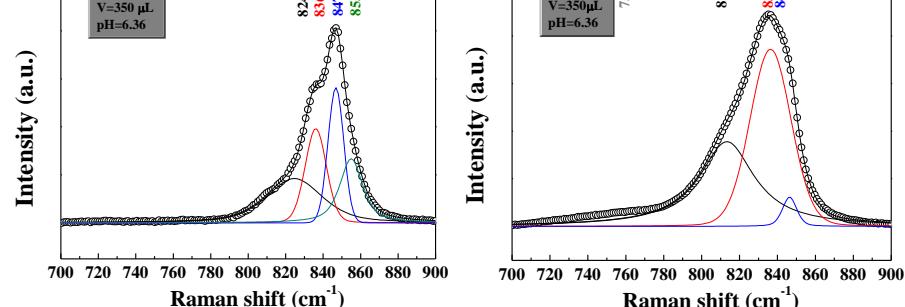
401

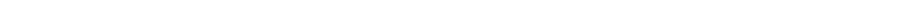
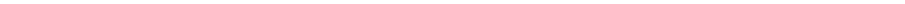
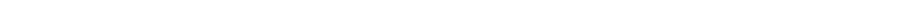
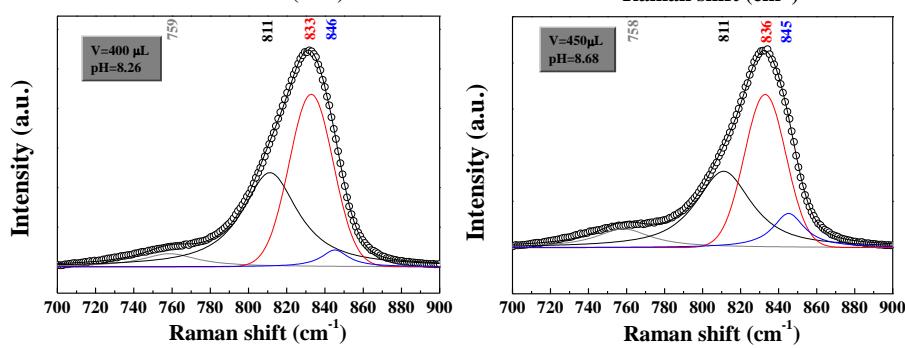
402 **Figure 11.** Raman spectra of several ADU precipitated: **A)** reproduced from ref [40]; **B)**
 403 reproduced from ref. [41] where straight line corresponds to powder and dot line to the
 404 pellet; **C)** synthetic ADU from ref. [42] , **D), E)** and **F)** reproduced from ref C,
 405 corresponds to natural samples: Ellweiler, Brunhilde and Dawn location respectively;
 406 **G)** reproduced from ref [43]; **H), I)** and **J)** are reproduced from [44] and correspond to
 407 natural samples from Millken lake, El Dorado and Delff; **K)** and **L)** are the spectra
 408 obtained in this work from the acidic and alkali solutions, *i.e.* ADU_{acidic} and ADU_{alkali},
 409 respectively.

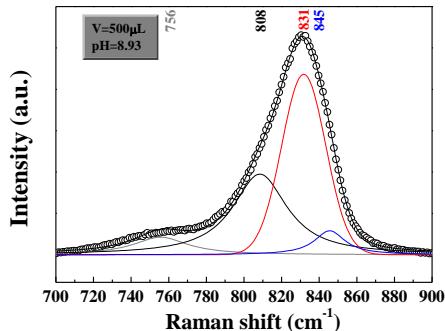
410 Although only a qualitative analysis of the ADU has been achievable to attain by XRD
 411 technique, it is possible, however, to carry out a detailed analysis for the obtained Raman
 412 data. For this aim, the measured spectra were subjected to the second derivative, *i.e.* the
 413 frequency of a given band corresponds to a minimum in the second derivative function.


414 A detailed band-profile analysis of the spectra was then accomplished by performing
415 multi-band Voigt profiles fitting, with the frequencies of each band obtained in the second
416 derivative analysis as fixed parameters (see Table S1 at the supplementary information).
417 An example of the profile analysis is given in Figure 12. As Figure 12 illustrates, main
418 band $\nu_s(\text{UO}_2^{2+})$ exhibits an internal structure composed of 4 main contributions. The
419 respective peaks of the ADU_B solids (from 100 μL to 350 μL , and $\text{pH} < 6.33$) are centered
420 at *ca.* 824, 836, 847 and 855 cm^{-1} . For the named ADU_C precipitate, the contribution
421 bands are located at 758, 811, 836 and 847 cm^{-1} , that is, two new bands at low frequency
422 take shape (758 and 811 cm^{-1}), and the higher frequency band at $\sim 855 \text{ cm}^{-1}$ disappears,
423 while bands at ~ 836 and 847 cm^{-1} also contribute to the band profile of these ADU_C solid.
424 As mentioned in above, the changes in these $\nu_s(\text{UO}_2^{2+})$ are directly attributed to the
425 strengthening/weakening of the U-O bond. Thereupon, the bands at a higher frequency in
426 the ADU_B indicate an increase in the U-O length of the uranyl ion, whereas, in comparison
427 to the ADU_C structure, the lower frequency reveals a weaker U-O bond, with a shorter
428 length.
429 The decreases in the frequency have been analyzed by Infrared spectroscopy by Stuart
430 and Whateley [10]. These authors highlighted that the uranyl ion frequency decreases
431 with increasing the NH_4^+ content, *i.e.* the U-O bond length is greater for ADU with higher
432 ammonia amount, indicating that ADU_C has more NH_4^+ than ADU_B . These outcomes are
433 in agreement with the ones obtained in the XRD analysis. Thus, jointly considering the
434 results of Raman and XRD analysis, ADU_B and ADU_C can be attributed to a mixture of
435 (II) $3\text{UO}_3 \text{ NH}_3 \text{ 5H}_2\text{O}$, (III) $2\text{UO}_3 \text{ NH}_3 \text{ 3H}_2\text{O}$, where the compound (III) with higher
436 content in NH_4^+ prevails in ADU_C more than in ADU_B .

437 The empirical equation published by Bartlett and Cooney [45] was applied in order to
438 quantify the U-O bond lengths from the uranyl symmetric stretching frequencies. The
439 resulting bond lengths are given in Table 2.


440





441

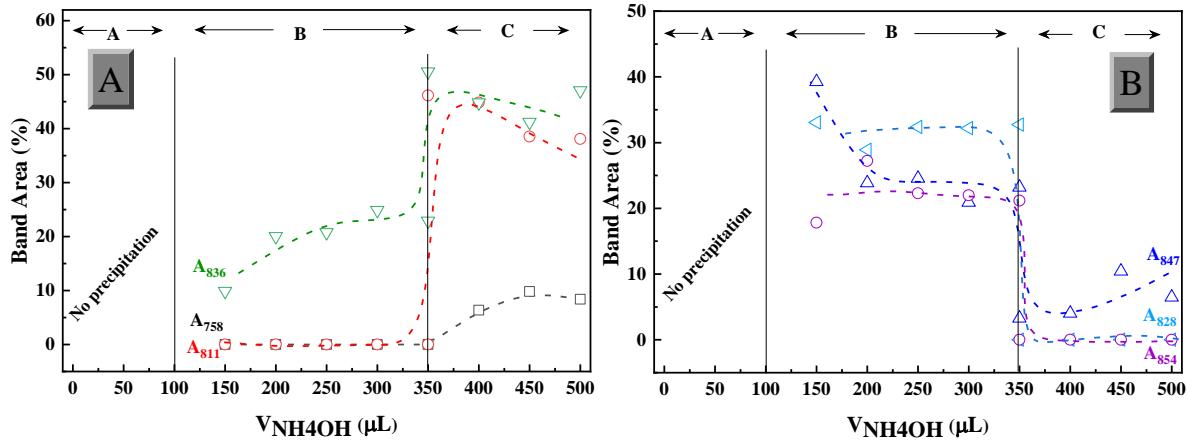


442

443

444
445

446 **Figure 12.** Raman profile analysis of the ADU precipitated by adding different amount
447 of NH₄OH.


448 **Table 2.** U-O distances for the found $\nu_s(\text{UO}_2^{2+})$, obtained by using the Bartlett and
449 Cooney relation [45].

$\nu_s(\text{UO}_2^{2+}) \text{ (cm}^{-1}\text{) / U-O bond length (\AA)}$						
ADU_B	--	--	824/1.7867	836/1.7750	847/1.7646	855/1.7572
ADU_C	758/1.8560	811/1.7996				--

450

451 Figure 13 shows the variation of each band area as a function of the NH₄OH added and
452 we have also included the region A, B and C from Figure 7.B. Figure 13.A shows an
453 increase of Raman peak area of bands centered at 758, 811 and 836 cm⁻¹ vs the volume
454 of NH₄OH added, which are higher in region C; whereas in Figure 13.B it is plotted the
455 area of the bands centered at ~828, 847 and 854 cm⁻¹, which decreases with the NH₄OH
456 added and are more abundant in region B. As can be seen, the comparison between areas
457 and regions obtained from the speciation diagram are in perfect agreement.

458 The precipitate ADU analysis by RS was compared with the extracted results from the
459 U(VI) speciation in the supernatant.

460

461 **Figure 13.** Results of the band profile analysis shown in Figure 12.

462

463 **4. DISCUSSION**

464 The described results can be interpreted in terms of the formation of hydroxo complexes
 465 $(\text{UO}_2)_x (\text{OH})_y^{(2x-y)+}$ with stoichiometry (x,y) . The behavior exhibited by the different
 466 Raman features previously analyzed leads to the following conclusions:

467 1) Two uranyl species have been identified, the free uranyl ion (1,0), UO_2^{2+} , and the
 468 (2,2) complex, $(\text{UO}_2)_2(\text{OH})_2^{2+}$.

469 2) The relative abundance of each ion and the amount of precipitate formed versus added
 470 volume of NH_4OH and/or the solution pH leads to three regions in the phase diagram:
 471 (A) At volume addition of $\text{NH}_4\text{OH} \leq 100 \mu\text{L}$ ($\text{pH} \leq 3.0$). The concentration of free ion
 472 decreases continuously, whereas $(\text{UO}_2)_2(\text{OH})_2^{2+}$ concentration increases up to a
 473 maximum; at this maximum the concentration of both species are similar and \sim
 474 0.11 M. ADU concentration is almost negligible in this region.

475 (B) From 100 to 300 μL of NH_4OH added ($3.0 < \text{pH} \leq 3.9$), both ion concentrations
 476 decrease and ADU concentration increases exponentially.

477 (C) At $>300 \mu\text{L}$ of NH_4OH added, ($\text{pH} > 3.9$), $[\text{UO}_2^{2+}]$ and $[(\text{UO}_2)_2(\text{OH})_2^{2+}]$ are very
478 low and the ADU concentration reaches a maximum and then keeps constant.

479 It is noteworthy that the behavior of the ADU concentration is very similar to the (3,5)
480 complex (obtained with the NaOH addition instead of NH_4OH addition). Therefore, we
481 have assigned in a first approximation this stoichiometry to the ion related to the ADU
482 precipitation process.

483 We have characterized the solid by SEM, XRD and RS. The XRD patters analysis
484 indicates that ADU obtained can be described by a combination of the compounds (II)
485 $3\text{UO}_3 \text{ NH}_3 5\text{H}_2\text{O}$ and (III) $2\text{UO}_3 \text{ NH}_3 3\text{H}_2\text{O}$, and as the pH is increased (more NH_4OH
486 added), the crystallinity of the solid is reduced and it has more ammonia content.
487 Regarding the Raman results, two different Raman spectra can be distinguished,
488 corresponding to the regions B and C respectively. These are referred to in this as ADU_B
489 and ADU_C , respectively. The detailed analysis of the Raman data illustrates that the main
490 Raman band $\nu_s(\text{UO}_2^{2+})$ shows an internal structure composed of 4 main contributions. In
491 ADU_B these bands are centered at *ca.* 824, 836, 847 and 855 cm^{-1} , and in the ADU_C they
492 are located at 758, 811, 836 and 847 cm^{-1} . The decrease in frequency in ADU_C has been
493 interpreted in terms of bonding strengths as the NH_4^+ content increase, *i.e.* the U-O bond
494 length are longer for ADU with higher ammonia content, in agreement with XRD results.

495 5. CONCLUSIONS

496 In this work, an approach by Raman spectroscopic technique is presented to track the
497 ADU precipitation reaction from uranyl nitrate solution by the addition of different
498 amounts of ammonium hydroxide. The supernatant solution and solids were analyzed
499 separately. Thus, jointly considering the results of the U(VI) speciation in the supernatant
500 and the characterization of the ADU precipitated, it turns out that:

501 (i) The named region A for $V_{\text{NH}_4\text{OH}} < 100 \mu\text{L}$, where the ion $(1,0) [\text{UO}_2^{2+}]$ is the
502 most abundant and no quantitative precipitation is found. This $(1,0)$ ion is
503 characterized with a symmetric stretching vibration $\nu_s(\text{UO}_2^{2+})$ band at *ca.* 870
504 cm^{-1} , and is the ion with shortest U-O bond length (the highest frequency),
505 consistent with decreased hydration of the uranyl ion. In the region A, as the
506 amount of NH_4OH increases, the $(1,0)$ ion transforms to the $(2,2)$
507 $[(\text{UO}_2)_2(\text{OH})_2^{2+}]$ ion, which has a U-O bond length higher ($\nu_s(\text{UO}_2^{2+}) \sim 853$
508 cm^{-1}), indicating increased hydration.

509 (ii) Region B indicates the beginning of quantitative precipitation. The
510 precipitation starts when the complex $(2,2)$ reaches its maximum
511 concentration, at a volume addition of $\text{NH}_4\text{OH} = 150 \mu\text{L}$, ($\text{pH} > 3$). This is the
512 point in which the hypothetical complex $(3,5) [\text{UO}_3(\text{OH})_5^{4+}]$ would be formed
513 (see Figure 7A). Therefore, one can hypothesize that the solid ADU_B
514 precipitated in this region are formed from the ions $(2,2)$ and $(3,5)$.

515 (iii) Region C, at $V_{\text{NH}_4\text{OH}} > 350 \mu\text{L}$ ($\text{pH} > 6.36$), the main solid analyzed could be
516 formed from the $(3,5)$ ion as the complexes concentration in the supernatant
517 is almost negligible.

518 The comparison of the U-O bond length within the uranyl ions in the aqueous phase and
519 the solid precipitates are in agreement with the previously exposed arguments. So, the U-
520 O distance in the ADU_B solid is shorter than in the ADU_C , as was the case of the uranyl
521 ion that is shorter for the $(2,2)$ ion than for the $(3,5)$.

522 Another valuable conclusion from this study is the major challenge for using the Raman
523 spectroscopic technique as an alternative online technique, which can provide important
524 information for the industrial UO_2 production when it is used for in-situ tracking the ADU
525 precipitation reaction. This information about the quantitative and speciation of uranyl

526 ion can be used to control the normal and safe performance during the operation of these
527 processes, which is one of the paramount issues for the manufacturing industry in nuclear
528 power. Traditionally, this control is carried out by sampling the streams for the *ex-situ*
529 analysis with different analytical techniques. These off-line techniques are destructive
530 and incur significant costs and long test times. Therefore, we propose the use of *online*
531 Raman spectroscopic technique for monitoring these species, mitigating the time-
532 consuming of those protocols and the additional risk of operation with such a radioactive
533 and hazardous material.

534 **ACKNOWLEDGMENTS**

535 This work was supported by AEI project MDM-546 2017- 0737 Unidad de Excelencia
536 “María de Maeztu” and PGC2018-094814-B-C21 (Ministerio de Ciencia e Innovación).
537 The authors also want to thank to Luis Gutiérrez and Sofía Durán for their help in the
538 samples analysis by XRD and ICP-MS.

539

540

541

542

543 **6. REFERENCES**

544 [1] A. Blum, The manufacture of uranium dioxide fuel in pellet form, Israel, 1975, p. 13.

545 [2] C. Ganguly, U. Basak, Fabrication of high density UO₂ fuel pellets involving sol-gel

546 microsphere pelletisation and low temperature sintering, Journal of Nuclear Materials

547 178(2) (1991) 179-183.

548 [3] IAEA, Experiences and Trends of Manufacturing Technology of Advanced Nuclear

549 Fuels, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2012.

550 [4] A. Oliver, Refining/conversion and further processing of uranium concentrate. Short

551 Course., 3rd International Conference On Uranium. 40th Annual Hydrometallurgy

552 Meeting, Saskatoon, Saskatchewan, Canada, 2010.

553 [5] H. Roepenack, V.W. Schneider, W.G. Druckenbrodt, Experience with the AUPuC-

554 conversion process for mixed oxide fuel fabrication, Journal of the American Ceramic

555 Society Bulletin 63 (1984) 1051-1053.

556 [6] M. Peehs, T. Walter, S. Walter, M. Zemek, Uranium, Uranium Alloys, and Uranium

557 Compounds, 2007.

558 [7] R.E. Lerch, R.E. Norman, Nuclear Fuel Conversion and Fabrication Chemistry,

559 Radiochimica Acta 36(1-2) (1984) 75.

560 [8] P.V.S.N. Prudhvi Raju, D. Mandal, Study on the effect of free acidity and entrained

561 TBP in UNPS on the quality of ADU powder, Journal of Nuclear Materials 464 (2015)

562 346-355.

563 [9] S. Manna, R. Kumar, S.K. Satpati, S.B. Roy, J.B. Joshi, Study of the changes in

564 composition of ammonium diuranate with progress of precipitation, and study of the

565 properties of ammonium diuranate and its subsequent products produced from both

566 uranyl nitrate and uranyl fluoride solutions, Nuclear Engineering and Technology 49(3)

567 (2017) 541-548.

568 [10] W.I. Stuart, T.L. Whateley, Composition and structure of ammonium uranates,
569 Journal of Inorganic and Nuclear Chemistry 31(6) (1969) 1639-1647.

570 [11] R. Eloirdi, D. Ho Mer Lin, K. Mayer, R. Caciuffo, T. Fanghänel, Investigation of
571 ammonium diuranate calcination with high-temperature X-ray diffraction, Journal of
572 Materials Science 49(24) (2014) 8436-8443.

573 [12] H. Doi, T. Ito, Significance of physical state of starting precipitate in growth of
574 uranium dioxide particles, Journal of Nuclear Materials 11(1) (1964) 94-106.

575 [13] J. Janov, P.G. Aijfredson, V.K. Vilkaitis, The influence of precipitation conditions
576 on the properties of ammonium diuranate and uranium dioxide powders, Journal Of
577 Nuclear Materials 44 (1972) 161-174.

578 [14] J.L. Woolfrey, The preparation of UO₂ powder: Effect of ammonium uranate
579 properties, Journal of Nuclear Materials 74(1) (1978) 123-131.

580 [15] B. Narasimha Murty, P. Balakrishna, R.B. Yadav, C. Ganguly, Influence of
581 temperature of precipitation on agglomeration and other powder characteristics of
582 ammonium diuranate, Powder Technology 115(2) (2001) 167-183.

583 [16] S. Manna, S.B. Roy, J.B. Joshi, Study of crystallization and morphology of
584 ammonium diuranate and uranium oxide, Journal of Nuclear Materials 424(1) (2012) 94-
585 100.

586 [17] S. Paik, S. Biswas, S. Bhattacharya, S.B. Roy, Effect of ammonium nitrate on
587 precipitation of Ammonium Di-Uranate (ADU) and its characteristics, Journal of Nuclear
588 Materials 440(1) (2013) 34-38.

589 [18] B. Tomažić, M. Samaržija, M. Branica, Precipitation and hydrolysis of uranium (VI)
590 in aqueous solutions-VI: Investigation on the precipitation of ammonium uranates,
591 Journal of Inorganic and Nuclear Chemistry 31(6) (1969) 1771-IN2.

592 [19] K. Müller, V. Brendler, H. Foerstendorf, Aqueous Uranium(VI) Hydrolysis Species
593 Characterized by Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy,
594 Inorganic Chemistry 47(21) (2008) 10127-10134.

595 [20] L.M. Toth, G.M. Begun, Raman spectra of uranyl ion and its hydrolysis products in
596 aqueous nitric acid, The Journal of Physical Chemistry 85(5) (1981) 547-549.

597 [21] M.H. Brooker, C.B. Huang, J. Sylwestrowicz, Raman spectroscopic studies of
598 aqueous uranyl nitrate and perchlorate systems, Journal of Inorganic and Nuclear
599 Chemistry 42(10) (1980) 1431-1440.

600 [22] L. Maya, G.M. Begun, A Raman spectroscopy study of hydroxo and carbonato
601 species of the uranyl (VI) ion, Journal of Inorganic and Nuclear Chemistry 43(11) (1981)
602 2827-2832.

603 [23] C. Nguyen Trung, G.M. Begun, D.A. Palmer, Aqueous uranium complexes. 2.
604 Raman spectroscopic study of the complex formation of the dioxouranium(VI) ion with
605 a variety of inorganic and organic ligands, Inorganic Chemistry 31(25) (1992) 5280-5287.

606 [24] M. Dargent, J. Dubessy, L. Truche, E.F. Bazarkina, C. Nguyen-Trung, P. Robert,
607 Experimental study of uranyl(VI) chloride complex formation in acidic LiCl aqueous
608 solutions under hydrothermal conditions ($T = 21\text{ }^{\circ}\text{C}$ – $350\text{ }^{\circ}\text{C}$, Psat) using Raman
609 spectroscopy, European Journal of Mineralogy 25(5) (2013) 765-775.

610 [25] F. Quilès, A. Burneau, Infrared and Raman spectra of uranyl(VI) oxo-hydroxo
611 complexes in acid aqueous solutions: a chemometric study, Vibrational Spectroscopy
612 23(2) (2000) 231-241.

613 [26] G. Lu, T.Z. Forbes, A.J. Haes, Evaluating Best Practices in Raman Spectral Analysis
614 for Uranium Speciation and Relative Abundance in Aqueous Solutions, Analytical
615 Chemistry 88(1) (2016) 773-780.

616 [27] L.J. Bonales, I. Sánchez-García, Quantitative Raman Spectroscopy (QRS) for
617 Nuclear Fuel Reprocessing Applications, LAP LAMBERT Academic Publishing 2020.

618 [28] P.J. Larkin, Chapter 3 - Instrumentation and Sampling Methods, in: P.J. Larkin (Ed.),
619 Infrared and Raman Spectroscopy (Second Edition), Elsevier2018, pp. 29-61.

620 [29] B. Wopenka, J.D. Pasteris, Raman intensities and detection limits of geochemically
621 relevant gas mixtures for a laser Raman microprobe, Analytical Chemistry 59(17) (1987)
622 2165-2170.

623 [30] G.E. Walrafen, M.S. Hokmabadi, W.H. Yang, Raman isosbestic points from liquid
624 water, The Journal of Chemical Physics 85(12) (1986) 6964-6969.

625 [31] G.E. Walrafen, Raman Spectral Studies of Water Structure, The Journal of Chemical
626 Physics 40(11) (1964) 3249-3256.

627 [32] M. Xu, J.P. Larentzos, M. Roshdy, L.J. Criscenti, H.C. Allen, Aqueous divalent
628 metal–nitrate interactions: hydration versus ion pairing, Physical Chemistry Chemical
629 Physics 10(32) (2008) 4793-4801.

630 [33] M.R. Waterland, D. Stockwell, A.M. Kelley, Symmetry breaking effects in NO_3^- :
631 Raman spectra of nitrate salts and ab initio resonance Raman spectra of nitrate–water
632 complexes, The Journal of Chemical Physics 114(14) (2001) 6249-6258.

633 [34] N.J. Mendoza, L.J. Bonales, V.G. Baonza, M. Cáceres, Local hydration pressures in
634 methanol aqueous solution: a Raman spectroscopy analysis, The journal of physical
635 chemistry. B 118(33) (2014) 9919-25.

636 [35] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Third Edition, Pearson, New
637 York, 2001.

638 [36] P.C. Debets, B.O. Loopstra, On the uranates of ammonium—II: X-ray investigation
639 of the compounds in the system $\text{NH}_3 \square \text{UO}_3 \square \text{H}_2\text{O}$, Journal of Inorganic and Nuclear
640 Chemistry 25(8) (1963) 945-953.

641 [37] E.H.P. Cordfunke, Composition and structure of ammonium uranates, Journal of
642 Inorganic and Nuclear Chemistry 32(9) (1970) 3129-3131.

643 [38] G. Lu, A.J. Haes, T.Z. Forbes, Detection and identification of solids, surfaces, and
644 solutions of uranium using vibrational spectroscopy, Coordination chemistry reviews 374
645 (2018) 314-344.

646 [39] L.J. Bonales, C. Menor-Salván, J. Cobos, Study of the alteration products of a natural
647 uraninite by Raman spectroscopy, Journal of Nuclear Materials 462 (2015) 296-303.

648 [40] F. Pointurier, O. Marie, Identification of the chemical forms of uranium compounds
649 in micrometer-size particles by means of micro-Raman spectrometry and scanning
650 electron microscope, Spectrochimica Acta Part B: Atomic Spectroscopy 65(9) (2010)
651 797-804.

652 [41] A. Berlizov, D.M.L. Ho, A. Nicholl, T. Fanghänel, K. Mayer, Assessing hand-held
653 Raman spectrometer FirstDefender RM for nuclear safeguards applications, Journal of
654 Radioanalytical and Nuclear Chemistry 307(1) (2016) 285-295.

655 [42] D.H.M. Lin, D. Manara, Z. Varga, A. Berlizov, T. Fanghänel, K. Mayer,
656 Applicability of Raman spectroscopy as a tool in nuclear forensics for analysis of uranium
657 ore concentrates, Radiochimica Acta 101(12) (2013) 779.

658 [43] D. Ho Mer Lin, D. Manara, P. Lindqvist-Reis, T. Fanghänel, K. Mayer, The use of
659 different dispersive Raman spectrometers for the analysis of uranium compounds,
660 Vibrational Spectroscopy 73 (2014) 102-110.

661 [44] D.M.L. Ho, A.E. Jones, J.Y. Goulermas, P. Turner, Z. Varga, L. Fongaro, T.
662 Fanghänel, K. Mayer, Raman spectroscopy of uranium compounds and the use of
663 multivariate analysis for visualization and classification, Forensic Science International
664 251 (2015) 61-68.

665 [45] J.R. Bartlett, R.P. Cooney, On the determination of uranium-oxygen bond lengths in
666 dioxouranium(VI) compounds by Raman spectroscopy, Journal of Molecular Structure
667 193 (1989) 295-300.