

1 Volumetric Receivers in Solar Thermal Power Plants with Central Receiver
2 System technology: A review

3 Antonio L. Ávila-Marín

4 CIEMAT, Departamento de Energía, Avda. Complutense 22, E-28040, Madrid, Spain.

5 Email: antonio.avila@ciemat.es

6 1. Abstract

7 Deployment of the first generation of grid-connected plants for electricity production,
8 based on Solar Thermal Power Plants with Central Receiver System technology using
9 large heliostat fields and a solar receiver placed on the top of a tower, is currently being
10 boosted by the first commercial plants in Spain, PS10, PS20, and Gemasolar.

11 Therefore one of the main goals of solar technology research is the study of existing
12 receivers and development of new designs to minimize heat losses.

13 In this context, volumetric receivers appear to be the best alternative to tube receivers,
14 mainly due to their functionality and geometric configuration. They consist of a porous
15 material that absorbs concentrated radiation inside the volume of a structure and
16 transfers the absorbed heat to a fluid passing through the structure. Solar radiation is
17 first converted into thermal energy or chemical potential, and then at a later stage, into
18 electricity.

19 This volumetric receiver technology has been under development since the early 1990's
20 in various research and development projects. This paper is a chronological review of
21 the volumetric receivers of most interest for electricity production, identifying their
22 different configurations, materials and real and expected results, and pointing out their
23 main advantages and conclusions based on the multitude of international and national
24 projects reports and references.

25 This study also deals with other important issues surrounding the volumetric receiver,
26 such as the basic plant configuration, flow stability phenomenon and the main problems
27 of a windowed design for pressurized receivers.

28 **Keywords:** Absorber; ceramic materials; metallic materials; state of the art; volumetric
29 receivers; central receiver system.

30
31 Nomenclature

32 p pressure

33 x coordinate in the flow direction

34 μ dynamical viscosity

35 K_1 viscous permeability coefficient

36 K_2 inertial permeability coefficient

37 ρ density of the fluid

38 v velocity of the fluid

39 β correction factor

40 σ Stefan Boltzmann constant ($5.67 \cdot 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$)

41 T_0 inlet temperature

42 Subscript

43 th thermal

44 e electrical

45 crit critical

47 2. Introduction

48 The increasing problems of CO₂ emissions and energy security concerns have
 49 strengthened interest in alternative, nonpetroleum-based sources of energy. Solar
 50 Thermal Power Plants (STPP) with optical concentration technologies are important
 51 candidates for becoming a major clean, renewable energy resource in the medium-term.
 52 Although solar radiation is a high-quality energy resource due to the high temperature
 53 and exergy of its source, the low flux density at the Earth's surface makes it unable to
 54 extract work or heat a Heat Transfer Fluid (HTF) to temperatures adequate for industrial
 55 applications (Sizmann 1991). Hence, the use of STPP unequivocally requires optical
 56 concentration. In the framework of Central Receiver Systems (CRS), incident solar
 57 radiation (rays) is redirected by large two-axis tracking mirrored collectors called
 58 heliostats, in order to concentrate sunlight at a focal point on the absorber surface at the
 59 top of a tower where the energy is transferred to the HTF by radiative/convective
 60 mechanisms. Reflective solar concentrators are usually used to attain the temperatures
 61 required to operate thermodynamic cycles (Mancini et al. 1997).

62 Solar radiation is converted into thermal energy or chemical potential in the receiver,
 63 and at a later stage, into electricity the same way as in conventional fossil fuel plants.
 64 CRS can operate in hybrid configurations with convectional power plants or alone,
 65 generating electricity with high annual capacity factors by using thermal energy storage.
 66 With storage, CRS plants can operate for over 4500 hours per year at nominal power
 67 (Kolb 1998). The main characteristics of CRS plants are summarized in Table 1.

Table 1. Characteristics of Solar Thermal Power Plants with Central Receiver System technology, adapted from (Romero et al. 2002)

Typical Size	10 – 200 MW*
Operating Temperatures	
- Rankine	~ 600 °C
- Brayton	~1000 °C
Annual Capacity Factor	20-77%*
Peak Efficiency	23%*
Annual Net Efficiency	12-20*
Commercial Status	PS10 (11 MW) PS20 (20 MW) Gemasolar (17 MW)
Technology Development Risk	Medium
Storage available	Pressurized water thermal tanks for saturated steam receivers Nitrate salt for molten salt receivers Ceramic bed for air receiver
Hybrid designs	Yes
Investment cost	
- €·W ⁻¹	3.83-2.16*
- €·W ⁻¹ **	2.09-0.78*
€·W ⁻¹ cost per Watt installed	
* Values indicate changes over the 2000-2030 time frame	
** €·W ⁻¹ removes the effect of energy storage or solar multiple.	

68 Although most of the new solar thermal power plants built in Spain use parabolic-
 69 trough collector technology, higher plant efficiencies and lower electricity production

70 costs still require innovations allowing operation at higher temperatures and higher solar
71 fluxes, as CRS already does.

72 2.1. Receiver Development

73 The technical feasibility of CRS has been considered sufficiently mature since the
74 demonstration plants built mostly during the 80s (DeMeo and Galdo 1997; Falcone
75 1986; Grasse et al. 1991; Mancini et al. 1997), and the wide variety of receivers tested
76 to date. Moreover, several HTFs such as liquid sodium, saturated or super-heated steam,
77 nitrate molten salts and air, have been tested in those plants. The majority of these tests
78 were carried out by European projects at Plataforma Solar de Almeria in Spain (Grasse
79 et al. 1991) and in the USA (Pacheco and Gilbert 1999).

80 In the USA, the technology was based mainly on solar-only operation with large storage
81 capacities using molten salts as the HTF. This was the case of Solar Two (Radosevich
82 and Skinrood 1989), which is the basis of the nearly completed Gemasolar commercial
83 demonstration plant (Fuentes de Andalucia, Spain). On the other hand, Europe and
84 Israel strongly focus on volumetric receivers with air technology operating in either
85 closed loop for efficient integration into gas turbine cycles, or open loop for
86 intermediate storage and/or hybrid solutions, both backed by such notable projects as
87 Phoebus-TSA, SOLAIR and DIAPR.

88 In today's context, receivers working with air as the HTF are again being considered an
89 option. Challenges not fully solved in the past, like absorber durability, receiver
90 efficiency and the specific cost, still remain to be solved. Nevertheless, the associated
91 advantages of the air receiver (such as availability of the fluid, no trace heating
92 necessary, non-toxic, 3-5 hours of thermal storage, etc) allow higher-efficiency
93 thermodynamic cycles, and the receiver thermal efficiency may be >75% due to the
94 volumetric effect which reduces thermal radiation losses.

95 At present, even though this technology has not yet been commercially developed, in
96 Jülich, Germany, a 1.5-MWe pre-commercial demonstration power tower plant with
97 ceramic volumetric receiver and thermal storage, has been in operation since 2009
98 (Hennecke et al. 2008). The continuous research and development in volumetric
99 receivers and the first complete power plant built in Jülich make this technology a
100 promising power tower alternative. This paper is therefore an overview of the progress
101 of this emerging energy-efficient technology.

102 3. Volumetric Receivers

103 The USA pioneered study of solar energy technologies (Becker and Böhmer 1987;
104 Sander_Associates_Inc. 1979), first with the development and use of tube receivers and
105 later, with Europe (Fricker 1983), searching for alternative receivers based on other
106 concepts, such as the volumetric receiver that were simpler, cheaper, more efficient and
107 had better thermal properties.

108 Research and development focused on new receivers for future plants with a smaller
109 aperture to minimize heat loss, allowing higher solar flux compared than technologies in
110 use at the time (tube receiver).

111 Volumetric receivers are more flexible than tube receivers due to their functionality and
112 three-dimensional configuration (volumetric) compared to the quasi-two-dimensional
113 tube.

114 3.1. Operating principles

115 The basics principles of a volumetric receiver are:

- A multitude of porous interlocking shapes, knit-wire packs, foam, or foil arrangements, made of metal, ceramic or other adequate materials with a specific porosity are installed in a volume inside the receiver so the solar concentrated radiation is absorbed in the depth of the structure.
- The concentrated solar radiation heats the material in the volume. At the same time, the working fluid passes through the volume and is heated up by forced convection, transforming the solar radiation into thermal energy. Fig. 1 compares absorption in tubular and volumetric receivers.
- Heat is transferred to the working fluid on the surface which is heated up by the incoming radiation.
- Finally, the volumetric effect causes the temperature on the irradiated side of the absorber to be lower than the outlet temperature.

3.2. Absorber Materials

The highly porous structure of volumetric receivers may be metal or ceramic. Since ceramics are the most appropriate materials for achieving the highest air temperatures, this is the most suitable option when temperatures above 800°C are necessary. Volumetric receivers are capable of producing high outlet air temperatures:

- With metals, a minimum of 800°C and maximum of 1000°C are achievable
- 1200°C are achievable with SiSiC ceramics and 1500°C with SiC
- Other ceramics with higher temperature ranges, such as alumina ceramics, with a melting point of around 2000°C, may also be used. Their main disadvantage is that they are white, but they can be doped or coated to increase their absorptivity, retaining their good mechanical properties.

Fig. 2 shows the temperature ranges of various metal and ceramic absorber materials. Note that even metal absorbers can produce outlet air temperatures of up to 1000°C. The upper temperature limit for SiSiC is given by silicon which melts at around 1400°C. SiC can reach temperatures of 1400°C, but is limited to about 1700°C.

3.3. Flow Stability

In the flow through a porous sample, the mass flow density is determined by the pressure difference between the two sides of the sample. The pressure drop is produced by a blower. Instability occurs when a pressure drop causes different mass flow densities, and can therefore be related to different outlet temperatures.

The poor performance of some receivers is cause for concern. The prediction of outlet air temperatures of over 1000°C for a variety of absorbers has not been completely fulfilled. (Kribus et al. 1996) predict unstable gas flow through volumetric receivers leading to local overheating and thus poor performance and local failures, such as melting or cracking.

The pressure drop across the structure is described by the Forchheimer extension to Darcy's law:

$$-\frac{dp}{dx} = \frac{\mu}{K_1} \cdot \nu + \frac{\rho}{K_2} \cdot \nu^2 \quad (1)$$

Where p denotes pressure, x the coordinate in the direction of the flow, K_1 the viscous permeability coefficient, K_2 the inertial permeability coefficient, μ dynamical viscosity, ρ fluid density and ν fluid velocity. Coefficients K_1 and K_2 are characteristics of the absorber geometry (Pitz-Paal et al. 1996).

In general, an increase in the air outlet temperature can be achieved at a given flux level by reducing the mass flow, which is generally linked to a lower pressure loss. If the

flow is unstable, a lower mass flow rate can be linked to a higher pressure loss. This is what happens when there is a linear relationship in the structure between the pressure drop and velocity (Kribus et al. 1996), that is $K_2 = \infty$, where the equation (1) becomes simpler and the graph of the quadratic pressure difference versus the temperature shows what happens with instability. In Fig. 3 constant pressure drop lines intersect the curves with high flux at three points. Therefore, some parts of the absorber may have low mass flow through them and other parts high mass flow, which can generate small sections of local overheating, since the temperature may be beyond the melting point of the absorber material. A slight perturbation, like a local variation in wind pressure or of incident radiation, might be sufficient to switch from one point to other point and vice versa.

Fig. 3 shows the quadratic pressure drop for different solar fluxes and a material with a purely linear pressure drop characteristic ($K_2 = \infty$). It may be seen that there is only instability above a certain solar flux. The critical flux above which instabilities can occur is described in (Becker et al. 2006) and can be calculated with the following equation:

$$I_{0,crit} = 1694 \cdot \beta \cdot \sigma \cdot T_0^4 \quad (2)$$

Fig. 4 shows the quadratic pressure drop difference for several K_2 at constant solar flux. A change in the characteristics of the absorber (K_1 and K_2) has an important influence on the curves. The lower K_2 is, the less likely instabilities are.

Therefore instability is found only in highly porous honeycomb structures (Pitz-Paal et al. 1996), while in other absorber types (wire mesh, ceramic low-porosity foam honeycomb) the pressure loss characteristic is dominated by a quadratic coefficient, so their behaviour is stable.

3.4. Basic Power Cycle Principles

There are two basic power plant principles in volumetric receiver applications:

- Open loop receiver system with a Rankine cycle; where the atmospheric air is heated up through a metal or ceramic volumetric receiver and then used to produce steam in a heat recovery steam generator with separate superheater, reheat, evaporator and economizer sections, for the Phoebus-TSA scheme, feeding a Rankine turbine-generator system (Romero et al. 2002). The design of an open loop receiver system may include an air return system that would improve receiver efficiency by using the cold air flow leaving the steam generator for two purposes, to cool the receiver support structure and to reuse the enthalpy of the return air. The process flow diagram is summarized in Fig. 5.
- Closed loop receiver system with Brayton cycle; where the introduction of solar energy, with pressurized volumetric receivers, into the gas turbine of Combined Cycle systems (CC) offers significant advantages over other solar hybrid power plant concepts. A very promising system that would fully exploit the potential of the solar/CC combination is solar preheating of the compressor outlet air before it enters the combustor of the gas turbine (Kribus et al. 1998). The solar air preheating system is depicted in Fig. 6.

Solar air preheating offers better performance, as the solar energy absorbed in the air is converted directly with the high efficiency of the CC plant. For a certain annual solar share, this leads to a reduced heliostat field size and lower investment in the solar part compared to solar steam generation. Moreover, this concept could be applied to a wide power range (1-100MW_e). At lower powers, highly efficient recuperated gas turbine cycles can be used instead of CC. The solar share can be chosen quite flexibly by the receiver outlet temperature, which could be higher than

211 with other hybrid concepts (e.g. solar combined cycle system with parabolic
212 troughs) (Buck et al. 1998; Romero et al. 2002).

213 4. Classification of volumetric absorbers

214 As mentioned above, volumetric absorbers are the most promising, with a simpler
215 design and on the verge of commercial receiver development.

216 Due to the great number of absorbers proposed for thermal applications, some reports
217 and papers have made attempts at their classification by geometry, material, application
218 type, prototype power, etc.

219 This paper, rather than using any previous classification, proposes a new one, based on
220 the combination of two important factors, pressurization and material, resulting in four
221 subgroups with a representative receiver defining each type:

- 222 □ Phoebus-TSA type: open loop volumetric receiver with metallic absorber
- 223 □ SOLAIR type: open loop volumetric receiver with ceramic absorber
- 224 □ REFOS type: closed loop volumetric receiver with metallic absorber
- 225 □ DIAPR type: closed loop volumetric receiver with ceramic absorber

226 4.1. Open loop volumetric receiver with metallic absorber (Phoebus-TSA type)

227 Under the initiative of H.Fricker (Fricker 1983), the metal absorber volumetric receiver
228 technology development emerged. The main metal absorber designs are briefly
229 described below. For further details see Table 2.

230 4.1.1. Mk-I

231 A promising concept was presented in Europe in 1983 (Fricker 1983) consisting of a
232 mesh of thin wires, over which cooling atmospheric air is drawn. In order to test this
233 concept, a prototype with a 62-mm outer diameter which delivered a power of 3 kW_{th} at
234 an average flux density of 1 MW/m² was constructed in the Swiss Alps in 1985. It was
235 tested in a parabolic 2.7-m dish and produced hot air at up to 842°C (Fricker 1986)
236 without damaging either the absorber or the structure. Thermal efficiencies around 70 to
237 90% were estimated. Having met the goals set for this receiver, its simple design, low
238 cost and easy operation, ensured further development of this idea some years later with
239 Sulzer 1.

240 4.1.2. Sulzer 1

241 This was the next generation of the Mk-I, hence its name, Mk-II (Winkler et al. 1989).
242 Its main purposes were to demonstrate the capability and feasibility of the wire pack
243 concept, determine receiver efficiency, to study its dynamic performance and to acquire
244 operating experience (Becker and Böhmer 1987).

245 The 875-mm inner diameter receiver, designed for a 200-kW_{th} output power, had a wire
246 absorber consisting of a ring-shaped 1.65-mm wire mesh made of 0.40-mm diameter
247 stainless steel (oxidized AISI 310) wires. A metal sheet with predetermined perforations
248 behind the absorber ensured the correct air mass flow corresponding to the local flux
249 intensity.

250 The receiver was demonstrated at the Plataforma Solar de Almeria (PSA), achieving air
251 outlet temperatures of 780°C, outlet power of 200 kW_{th} with a quick, predictable
252 response to changing load conditions. The thermal efficiency at 550°C predicted by
253 Hotair code (Skocynec et al. 1989) was 80%, but was measured at only 68% (Becker
254 and Sánchez 1989).

255 The main disadvantage was the geometric design of the absorber which caused
256 distortion in the structure, making it difficult to maintain the absorber geometry, and

257 producing insufficient cooling of some absorber areas, which resulted in lower than
258 expected efficiencies.

259 4.1.3. Sulzer 2

260 A second absorber, the Sulzer 2, tested at the PSA in spring of 1988, consisting of
261 coiled knit wire, was designed with the aim of improving the errors found in the
262 previous absorber. Tests demonstrated its simplicity of design and operation, and the
263 knit-wire absorber was more efficient than the Sulzer 1. Mean thermal efficiency at
264 550°C was 79%. The maximum flux in the absorber was 757 kW/m² at an air
265 temperature of 689°C (Becker and Sánchez 1989).

266 The main disadvantages were that the absorber was sensitive to hot spots, the
267 volumetric effect was not totally satisfied, and there was still insufficient support of the
268 absorber, producing the aforementioned distortion effect.

269 The main conclusions after testing the Sulzer 1 and Sulzer 2 were that they were able to
270 produce hot air at temperatures between 550-800°C, their easy operation, good
271 controllability and quick transient response. The receiver evaluation (Becker and
272 Sánchez 1989) concluded with the feasibility of extrapolating the Sulzer 2 receiver to
273 commercial sizes. This proposal led to the formation of the Phoebus consortium (Grasse
274 1988) and the subsequent development of a 2.5-MW_{th} prototype (Haeger et al. 1994)
275 and design studies for a 30 MW_e plant in Jordan (De Laquil et al. 1990).

276 4.1.4. Catrec 1

277 Interatom built a metal foil volumetric receiver based on Emitec's catalyst converters. It
278 was installed in Sulzer's test bed at the PSA and tested from November 1988 to March
279 1989.

280 The absorber which was made up of five modules, had a total diameter of 940 mm, and
281 was 90 mm deep. The channel openings in the metal honeycomb absorber structure
282 were approximately 1.6 mm² with a 0.05-mm wall thickness. The stainless steel
283 (X₅CrAl₂O₅+Ce) foil material has a high melting point at 1470°C (Meinecke and Unger
284 1989). The maximum output power could not go above 200 kW_{th}, due to limitations of
285 the Sulzer's test bed set up.

286 The main innovations in the Catrec design were that it had a small solid front area, high
287 surface-to-volume ratio, modularity and employed standard materials with low thermal
288 inertia.

289 The results showed an overall efficiency of about 80% for mean air outlet temperatures
290 up to 570°C (Becker and Böhmer 1990). The air outlet temperatures measured were not
291 as high as theoretically expected, because of different cold bypass possibilities in the
292 Catrec receiver arrangement. Measured absorber matrix material and air outlet
293 temperatures were up to 1070 and 826°C at 844 kW/m² maximum solar flux.

294 In spite of some deficiencies with the volumetric metal foil receiver, its promising
295 efficiency, high thermal load endurance and rather high air outlet temperatures
296 recommended further development. Some of the improvements proposed for Catrec 2
297 were to design a module with hexagonal absorber elements and to avoid gaps from
298 thermal deformation.

299 4.1.5. TSA

300 Since the Sulzer project tests were successful, the Phoebus-TSA (Technology Program
301 Solar Air Receiver) project was promoted as the indispensable intermediate step
302 towards the envisaged 115 MW_{th} capacity (Heinrich et al. 1992) of the Phoebus receiver
303 concept. It consisted of a 2.5 MW_{th} volumetric air receiver together with a thermal

304 storage and steam generator. The receiver design included an air return system to
305 improve receiver efficiency.

306 The absorber was made up of 280-mm diameter by 50-mm deep cups which were
307 hexagonal to avoid gaps between them (Fig. 7). As in the Sulzer 2, the absorber
308 consisted of coiled knit-wire knitted packs.

309 The main result of the tests carried out in 1993 was the ability to achieve the design
310 absorber efficiency of 85% at 700°C receiver air outlet temperature at an average flux
311 density of 0.3 MW/m² and an air return ratio of 60%. Moreover, the nominal receiver
312 power output of 2934 kW_{th} was recorded several times (Meinecke et al. 1994). A mean
313 absorber temperature of 750°C was reached in less than 30 minutes after start-up and
314 approximately 30 minutes later the receiver air outlet temperature stabilized at 700°C.

315 The main conclusions (Meinecke and Cordes 1994) from the tests were that it was able
316 to produce sufficient and constant, useful-quality steam (480-540°C and 35-150 bar),
317 system control was able to maintain air outlet temperatures constant, the modular design
318 would facilitate future plant scale-up, the ability to match the air flow distribution of the
319 absorber with the incident flux distribution and the flexibility of the process.

320 The experience of the Phoebus-TSA receiver with the aforementioned absorber was a
321 success, but unfortunately, the Jordan plant designed by the Phoebus consortium was
322 unable to acquire the necessary subsidies and funding and was never built (Romero et
323 al. 2002).

324 4.1.6. Bechtel 1

325 In 1993, the New Mexico State University designed and built an experimental 67-mm
326 diameter cylindrical receiver (Hellmuth et al. 1994) composed of a 54-mm-deep multi-
327 layered wire mesh absorber with 17 circular screens (Hellmuth and Matthews 1997).
328 The first nine screens had one layer each of 0.11-mm-diameter wire mesh, and the
329 remaining eight screens had four layers each of 0.21-mm-diameter wire mesh with a
330 3.2-mm separation between them. The wire mesh layers were made of knitted oxidized
331 nichrome (80 % Ni - 20 % Cr alloy) resistance wire.

332 The experimental receiver was tested under an average incident solar flux on the front
333 face of the absorber of 660 kW/m². This flux varied from approximately 890 kW/m² at
334 the centre to 400 kW/m² at the edge. Total power on the receiver aperture was typically
335 2.3 kW_{th} during testing. Air entering the experimental apparatus at approximately 25°C
336 was heated by a Pyrex globe from 100°C to 200°C before it entered the absorber.
337 Efficiency ranged from 80% to 69% at outlet air temperatures of 320°C to 820°C,
338 respectively.

339 After reasonable results in lab-scale tests, it was planned to scale up to a 250-kW_{th}
340 prototype to be tested at the PSA (Chavez et al. 1994).

341 4.1.7. Bechtel 2

342 Bechtel, with the assistance of Sandia National Laboratories, fabricated a 250-kW_{th}
343 receiver in 1993 (Hellmuth et al. 1994).

344 The volumetric array, consisting of a stack of 15 screens rings (875-mm diameter), was
345 contained in a 304 stainless steel housing. The first five screens contained one layer of
346 mesh made of 0.11-mm-diameter wire, the sixth and seventh screen rings contained two
347 layers of 0.11-mm-diameter wire mesh. The remaining screen rings, each contained four
348 layers of mesh made of 0.2-mm-diameter wire. All 41 receiver mesh layers, were made
349 of knitted nichrome (80% Ni - 20% Cr alloy).

350 Testing was begun in July 1993. The maximum mean outlet air temperature reached
351 was 563 °C, with a peak temperature of 656 °C in the centre. Absorber thermal

352 efficiencies ranged from 90% at 200°C to 66% at 563°C, in contrast to the expected
353 thermal efficiency of 90% at 700°C (Hellmuth 1995).

354 There are several reasons for these lower thermal efficiencies:

- 355 ▪ The temperature data from the individual rings showed an unbalanced air flow
356 resulting in significantly higher air temperatures in the centre ring than in the outer
357 rings.
- 358 ▪ The “hot spot” was observed to move with the wind in the wire pack showing
359 probable susceptibility to wind effects due to its high porosity.
- 360 ▪ Some white ceramic paint flaked off the inner walls, which caused the receiver
361 housing to heat up leading to additional thermal losses.

362 This idea was not developed any further, by Sandia, after these unexpected results.

363 4.1.8. Catrec 2

364 A second generation Catrec prototype was fabricated in 1993 and tested from May 1994
365 to May 1995 at the PSA. The following improvements were incorporated in Catrec 2
366 (Meinecke et al. 1996):

- 367 ▪ The absorber consisted of 7 identical 240-mm wide by 90-mm thick hexagonal
368 elements made of the same material as the Catrec 1.
- 369 ▪ Special care was taken during installation to avoid any gaps between the absorber
370 and the concentric adapter behind it.
- 371 ▪ A different pressure drop was achieved in the perforated sheet behind the absorber,
372 which allowed different mass flow rates at different locations in the receiver.

373 The main results of the tests were the maximum absorber temperature of 1069°C, and
374 maximum average outlet air temperature of 460°C, which was clearly below the
375 expected 700°C (Pitz-Paal 1996). During the attempt to reach higher air outlet
376 temperatures, a module was irredeemably burnt.

377 The main reason for its poor performance was that the air flow distribution through the
378 absorber was unstable (Kribus et al. 1996; Pitz-Paal et al. 1996). These effects of flow
379 instability were detected for the first time in Catrec 2. Furthermore, DLR recommended
380 major improvements in the flux measurement equipment after finding that it was in bad
381 condition.

382 4.1.9. Sirec

383 CIEMAT-PSA designed and tested a volumetric air receiver called SIREC in 2001. The
384 absorber's modularity followed the Bechtel receiver approach, with a stack of 15 screen
385 rings. Each screen ring contained one layer of 0.2-mm-diameter wire in a 0.72-mm
386 mesh. The separation between screens was of 10 mm to withstand thermal expansion.
387 Alloy 230 wire mesh was used because its content in rare earth elements provided good
388 properties.

389 The prototype diameter was 875 mm, and 190 mm deep, but due to the configuration of
390 the cool-air return system, the effective aperture diameter was reduced to 760 mm. The
391 same improvements made in the Catrec 2 for distribution of the mass flow rate were
392 applied to keep the incident solar flux uniform and achieve the same temperature all
393 over the receiver.

394 The main results reported were (Téllez et al. 2001):

- 395 ▪ The maximum outlet air temperature in the centre of the absorber was 973°C with a
396 gradient of around 500°C over the external parts.
- 397 ▪ The average air outlet temperature of 710°C was achieved with an average inlet
398 power of 300 kW_{th} and thermal efficiency of 48 %.
- 399 ▪ Efficiencies of 85% were achieved with an average outlet air temperature of 500 °C.

400 ▪ The mean air return ratio varied from 42 to 45 %.

401 The conclusions arrived at from testing were:

402 ▪ Difficult control of radial distribution of the air mass flow rate, resulting in high
403 thermal gradients in the absorber and problems for surpassing 600°C in the outer
404 ring or an average of 760°C in the receiver.

405 ▪ The reduction of the effective surface of the absorber (around 24%) due to poor
406 cooling system design, produced an unexpected cooling effect over the external
407 elements of the receiver.

408 4.2. Open loop volumetric receiver with ceramic absorber (SOLAIR type)

409 The interest in ceramic absorbers emerged from the limitation placed on the maximum
410 outlet air temperature achievable by metal absorbers, which in the TSA was 700°C.
411 Thermodynamically, the higher temperatures in the HTF, the higher overall power plant
412 performance is. Other arguments for the selection of this new concept were its greater
413 durability, mechanical tolerance, resistance to higher solar thermal fluxes and higher
414 thermal gradients and the possibility of reducing the receiver aperture and thus the
415 infrared losses. The main ceramic absorber designs are briefly presented below. For
416 further details see Table 2.

417 4.2.1. Sandia Foam

418 Some developments with a matrix solar receiver by Sanders Assoc. (Becker and
419 Böhmer 1987) were first tested at the USA Army Heat Furnace at White Sands, New
420 Mexico, next in the Jet Propulsion Laboratory in the California Institute of Technology
421 and finally the program was completed with a 250-kW_{th} prototype tested at the Georgia
422 Institute of Technology. This open cavity central receiver was operated with a 1100°C
423 outlet temperature using a silicon carbide honeycomb material (Sander_Associates_Inc.
424 1979).

425 After this step forward, an absorber using a porous ceramic material was designed by
426 the University of Colorado with the Hotair volumetric receiver code (Skocynec et al.
427 1988), and later built by Sandia (Chavez 1988) and tested on the test bed at the PSA.
428 The porous ceramic absorber was made up of 17 30-mm-thick pieces made of 92%
429 alumina with 80% porosity and 20 ppi (Chavez and Chaza 1991) and coated with
430 Pyromark 2500 flat black paint to increase their absorptivity.

431 The absorber was tested at flux peaks up to 824 kW/m² and mean flux of 410 kW/m².
432 The maximum average outlet air temperature was 730°C with 54% efficiency and
433 material temperature of 1350°C. With medium outlet air temperatures of 550 °C, the
434 absorber material temperature was up to 350°C higher than the outlet air temperature,
435 and the efficiency was only 65% (Becker et al. 1990), although the expected efficiency
436 at 550°C was 80-85%.

437 There are a few reasons for the lower than expected efficiencies: the optical density of
438 the material was too high, the Pyromark paint used was too thick blocking many pores
439 of the absorber, and finally, due to the insulation, the area of the absorber was reduced
440 by around 5%.

441 The results of this foam, similar to those of the Sulzer, were considered positive, taking
442 into account that it was a first attempt. Furthermore, in spite of the lower efficiencies,
443 there was no degradation of the ceramic absorber material.

444 4.2.2. CeramTec

445 An absorber designed by DLR and fabricated by Hoechst-CeramTec was tested at the
446 PSA (Böhmer and Chaza 1991) in 1989 and 1990. The receiver had a diameter of 950

447 mm and a depth of 100 mm. Interatom's (Freudenstein and Karnowsky 1987)
448 thermodynamic calculations resulted in channel and rod cross sections of 3 x 3 mm and
449 a foil thickness of 0.75 mm. Silicon-infiltrated silicon carbide (SiSiC) was selected as
450 the absorber material for its good thermal properties.

451 It was attempted to decrease the front reflective losses in this volumetric receiver by
452 reducing the surface of the absorber by means of a "staggered front design" which
453 implied that every second layer of the foil and every second rod was 10 mm shorter
454 (Böhmer and Meinecke 1991).

455 The receiver produced air at 500°C with an efficiency of 89% and an power output of
456 234 kW_{th} (Becker et al. 1991). The maximum air temperature was 782°C with an
457 efficiency of 59% and a material temperature of 1320°C measured in the centre of the
458 absorber, which delivered a total output power of 330 kW_{th}. During the tests, two larger
459 pieces of the absorber broke off due to a combination of mechanical and thermal
460 stresses. Nevertheless, this failure did not influence the performance of the absorber,
461 which is one of the advantages of volumetric receivers. The receiver did not achieve
462 mean outlet air temperatures over 800°C because of test bed limitations.

463 4.2.3. Conphoebus-Naples

464 Hoechst-CeramTec built a SiSiC absorber based on multicavity geometry. The complete
465 absorber was made of nine pieces assembled by groove-and-tongue joints. The 150-
466 mm-thick channels had a 9 x 4.8 mm cross section. The vertical walls were 5 mm thick,
467 and the horizontal ones were 1.6 mm thick. The front face was shortened 10 mm in an
468 alternating pattern to reduce radiative losses and increase the convective heat coefficient
469 at the aperture (Reale et al. 1991).

470 The prototype tested provided a maximum average outlet air temperature of 788°C with
471 an associated 60% efficiency for a maximum incident solar flux of 917 kW/m²
472 (Carotenuto et al. 1993). For medium air outlet temperatures of 550°C, thermal
473 efficiency reached 70%.

474 After 30 days under operation there was no evidence of any structural damage. There
475 was fair agreement between calculated and measured results, which proved the good
476 performance of the physical model (Carotenuto et al. 1991).

477 4.2.4. Selective Receiver

478 In 1992, HOECHST-CeramTec fabricated an absorber made of SiSiC (40 % porosity)
479 for DLR, which consisted of square ducts with a 3-mm cross section and 3 and 0.8-mm-
480 thick vertical and horizontal walls respectively (Becker et al. 1990). This material was
481 used for its reliable behaviour in previous tests (Böhmer and Chaza 1991). Due to
482 production constraints, the thickness of the vertical walls could not be reduced, so a 30°
483 ridge profile was used to minimize reflection losses (Pitz-Paal et al. 1991b).

484 The ceramic structure was covered by a quartz glass structure (Fig. 8). This material is
485 highly transparent to solar radiation but partly absorbs the thermal radiation emitted by
486 the ceramic structure. Receiver emissive losses could thus be reduced. The idea of using
487 a ceramic receiver with a glass cover was first introduced by Flamant (Flamant et al.
488 1988; Menigault et al. 1991) who investigated a packed SiC pellets bed absorber
489 covered with a second slab of glass pellets. As the glass is more transparent to solar
490 radiation than to thermal radiation emitted by the absorber, emission losses should be
491 reduced. Moreover, the packed bed can be used only in a horizontal position, which
492 complicates its application in CRS. The selective idea was taken up by (Pitz-Paal et al.
493 1990) and adapted to CRS.

494 In order to quantify the improvement in efficiency, a physical model was developed
495 comparing results with and without the quartz glass at 1 MW/m² solar flux, 0.7 kg/s air
496 flow rate and ambient temperature (Pitz-Paal et al. 1991a). The results of the model
497 evaluated were an outlet air temperature of 997°C with 75% efficiency for the selective
498 receiver (glass + ceramic) and a temperature of 919°C with 68.5% efficiency for the
499 pure ceramic receiver (without glass).

500 The receiver was tested with and without the glass structure under similar conditions
501 showing that (Pitz-Paal and Fiebig 1992):

- 502 ▪ For temperatures below 600°C the receiver without the glass cover performed better.
503 This was explained by the additional reflection losses caused by glass turbidity from
504 manufacturing.
- 505 ▪ At higher outlet temperatures this effect was diminished by the expected reduction
506 of emission losses due to the quartz glass cover. 62% efficiency was achieved for an
507 average outlet air temperature of 620°C with the quartz glass cover, and there was
508 poor agreement between calculated and measured data as can be seen for the wide
509 difference in the results.

510 4.2.5. HiTRec I

511 The HiTRec I (High Temperature RECeiver) was born in 1995 during comparative
512 testing of different ceramic materials in the DLR solar furnace (Hoffschmidt et al.
513 2001).

514 A group of modular hexagonal ceramic cups formed the front of this receiver, and the
515 back was a stainless steel structure. The cups were free to move or expand because a
516 space in between them kept them from touching. The idea of separating the absorber
517 modules by a space, made it possible for the front to be fed by return air from the waste
518 heat recovery boiler on the one hand, and on the other hand, made module replacement
519 easy.

520 The receiver was composed of 37 modules with a 120-mm horizontal diameter and a
521 0.49 m² aperture. Each module consisted of a hexagonal absorber structure and a SiSiC
522 cup. The absorber honeycomb structure was made of recrystallized SiC with a normal
523 open porosity of 49.5%.

524 The tests were carried out without problem (Hoffschmidt et al. 1999) and the
525 experimental results showed good correspondence with the predicted design values. At
526 an outlet air temperature of 800 °C, the measured thermal efficiency was in the range of
527 75 to 80%, and 79% was predicted for 800°C by the theoretical model. The maximum
528 outlet air temperature of 980°C was reached with a thermal efficiency of 68%. The
529 temperature difference across all the absorber modules was less than 150°C with no hot
530 spots, and finally, the receiver demonstrated short start-up times and easy operability.

531 The main problem during the test was deformation of the stainless steel structure due to
532 an error in design of the air cooling system which, although it did not affect operability,
533 is not acceptable for a large receiver.

534 4.2.6. HiTRec II

535 Encouraged by the test results of the HiTRec I, in 1998, Ciemat, Inabensa and DLR,
536 started the development of the HiTRec II (Hoffschmidt et al. 2001). The goals of this
537 project were to solve the problems in the stainless steel structure and to demonstrate that
538 the failure was due to a design error.

539 The receiver was assembled from 32 140-mm-diagonal cups in hexagonal ceramic
540 modules (Fig. 9). Cup and the absorber materials were the same as HiTRec I with a total
541 aperture area of 0.41 m². The metal receiver structure was made of Incoloy 800, a steel-

542 nickel alloy especially recommended for high working temperatures and just right for
543 this design, because the expansion coefficients of Incoloy 800 and SiSiC materials are
544 quite similar.

545 With no damage to the structure after 38 days and 155 hours of tests, receiver evaluation
546 concluded that the main goal of the project, the demonstration of a more durable
547 stainless steel construction, had been achieved (Hoffschmidt et al. 2003b). Moreover,
548 thermal efficiency at a 700°C outlet air temperature was 76% while at 800°C, it was
549 72%. The measured air return ratio of up to 45% for receiver loads under 50% were
550 reasonable. Higher loads could not be achieved due to thermal restrictions of the
551 blower.

552 Several questions like types, sizes and shapes of the absorber structure, materials, etc.,
553 had not been fully investigated, so a follow-up, the SOLAIR project was begun.

554 4.2.7. SOLAIR 200

555 The goals of the SOLAIR 200 project were the design and testing of a modular, highly
556 efficient and durable open volumetric high-flux receiver, which could be easily and
557 safely operated at mean outlet air temperatures of up to 800 °C (Hoffschmidt et al.
558 2001). The project was carried out in two stages. In the first, an advanced 200-kW_{th}
559 receiver called the SOLAIR 200 with a 0.62-m² aperture was designed and tested. In the
560 second stage, several modules were assembled in a 3-MW_{th} receiver (Hoffschmidt et al.
561 2002).

562 The test campaign started in 2002, with a receiver with 36 131-mm square SiSiC cups
563 and three different absorber materials:

- 564 ▪ Configuration 1: 36 recrystallized SiC cups with 49.5% open porosity.
- 565 ▪ Configuration 2: 18 recrystallized SiC cups and 18 SiSiC cups installed in the top
566 half of the receiver.
- 567 ▪ Configuration 3: 2-mm thick porous fibre plates were placed in front of the eastern
568 half of the receiver. This configuration allowed four different configurations to be
569 tested: re-SiC and SiSiC; both with or without the porous fibres.

570 The 50-day test campaign showed that performance goals were accomplished, with
571 temperatures over 800°C achieved for the first two configurations on five test days.

572 At 800°C mean thermal efficiency was 74% for Configuration 2 and, 75% for
573 Configuration 1. Efficiency at 700°C was 81±6% for absorber Configuration 1 and 83
574 ±6% for Configuration 2. Thus it was concluded that Configuration 2 showed the best
575 performance for temperatures below 750°C (Téllez 2003), while Configuration 3 did not
576 achieve the expected mean outlet temperature of 800°C. The air return ratio during the
577 tests was assumed constant at 40%.

578 4.2.8. SOLAIR 3000

579 This receiver continued the same approach of the previous 200-kW_{th} receivers (HiTRec-
580 I, HiTRec-II and SOLAIR-200) and was an intermediate step in scaling up. The
581 SOLAIR 3000 consisted of a modular ceramic absorber, a supporting structure and an
582 air-return system (Fig. 10). One of the advantages of using ceramics was that even
583 though the absorber surface (2.6 x 2.2 m) was reduced by around 20% with respect to
584 the TSA receiver, it could still receive the same thermal power (Hoffschmidt et al.
585 2003a). It was designed to provide a 680 to 800°C average outlet air temperature and to
586 withstand temperatures of up to 1000°C. Testing at the PSA started in June 2003,
587 accumulating 115 test hours under concentrated radiation.

588 The receiver was a modular absorber assembled from 270 140-mm-wide square ceramic
589 cups made of SiSiC. The honeycomb structure was made of recrystallised SiC with an

590 open porosity of 49.5%. The measured solar power incident on the receiver aperture
591 achieved a maximum of 2950 kW_{th}.

592 The main conclusions observed after the testing were (Téllez et al. 2002):

- 593 ▪ At nominal conditions of about 750°C and mean solar fluxes in the range of 370 to
594 520 kW/m², efficiencies varied in the range of 70 to 75%.
- 595 ▪ The measured air return ratio varied between 49±4% and 52±4% for a wide range of
596 air mass flow and wind speed conditions.
- 597 ▪ Temperature differences over the absorber aperture, at nominal conditions, were up
598 to 450°C.
- 599 ▪ Over dynamic performance, the response time ranged between 10 to 14 minutes.

600 In June 2006, it was decided to build a central receiver plant with volumetric receiver
601 (SOLAIR 3000 technology) and thermal storage in Jülich, Germany. It consists of a
602 solar thermal power tower plant with 1.5-MW_e high-temperature air receiver. Receiver
603 operation was begun in early 2009, and the first solar electricity was delivered to the
604 grid in April 2009 (Koll et al. 2009). The aim of the project was to demonstrate this
605 technology in a complete pre-commercial power plant for the first time. The receiver is
606 four times larger than the SOLAIR 3000 tested at the PSA and has an aperture of about
607 23 m². The receiver consists of over 1000 ceramic absorber modules mounted at a tower
608 height of 55 m (Hennecke et al. 2008).

609 4.3. Closed loop volumetric receiver with ceramic & metallic absorber (DIAPR & 610 REFOS type)

611 Since only one pressurized metal absorber has been tested, both the closed-loop ceramic
612 and metal absorbers are reviewed in this section. For further details see Table 2.

613 Several studies (Kribus et al. 1998; Price et al. 1996) have shown the advantages of
614 introducing solar energy into a CC over other hybrid solar plants. Solar energy could be
615 an effective high-temperature heat source for driving a CC. Because of this, pressurized
616 volumetric receivers appear to be an alternative to fossil fuels (Kribus et al. 1999).
617 Closed cycles for gas turbines usually envision hybrid operation (fuel saver) rather than
618 a stand-alone solar plant that replaces fossil fuel completely. However, high-pressure
619 operation makes it necessary to equip the receiver with a transparent window. The
620 purpose of the window is to separate the receiver cavity from the ambient air and enable
621 high-pressure operation, minimizing reflection, reradiation and convection losses.

622 Many studies (Abele et al. 1996; Anikeev et al. 1992; Buck 1990; Buck et al. 1996;
623 Posnansky and Pylkkänen 1991; 1992; Pritzkow 1991) have demonstrated that the
624 window poses a difficult design problem because of the limitations in size and the
625 specific requirements in optical properties, mechanical strength, high variable working
626 temperature, stress-free installation and sealing and cooling capability (Karni et al.
627 1998a).

628 Therefore, a suitable window, able to withstand higher pressure and temperature over a
629 long period of operation constitutes the main goal of the directly irradiated volumetric
630 receiver.

631 Due to the importance of the window design concept, the following sections provide
632 additional information on the window designs available for each volumetric receiver
633 and, in some cases, the main difficulties found and solutions proposed.

634 Several projects, apart from the ones proposed here, attempt to find windows design
635 solutions, even with another possible application based on gas-phase solar chemistry
636 (Buck et al. 1994; Buck et al. 1992; Buck et al. 1991; Flamant and Olalde 1983).

637 4.3.1. PLVCR - 5

638 In 1989, DLR designed a Pressure Loaded Volumetric Ceramic Receiver (PLVCR) with
639 a foam absorber and 5 kW_{th} power (Pritzkow 1989), which was later tested at the Sandia
640 solar furnace. The system worked as follows: compressed air was blown into the
641 pressure vessel ring channel. Once the air was spread over the window, it was blown
642 through the Si₃N₄ (SIRCON) ceramic foam absorber coated with Pyromark. The
643 window was a 100-mm diameter and 3-mm thick domed watch-glass type quartz glass
644 window with a water-cooled frame. The domed window has two advantages compared
645 to a flat window: reflection losses can be reduced considerably (Heller 1991), and it is
646 better suited to withstand the pressure inside the receiver (Buck et al. 1992).

647 The first tests showed that the watch-glass window was not able to withstand the 10-bar
648 design pressure. Scratches and bad grinding reduced the maximum loading capacity,
649 especially near the frame. As a result, a new elliptically shaped window was fabricated.
650 A finite element calculation showed that the maximum bending stress was only 1/10 of
651 the permissible, and like the watch-glass type windows, the highest stress was no longer
652 reached in the area near the frame. The receiver was tested with these new windows,
653 and in this stage, the highest pressures and outlet air temperatures were reached.

654 After 14 tests and over 8 hours of operation, the main results were a pressure of 4.2 bar,
655 a power output of 2.5-3.7 kW_{th}, and 71% efficiency at outlet air temperatures of 1050°C
656 (Pritzkow 1991). The expected working pressure of 10 bar could not be achieved due to
657 a sealing problem between the cold metal and the hot ceramic structure, although, this
658 would not be a problem if the receiver were used in a high-pressure closed loop. Despite
659 this, a larger prototype, PLVCR-500, was scheduled to be constructed and tested.

660 4.3.2. PLVCR - 500

661 This receiver was designed as an alternative modular system with a secondary
662 concentrator at a power of 500 kW_{th}. The design focused on heating up air from ambient
663 temperature to 1000°C at pressures up to 10 bar (Pritzkow 1993). The design flux was
664 up to 3.5 MW/m², produced by the heliostat field and the secondary concentrator.

665 It consisted of a pressure vessel with a spherical quartz-glass window in front of the
666 concentrated solar radiation coming from the secondary concentrator which entered the
667 receiver as shown in Fig. 11. The 10 and 12-mm windows, respectively, were produced
668 by Heraeus Quarzschmelze. The window was set into a 610-mm diameter water-cooled
669 frame. The absorber (SIRCON 20 ppi Si₃N₄ foam with a special black SiC coating) was
670 a 650-mm-diameter truncated pyramid.

671 The tests at the PSA were divided in three stages (Leuchsner 1993). During the first
672 stage, temperatures up to 700°C were reached working at pressures of 3.6 bar and
673 delivering a power of 100 kW_{th}. The main problem was the window (10 mm). After
674 each test, a growing number of tear-shaped bulges were noticed, and finally the window
675 cracked through the centre. The most likely reason was poor distribution of the air
676 entering the receiver. This caused convective cooling of the window to be too strong in
677 some places, and resulted in steep temperature gradients and thermal stresses. During
678 the next test period, the new window (12 mm) was mounted with a more flexible frame
679 to compensate movement of the window. Air distribution was also better. The second
680 test stage was used for testing the secondary concentrator. The measured input flux
681 distribution was more suitable for operating the receiver than the measured output flux
682 distribution. Because of these results, all the following tests were done without the
683 secondary concentrator, and the final stage was used to test the receiver alone. The
684 maximum outlet air temperature achieved was 960°C delivering 92.4 kW_{th}, with an

685 efficiency of 57.3% working at 4.15 bar. During the tests, cracks appeared in the
686 window and no pressure over 4 bar was reached due to the leaks.

687 Receiver efficiencies were rather low for two main reasons:

- 688 ▪ The average flux density on the absorber was very low (150 to 500 kW/m²). The
689 theoretical study showed that good efficiencies could be achieved with flux of 1
690 MW/m², which could be reached with a secondary concentrator.
- 691 ▪ Optical analysis of the black coating sprayed on the absorber showed that it was
692 highly reflective in the infrared band, resulting in higher reradiation loss and a
693 higher front-surface temperature as well.

694 The conclusions reported that the window frame was the Pressure Loaded Volumetric
695 Ceramic Receiver's biggest problem. It is very important for the window frame to be
696 flexible to avoid jamming and to allow relative movement of the window and the frame
697 due to the different thermal expansion coefficients. Steep temperature gradients should
698 be avoided. One possible solution is to use hot gas at the receiver inlet (Leuchsner
699 1993).

700 4.3.3. DIAPR 30-50

701 The first DIAPR was built by the Weizmann Institute of Science (WIS) and Rotem
702 Industries in 1992. The first tests were performed in the WIS solar furnace (Karni et al.
703 1997) with an 11-kW_{th} power input. Later, a modified version was tested in 1994-1996
704 at the WIS solar tower, with a 30-50 kW_{th} power input (Kribus et al. 2001). Fig. 12
705 shows the receiver cross-section. The inlet aperture diameter was 0.1 m, and the outer
706 receiver dimensions were 0.42 m diameter by 0.35 m long. The absorber elements were
707 made of Pythagoras alumina-silica (60% Al₂O₃) tubes, (Karni et al. 1998b). The
708 receiver had three main components: i) Porcupine volumetric absorber, ii) a frustum-
709 like high pressure window and, iii) secondary concentrator.

710 The fused-silica window design is shown in Fig. 13. The main purpose of the window is
711 to separate the receiver cavity from the ambient air and allow high-pressure operation,
712 while minimizing reflection losses. Analyses and tests showed that this window could
713 withstand a pressure of over 50 bar. The window did not fail during more than a
714 hundred hours of solar tests with the DIAPR, at a pressure of 10 to 30 bar. The tests
715 proved that the window was not sensitive to local temperature gradients due to the
716 settling of contaminants, such as dirt, ceramic insulation, etc., on its surface.
717 Contamination was observed to increase overall window temperature somewhat, but did
718 not generate local-hot spot failure. Ray-tracing calculations showed that window
719 reflection losses of the window were only about 1%, since several reflections were
720 necessary for incoming rays to escape (Kribus 1994). The window was only 2.25 mm
721 thick, and since fused silica is highly transparent to solar radiation, energy loss from
722 sunlight absorption was negligible (Karni et al. 1997).

723 After around 250 hours of solar tests had been carried out, the most remarkable results
724 were that the DIAPR was capable of producing mean outlet air temperatures of 1200°C,
725 working at 17-20 bar with an incident solar flux varying between 3600-5300 kW/m².
726 Overall efficiencies were in the range of 70 to 80%. For the first time, a receiver was
727 able to produce continuous mean outlet air temperatures above 1000°C, and the window
728 sustained its design working conditions with receiver pressures of up to 30 bar (Karni et
729 al. 1998a).

730 Based on the technology developed at the WIS and combined with the design by Haim
731 Dotan Ltd. Architects, Aora erected a modular hybrid solar-thermal power plant with
732 30-m-high solar tower in the Arava desert in southern Israel. This receiver unit forms a

733 single power module, capable of generating 100 kW_e power in addition to 170 kW_{th}
734 power (Augsten 2009).

735 4.3.4. DIAPR Multistage

736 In 1996, the WIS designed a receiver with the aperture divided into two separate stages
737 according to the irradiance distribution, to minimize the thermal loss (see Fig. 14)
738 (Kribus et al. 1999). The working fluid was gradually heated as it passed through a
739 sequence of receiver elements while the irradiance level was increasing. Partitioning
740 was matched to the radiation from the heliostat field, with higher flux at the centre and
741 lower further from the centre.

742 The design consisted of four preheaters with the respective secondary concentrators
743 around the centre (high temperature) stage. The estimated average inlet flux on the
744 receiver aperture was between 2500 to 4000 kW/m² and entering the preheaters varied
745 from 850 to 1400 kW/m².

746 The preheaters were designed as cavity tubular receivers with an Inconel 600 absorber
747 tube made of and the high temperature receiver stage was a DIAPR with a porcupine
748 absorber (Karni et al. 1998b). The DIAPR cavity was closed by a fused-silica window
749 (Fig. 13) (Karni et al. 1998a). In this receiver the air was divided into two streams. The
750 main one, distributed to the preheaters and then collected in a single pipe and conveyed
751 to the high temperature receiver and the second stream blown for cooling the quartz
752 DIAPR window.

753 The test included about 40 hours of operation, achieving a maximum outlet air
754 temperature of 1000°C with the preheaters supplying about 650-750°C air at the inlet of
755 the DIAPR. Output power ranged from 30 to 60 kW_{th}, and operating pressures were 16
756 to 19 bar.

757 4.3.5. REFOS

758 In 1996, the REFOS project started to demonstrate the feasibility of introducing solar
759 energy into the gas turbine of Combined Cycle systems. The technical goals of the
760 REFOS receiver system demonstration were (Buck et al. 2002):

- 761 ▪ Absorbed thermal power for a single module: 350 kW_{th}
- 762 ▪ Air outlet temperature of up to 800 °C
- 763 ▪ Absolute operating pressure: 15 bar
- 764 ▪ Receiver efficiency (with an improved secondary concentrator): 80 %

765 The volumetric absorber, installed in a pressure vessel, consisted of several layers of
766 heat-resistant wire screens (Inconel 600), and was closed off by a domed quartz window
767 as shown in Fig. 15. The window was elliptical with a 620-mm diameter at the open end
768 and a height of 420 mm. The wall was 8 mm thick. In-depth analyses were made on the
769 quartz window to determine low-stress geometry (Uhlig 1998). Before installation, the
770 window was certified up to a pressure of 19.5 bar (Buck et al. 1998). It should be
771 mentioned that for successful operation of fused-silica windows, it is important for them
772 to have clean, defect-free glass surfaces. Care must be taken to avoid contaminants on
773 the glass during mounting, and appropriate cleaning procedures and frequencies must be
774 defined (Hofmann et al. 2009).

775 Testing started with the evaluation of the secondary concentrator, which resulted in a
776 measured optical efficiency ranging from 74.5 to 79%. After installation in the receiver
777 testing continued. Project goals were demonstrated, with lower than expected
778 efficiencies of 67% at 800°C due to reflection losses in the secondary concentrator and
779 insufficient insulation of the receiver. The receiver withstood overload conditions up to

780 400 kW_{th} without damage. One important advantage of the volumetric receiver was the
781 low 18-mbar pressure drop achieved, which was important for hook up to gas turbines.
782 After demonstration of the robust, low-risk construction of the secondary concentrator,
783 an improved one was built that better approximated a circle with the utilization of
784 curved mirrors (Buck et al. 1998). The optical efficiency of the new concentrator
785 improved from 75% in the previous one to 86%. The main reason for the improvement
786 was the enlargement of the acceptance angle.

787 First tests with quartz windows have proven their feasibility and have shown good
788 mechanical and optical characteristics, but even though these tests were short compared
789 to lifetime requirements, they have already revealed the first signs of degradation of the
790 window surface (Hofmann et al. 2009).

791 4.3.6. SOLGATE

792 The Solgate project started in 2001 with the main goal of developing a solar receiver
793 cluster able to provide pressurized air at 1000 °C to feed a conventional gas turbine
794 system. The pressurized solar receiver system consisted of three 400-kW_{th} modules each
795 with a secondary concentrator. The modules, which were connected in series, had a
796 hexagonal aperture.

797 The top module, Fig. 16, was the low temperature receiver. The concept was a multi-
798 tube coil attached to the secondary concentrator. The module in the middle was the
799 medium temperature receiver (Refos receiver), and finally, the high temperature module
800 (another Refos receiver), where the metal wire mesh absorber had been replaced with a
801 ceramic absorber, the temperature was to rise to 1000°C. The ceramic absorber was
802 made of SiC with 20 ppi porosity coated with a silica layer and tempered to increase
803 absorption to 96%. The solar receiver cluster was designed to increase the temperature
804 by around 200 to 250°C in each module (Heller et al. 2004).

805 Testing was divided into two parts. The first stage, intended to demonstrate the ability
806 of the gas turbine along with the receiver and reach design operating conditions of
807 800°C. In the second stage, the receiver outlet air temperature was to be increased to
808 1000°C by replacing the metal-wire mesh absorber in the high temperature receiver by a
809 ceramic absorber. This was assisted by active outer window cooling, as particularly at
810 high temperatures, there was evidence of possible danger of recrystallization of the
811 quartz glass. Due to structural changes in the recrystallization phase during temperature
812 changes, chipping and cracking of the quartz glass can occur, which may damage the
813 receiver window. Hence, overheating the window above 800°C had to be avoided.

814 During the first test stage, at the end of March 2003, the temperature reached 800°C and
815 the system delivered 230 kW_e to the grid without major problems. In the second stage,
816 the temperature rose to 960°C with about 770 W/m² direct normal irradiation and 70%
817 efficiency. Under these conditions, the solar fraction was close to 70% (Heller et al.
818 2006).

819 With the results found, it was demonstrated that volumetric pressurized receivers were
820 able to produce 1000°C air to drive a gas turbine. All the components were successfully
821 tested and the cost and performance appeared promising for future solar power
822 generation.

823 5. Assessment on the Research and Development Activities

824 The above review of volumetric receivers shows that a great effort has been made in the
825 USA, Europe and Israel to study the performance of a wide variety of receivers, tested
826 in different research institutions worldwide during the last three decades.

827 Most of the prototypes have been tested in the lab or small-scale test bed, but others,
828 like the Phoebus-TSA and SOLAIR-3000, have had medium-scale development. DLR
829 and the PSA have had a very important role in the development of this technology at
830 their facilities.

831 Before commercial application of CRS with volumetric receivers is possible, there are
832 some issues that need to be solved for the technology to be successful, i.e the
833 development of control and plant management strategies, further improvement of the
834 performance and reliability of key components, materials durability under high solar
835 fluxes and system performance under fluctuating irradiation conditions. With the
836 construction of a significant precommercial demonstration plant in Jülich, the
837 aforementioned open questions and the demonstration of the complete system in
838 commercial-like operation over a long period of time should be solved in the near
839 future. Moreover, the Jülich plant has shown that CRS with atmospheric air might be
840 the next technology to be deployed on an industrial scale.

841 On the other hand, CRS based on closed-loop volumetric receivers have been tested, in
842 some cases, showing reasonable performance, but they are nowhere near maturity,
843 especially because of the problems related to window design and certification. The
844 domed quartz (REFOS) and fused-silica (DIAPR) windows with water-cooled frame
845 and a more flexible frame to compensate movement of the window, are the directions to
846 be followed for solving design problems. Moreover, further research and development
847 of windows size are necessary, because current limitations force several receiver-
848 modules to be used in order to achieve high power production.

849 However, some of the different volumetric receivers tested did not achieve the predicted
850 design temperatures without local damage or structural cracks mostly from thermal
851 shock, material defects and poor operating conditions. In order to correct these faults,
852 DLR started to focus on better understanding the thermal and fluid dynamic
853 performance of volumetric receivers, and an innovative modular design consisting of a
854 volumetric absorber with an orifice at the exit, was developed. On the one hand, this
855 design makes it possible to select a particular orifice diameter, depending on the
856 expected local flux density in order to assure homogeneous outlet temperature. On the
857 other hand, the pressure loss due to the orifice dominates that of the absorber itself, and
858 it is designed in such a way that pressure changes affected by local wind effects will not
859 disturb the flow, preventing flow instability. The new generation of modular volumetric
860 receivers, i.e., HiTRec and SOLAIR, ensures stable receiver operation and should be
861 further investigated. Furthermore, the same numerical study was applied to volumetric
862 receivers with a highly porous honeycomb absorber structure, i.e., Catrec 1 and 2,
863 which showed unstable operation under certain conditions due to the flow distribution
864 (Pitz-Paal et al. 1996).

865 After evaluation of the receivers tested, the question of which material is the most
866 suitable for different temperatures remains unanswered. It can generally be said that:

- 867 ▪ For temperatures below 800°C, some stainless steels and especially base-nickel
868 alloys with high chrome content are the most suitable for volumetric receivers due
869 to their capacity to form oxides, which are black and highly absorptive.
- 870 ▪ For temperatures above 800°C, the most suitable materials are the oxide ceramics.
871 Al_2O_3 is the ideal material because of its good properties and price, but its main
872 disadvantage is that it is white, which results in poor optical performance.
873 Nevertheless, there are several coating techniques which can improve optical
874 behaviour while retaining good mechanical properties. Other good materials are
875 non-oxide ceramics, which are not rust proof. The best material is SiC, which has
876 better optical properties and absorptivity than Al_2O_3 .

Volumetric receivers have huge potential for producing thermal energy at very high temperatures, and can therefore cover a wide field of solar applications. Ceramic absorbers are able to produce very high gas (air) temperatures ($>800^{\circ}\text{C}$) for industrial process heat, gas turbines, and chemical processes. Direct chemical processes are also feasible with windowed receivers. A receiver output air temperature of $700\text{--}800^{\circ}\text{C}$ is sufficient for power generation with a steam turbine cycle, and therefore, the open air volumetric receiver is a promising alternative receiver concept (Becker et al. 1989). Finally, the main applications of volumetric receivers may be classified as (Freudenstein and Karnowsky 1987):

- Medium temperature ($< 800^{\circ}\text{C}$) open-loop receivers for steam generation for Rankine cycle electricity production or industrial process heat.
- High temperature ($> 800^{\circ}\text{C}$) open-loop receivers for indirect Brayton cycle power production and industrial process heat.
- High temperature ($> 800^{\circ}\text{C}$) closed-loop receivers for a wide variety of uses, from direct Brayton cycle power production (CC) to chemical processes.

Despite the research and development already carried out, the current investment required for the commercialisation of this technology with medium risk make subsidies necessary for its deployment on the electricity market.

6. Conclusions

During the last three decades of study, the state-of-the-art of volumetric receivers is similar to tube receivers. This paper has provided a brief overview of more than 20 volumetric receiver types tested in the USA, Europe and Israel.

They were classified in four subgroups: Phoebus-TSA, SOLAIR, REFOS and DIAPR, based on the air pressure used and the type of material (ceramic or metal).

All the receivers were described, including their structure (configuration, geometry, dimensions, material, etc), expected and real results (efficiencies and temperatures) and the overall system performance.

A great number of receivers have surpassed 800°C in quasi-stationary state (HiTRec I and II, SOLAIR, etc.). The SOLGATE receiver supplied air at 960°C to a gas turbine and the DIAPR air outlet temperatures were around 1200°C at 20 bar.

Most of the prototypes have been demonstrated in the lab or small-scale test bed, but others have achieved medium-scale development. There is also a precommercial demonstration plant in Jülich which will probably answer some of the factors, such as operating control, plant management strategies, possibilities for improving performance under fluctuating conditions, etc. present unknown in the near future.

Nevertheless, despite their high technical and economic potential for use in CRS and dishes, there are still unresolved questions (i.e. window design, materials durability) that require further studies and research.

With the development of the CRS PS10, PS20 and Gemasolar plants only one type of power tower technology, CRS with volumetric receiver technology, has not been marketed yet.

7. Acknowledgments

The author wish to thank “Comunidad de Madrid” and “European Social Fund” for its financial support to the SOLGEMAC Project through the Programme of Activities between Research Groups (S2009/ENE-1617). The author wishes to acknowledge Ms. M.A. Martinez Tarifa for her many helpful comments and Mr Téllez F.M. for his previous studies and support.

924 8. References

925 Abele, M., Bauer, H., Buck, R., Tamme, R., and Woerner, A. (1996). "Design and test
926 results of a receiver-reactor for solar methane reforming." *International Solar*
927 *Energy Conference*, 339-346.

928 Anikeev, V. I., Bobrin, A. S., and Kirillov, V. A. (1992). "New Conception of Catalytic
929 Volumetric Reactor-Receiver." *Proc. 6 International Symposium on Solar*
930 *Thermal Concentrating Technologies*, Mojácar, Almería, 387-394.

931 Augsten, E. (2009). "Make the desert bloom." *Sun & Wind Energy*, 9/2009, pp. 2052-
932 2055.

933 Becker, M., and Böhmer, M. (1987). "Proceedings of the Third Meeting of SSPS - Task
934 III - Working Group on "High Temperature Receiver - Technology", N° 2/87,
935 Alburquerque, N.M., USA."

936 Becker, M., and Böhmer, M. (1990). "Volumetric Metal Foil Receiver CATREC -
937 Development and Tests- SSPS Technical Report No. 1/90." *SSPS-TR*.

938 Becker, M., Böhmer, M., and Cordes, S. (1991). "Report of the DLR / CeramTec
939 Volumetric Ceramic Foil Receiver, SSPS TR -1/91, DLR, MD-ET."

940 Becker, M., Böhmer, M., and Meinecke, W. (1990). "Proceedings of the Fifth Meeting
941 of SSPS - TASK III - Working Group on "High Temperature Receiver
942 Technology", SSPS TR 2/90, Davos, CH."

943 Becker, M., Böhmer, M., Meinecke, W., and Unger, E. (1989). "Volumetric Receiver
944 Evaluation." DLR, Cologne.

945 Becker, M., Fend, T., Hoffschmidt, B., Pitz-Paal, R., Reutter, O., Stamatov, V., Steven,
946 M., and Trimis, D. (2006). "Theoretical and numerical investigation of flow
947 stability in porous materials applied as volumetric solar receivers." *Solar*
948 *Energy*, 80(10), 1241-1248.

949 Becker, M., and Sánchez, M. (1989). "Report of the Wire Pack Volumetric Receiver
950 Tests Performed at the PSA in 1987-1988. Technical Report 2/89." *SSPS T.R. N°*
951 *2/89*, DLR - Ciemat-PSA, Almería.

952 Böhmer, M., and Chaza, C. (1991). "The ceramic foil volumetric receiver." *Solar*
953 *Energy Materials*, 24(1-4), 182-191.

954 Böhmer, M., and Meinecke, W. (1991). "Proceedings of the Volumetric Receiver
955 Workshop. IEA SSPS Tasks III and VII. SSPS Technical Report No 2/91,
956 Köln."

957 Buck, R. (1990). "Test and calculations for a volumetric ceramic receiver." *Solar*
958 *Thermal Technology - Research Development and Applications, Proceedings*
959 *4th International Symposium.*, B.P.Gupta and W.H.Traugott, eds., Hemisphere,
960 New York, pp. 279-286.

961 Buck, R., Abele, M., Bauer, H., Seitz, A., and Tamme, R. (1994). "Development of a
962 volumetric receiver-reactor for solar methane reforming." *ASME-JSES-JSME*
963 *International Solar Energy Conference*, 73-78.

964 Buck, R., Abele, M., Kunberger, J., Denk, T., Heller, P., and Lüpfert, E. (1998).
965 "Receiver for Solar-Hybrid Gas Turbine and Combined Cycle Systems." *Proc.*
966 *of 9th SolarPACES Int. Symp. on Solar Thermal Concentrating Technologies*,
967 Font-Romeu, France, 537-544.

968 Buck, R., Biehler, T., and Heller, P. (1992). "Advanced Volumetric Receiver/Reactor
969 for Solar Methane Reforming." *Proceedings of the 6th Int. Symp. on Solar*
970 *Thermal Concentrating Technologies*, Mojácar, 395.

971 Buck, R., Brauning, T., Denk, T., Pfander, M., Schwarbozl, P., and Tellez, F. (2002).
972 "Solar-Hybrid Gas Turbine-based Power Tower Systems (REFOS)." *Journal of*
973 *Solar Energy Engineering*, 124(1), 2-9.

974 Buck, R., Heller, P., and Koch, H. (1996). "Receiver development for a Dish-Brayton
975 system." *Proceedings of ASME Solar Engineering 1996, The 1996 International
976 Solar Energy Conference*, ASME, New York, 91-96.

977 Buck, R., Muir, J. F., and Hogan, R. E. (1991). "Carbon dioxide reforming of methane
978 in a solar volumetric receiver/reactor: the CAESAR project." *Solar Energy
979 Materials*, 24(1-4), 449-463.

980 Carotenuto, A., Reale, F., Ruocco, G., Nocera, U., and Bonomo, F. (1993). "Thermal
981 behaviour of a multi-cavity volumetric solar receiver: Design and tests results."
982 *Solar Energy*, 50(2), 113-121.

983 Carotenuto, A., Ruocco, G., and Reale, F. (1991). "Heat exchange in a multi-cavity
984 volumetric solar receiver." *Solar Energy*, 46(4), 241-248.

985 Chavez, J. M. (1988). "Design and Testing of a New Volumetric Receiver Absorber."
986 Sandia National Laboratories. Memorandum dated 7/15/1988, Albuquerque,
987 NM.

988 Chavez, J. M., and Chaza, C. (1991). "Testing of a porous ceramic absorber for a
989 volumetric air receiver." *Solar Energy Materials*, 24(1-4), 172-181.

990 Chavez, J. M., Lessley, R., and Leon, J. (1994). "Design, Fabrication, and Testing of a
991 250 kWt Knit-Wire Mesh Volumetric Air Receiver." *Proceedings of the ASME-
992 JSES-JSME International Solar Energy Conference*, Publ by ASME, San
993 Francisco, CA, USA, 605-610.

994 De Laquil, P., Ettischer, C., Geyer, M., Meinecke, W., Fricker, H., Vidal, R., and
995 Mateos, J. (1990). "PHOEBUS project. 30 MWe solar central receiver plant
996 conceptual design." Publ by American Soc of Mechanical Engineers (ASME),
997 Miami, FL, USA, 25-30.

998 DeMeo, E. A., and Galdo, J. F. (1997). "Renewable Energy Technology
999 Characterizations." *TR-109496 Topical Report*, U.S. DOE-Washington and
1000 EPRI, Palo Alto, CA.

1001 Falcone, P. K. (1986). "A Handbook for Solar Central Receiver Design." *SAND 86-
1002 8009*, Sandia National Laboratories, Livermore, CA.

1003 Flamant, G., Menigault, T., and Schwander, D. (1988). "Combined Heat Transfer in a
1004 Semitransparent Multilayer Packed Bed." *Journal of Heat Transfer*, 110(2), 463-
1005 467.

1006 Flamant, G., and Olalde, G. (1983). "High Temperature Solar Gas Heating Comparison
1007 Between Packed and Fluidized Bed Receivers- I." *Solar Energy*, 31(5), 463-471.

1008 Freudenstein, K., and Karnowsky, B. I. G. (1987). "Volumetric Ceramic receiver cooled
1009 by open air flow. Feasibility study." In: *Solar Thermal Energy Utilization*,
1010 Springer, Berlin, 1-54.

1011 Fricker, H. W. (1983). "Proposal for a novel type of solar gas receiver." *Proceedings of
1012 the International Seminar on Solar Thermal Heat Production, Stuttgart, German
1013 Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart*.

1014 Fricker, H. W. (1986). "Tests with a small volumetric wire receiver." *Proceedings of the
1015 Third International Workshop on Solar Thermal Central Receiver Systems*,
1016 Springer-Verlag; 1986 ISBN 3-540-17052-9, Konstanz, Berlin, Heidelberg, New
1017 York.

1018 Grasse, W. (1988). "PHOEBUS - the European solar tower project." *Phoebus - das
1019 europaeische Solarturmprojekt
1020 Brennstoff-Waerme-Kraft*, 40(10), 395-398.

1021 Grasse, W., Hertlein, H. P., and Winter, C. J. (1991). "Thermal Solar Power Plants
1022 Experience." In: *Solar Power Plants. Fundamentals, Technology, Systems,
1023 Economics*, L. L. Vant-Hull, ed., Springer-Verlag, Berlin, 215.

1024 Haeger, M., Keller, L., Monterreal, R., and Valverde, A. (1994). "PHOEBUS
1025 technology program solar air receiver (TSA): experimental set up for TSA at the
1026 CESA test facility of the Plataforma Solar de Almeria (PSA)." *ASME-JSES-*
1027 *JSME International Solar Energy Conference*, Publ by ASME, San Francisco,
1028 CA, USA, 643-650.

1029 Heinrich, P., Keintzel, G., and Streuber, C. (1992). "Technology Program Solar Air
1030 Receiver - 2.5MWt System Test on Volumetric Air Receiver Technology."
1031 *Proceedings of the 6th International Symposium on Solar Thermal*
1032 *Concentrating Technologies*, 1, 247-261.

1033 Heller, P. (1991). "Optimization of windows for closed receivers and receiver-reactors:
1034 enhancement of optical performance." *Solar Energy Materials*, 24(1-4), 720-
1035 724.

1036 Heller, P., Pfander, M., Denk, T., Tellez, F., Valverde, A., Fernandez, J., and Ring, A.
1037 (2004). "Test and Evaluation of a Solar Powered Gas Turbine System."
1038 *Proceedings of 12th SolarPACES International Symposium on Concentrated*
1039 *Solar Power and Chemical Energy, Technologies*, Oaxaca, Mexico.
1040 October/2004.

1041 Heller, P., Pfänder, M., Denk, T., Tellez, F., Valverde, A., Fernandez, J., and Ring, A.
1042 (2006). "Test and evaluation of a solar powered gas turbine system." *Solar*
1043 *Energy Solar Power and Chemical Energy Systems (SolarPACES'04)*, 80(10),
1044 1225-1230.

1045 Hellmuth, T. E. (1995). "Experimental Characterization, Modeling and Optimum
1046 Design of a Wire Mesh Solar Volumetric Air Receiver, PhD Thesis," New
1047 Mexico State University, Las Cruces, NM.

1048 Hellmuth, T. E., and Matthews, L. K. (1997). "Modeling and Optimum Design of a
1049 Wire Mesh Solar Volumetric Air Receiver." *Journal of Solar Energy*
1050 *Engineering, Transactions of the ASME*, 119(3), 208-213.

1051 Hellmuth, T. E., Matthews, L. K., J.M., C., and Hale, C. A. (1994). "Performance of a
1052 Wire Mesh Solar Volumetric Air Receiver." *Proceeding of the 1994*
1053 *ASME/JSME/JSES International Solar Energy Conference*, 573-578.

1054 Hennecke, K., Schwarzbözl, P., Alexopoulos, S., Hoffschmidt, B., Götsche, J., Koll,
1055 G., Beuter, M., and Hartz, T. (2008). "Solar Power Tower Jülich - The First Test
1056 and Demonstration Plant for Open Volumetric Receiver Technology in
1057 Germany." *Proceedings of the 14th Biennial CSP SolarPACES Symposium*, Las
1058 Vegas, USA, March 4-7, 2008.

1059 Hoffschmidt, B. (1997). "Vergleichende Bewertung verschiedener Konzepte
1060 Volumetrischer Strahlungsempfänger, DLR Forschungsbericht pp. 97-35."

1061 Hoffschmidt, B., Fernández, V., Beuter, M., Stobbe, P., and Téllez, F. (2003a). "Test
1062 results of a 3 MW solar open volumetric receiver." *Proceedings of ISES Solar*
1063 *World Congress 2003*.

1064 Hoffschmidt, B., Fernández, V., Konstandopoulos, A. G., Mavroidis, I., Romero, M.,
1065 Stobbe, P., and Téllez, F. (2001). "Development of Ceramic Volumetric
1066 Receiver Technology." *Proceedings of 5th Cologne Solar Symposium*,
1067 Forschungsbericht 2001-10, DLR, Germany, 51-61.

1068 Hoffschmidt, B., Fernández, V., Pitz-Paal, R., Romero, M., Stobbe, P., and Téllez, F.
1069 (2002). "The development strategy of the HiTREC volumetric receiver
1070 technology—up-scaling from 200kWh via 3MWh up to 10 MWel." *Proceedings*
1071 *of the 11th SolarPACES International Symposium on Concentrated Solar Power*
1072 *and Chemical Energy Technologies*, Zürich, Switzerland.

1073 Hoffschmidt, B., Pitz-Paal, R., Böhmer, M., Fend, T., and Rietbrock, P. (1999). "200
1074 kWth open volumetric air Receiver (HiTRec) of DLR reached 1000 °C average
1075 outlet temperature at PSA." *J. Phys. IV France*, 09(PR3), Pr3-551-Pr553-556.

1076 Hoffschmidt, B., Tellez, F. M., Valverde, A., Fernandez, J., and Fernandez, V. (2003b).
1077 "Performance Evaluation of the 200-kW[sub th] HiTRec-II Open Volumetric
1078 Air Receiver." *Journal of Solar Energy Engineering*, 125(1), 87-94.

1079 Hofmann, A., Schenk, C., and Uhlig, R. (2009). "Optical quartz glass windows for high
1080 concentrated thermal power plants." *Proceedings of 15th SolarPACES*
1081 *International Symposium on Concentrated Solar Power and Chemical Energy,*
1082 *Technologies*, Berlin, Germany. September/2009.

1083 Karni, J., Kribus, A., Doron, P., Rubin, R., Fiterman, A., and Sagie, D. (1997). "The
1084 DIAPR: A high-pressure, high-temperature solar receiver." *Journal of Solar*
1085 *Energy Engineering, Transactions of the ASME*, 119(1), 74-78.

1086 Karni, J., Kribus, A., Ostraich, B., and Kochavi, E. (1998a). "A high-pressure window
1087 for volumetric solar receivers." *Journal of Solar Energy Engineering,*
1088 *Transactions of the ASME*, 120(2), 101-107.

1089 Karni, J., Kribus, A., Rubin, R., and Doron, P. (1998b). "The "Porcupine": A novel
1090 high-flux absorber for volumetric solar receivers." *Journal of Solar Energy*
1091 *Engineering, Transactions of the ASME*, 120(2), 85-95.

1092 Kolb, G. J. (1998). "Economic evaluation of solar-only and hybrid power towers using
1093 molten-salt technology." *Solar Energy*, 62(1), 51-61.

1094 Koll, G., Schwarzbozl, P., Hennecke, K., Hartz, T., Schmitz, M., and Hoffschmidt, B.
1095 (2009). "The Solar Tower Jülich - A Research and Demonstration Plant for
1096 Central Receiver Systems." *Proceedings of the 15th SolarPACES Conference*,
1097 Berlin, Germany, September, 2009.

1098 Kribus, A. (1994). "Optical Performance of Conical Windows for Concentrated Solar
1099 Radiation." *Journal of Solar Energy Engineering*, 116(1), 47-52.

1100 Kribus, A., Doron, P., Rubin, R., Karni, J., Reuven, R., Duchan, S., and Taragan, E.
1101 (1999). "A Multistage Solar Receiver:: The Route To High Temperature." *Solar*
1102 *Energy*, 67(1-3), 3-11.

1103 Kribus, A., Doron, P., Rubin, R., Reuven, R., Taragan, E., Duchan, S., and Karni, J.
1104 (2001). "Performance of the Directly-Irradiated Annular Pressurized Receiver
1105 (DIAPR) Operating at 20 Bar and 1,200[degree]C." *Journal of Solar Energy*
1106 *Engineering*, 123(1), 10-17.

1107 Kribus, A., Ries, H., and Spirkl, W. (1996). "Inherent limitations of volumetric solar
1108 receivers." *Journal of Solar Energy Engineering*, 118, 151-155.

1109 Kribus, A., Zaibel, R., Carey, D., Segal, A., and Karni, J. (1998). "A solar-driven
1110 combined cycle power plant." *Solar Energy*, 62(2), 121-129.

1111 Leuchsner, V. (1993). "The PLVCR 500 and HCPC. Tests and Results. DLR-Mitteilung
1112 93-04."

1113 Mancini, T. R., Kolb, G. J., and Prairie, M. (1997). "Solar Thermal Power." In:
1114 *Advances in Solar Energy: An Annual Review of Research and Development*, K.
1115 W. Boer, ed., American Solar Energy Society, Boulder, CO, 1-42.

1116 Meinecke, W., Böhmer, M., and Becker, M. (1996). "Proceedings of the Seventh Task
1117 III - Meeting within IEA SolarPACES on "Solar Technology and Applications",
1118 N° III - 1/96, PSA, Almería."

1119 Meinecke, W., and Cordes, S. (1994). "Phoebus Technology Program Solar Air
1120 Receiver (TSA)- Operational Experience and Test Evaluation of the 2.5MWth
1121 Volumetric Air Receiver Test Facility at the Plataforma Solar de Almeria."

1122 *Proceeding of the 7th International Symposium on Solar Thermal Concentrating*
1123 *Technologies*, 943-957.

1124 Meinecke, W., Cordes, S., and Merten, I. (1994). "PHOEBUS Technology Program
1125 Solar Air Receiver (TSA) - Final Report on Test Evaluation." DLR (MD-ET),
1126 Köln.

1127 Meinecke, W., and Unger, E. (1989). "Volumetric Receiver Evaluation - Preparatory
1128 Material and Evaluation Report of Experts Meeting. Technical Report 3/89."
1129 Cologne.

1130 Menigault, T., Flamant, G., and Rivoire, B. (1991). "Advanced high-temperature two-
1131 slab selective volumetric receiver." *Solar Energy Materials*, 24(1-4), 192-203.

1132 Pacheco, J. E., and Gilbert, R. (1999). "Overview of Recent Results for the Solar Two
1133 Test and Evaluations Program." *Proceedings of the ASME International Solar*
1134 *Energy Conference 1999: Renewable and Advanced Energy Systems for the 21st*
1135 *Century*.

1136 Pitz-Paal, R. (1996). "Evaluation of the CATREC II Receiver Test." IEA Solar PACES
1137 Technical Report, No. III-2/96.

1138 Pitz-Paal, R., and Fiebig, M. (1992). "First Experimental Results From the Test of a
1139 Selective Volumetric Air Receiver." *Proceedings of the 6th International*
1140 *Symposium on Solar Thermal Concentrating Technologies*, Mojácar, Almería,
1141 277-289.

1142 Pitz-Paal, R., Hoffschmidt, B., Böhmer, M., and Becker, M. (1996). "Experimental and
1143 numerical evaluation of the performance and flow stability of different types of
1144 open volumetric absorbers under non-homogeneous irradiation." *Solar Energy*,
1145 60(3-4). Oxford, United Kingdom), 135-150.

1146 Pitz-Paal, R., Morhenne, J., and Fiebig, M. (1990). *Solar Thermal Energy Utilization*,
1147 Becker, M. (Ed.), Vol. 5, Springer Berlin, p.273-308.

1148 Pitz-Paal, R., Morhenne, J., and Fiebig, M. (1991a). "A new concept of a selective solar
1149 receiver for high temperature applications." *Solar energy materials*, 24(1-4) New
1150 York, NY, United States), 293-306.

1151 Pitz-Paal, R., Morhenne, J., and Fiebig, M. (1991). "Optimization of the Surface
1152 Geometry of a Volumetric Foil Receiver." *Solar World Congress. Proceedings*
1153 *of the Biennial Congress of the International Solar Energy Society*, Denver,
1154 Colorado, USA.

1155 Posnansky, M., and Pylkkänen, T. (1991). "Development and testing of a volumetric
1156 gas receiver for high-temperature applications." *Solar Energy Materials*, 24(1-
1157 4), 204-209.

1158 Posnansky, M., and Pylkkänen, T. (1992). "High Temperature Volumetric Gas Receiver
1159 - Results of the Development and Testing of the Atlantis Ceramic Receiver."
1160 *Proceedings of the 6th International Symposium on Solar Thermal*
1161 *Concentrating Technologies*, Mojácar, Almería, 291-298.

1162 Price, H. W., Whitney, D. D., and Beebe, H. I. B. (1996). "SMUD Kokhala power tower
1163 study." *International Solar Energy Conference*, 273-279.

1164 Pritzkow, W. (1989). "The Pressure Loaded Volumetric Ceramic Receiver (5 kW
1165 Version). DLR-Mitteilung 89-17."

1166 Pritzkow, W. (1991). "Pressure loaded volumetric ceramic receiver." *Solar Energy*
1167 *Materials*, 24(1-4), 498-507.

1168 Pritzkow, W. (1993). "The Pressure Loaded Volumetric Ceramic Receiver 500 kW
1169 Version Design and Construction. DLR-Mitteilung 93-02."

1170 Radosevich, L. G., and Skinrood, A. C. (1989). "Power production operation of Solar
 1171 One, the 10 MWe Solar Thermal Central Receiver Pilot Plant." *Journal of Solar*
 1172 *Energy Engineering, Transactions of the ASME*, 111(2), 144-151.
 1173 Reale, F., Ruocco, G., Carotenuto, A., Nocera, U., and Bonomo, F. (1991). "Final
 1174 design of a multi cavity volumetric solar receiver." *Solar Energy Materials*,
 1175 24(1-4), 284-292.
 1176 Romero, M., Buck, R., and Pacheco, J. E. (2002). "An Update on Solar Central
 1177 Receiver Systems, Projects, and Technologies." *Journal of Solar Energy*
 1178 *Engineering*, 124(2), 98-108.
 1179 Sander Associates Inc. (1979). "1/4-Megawatt Solar Receiver. Final Report. , INC.
 1180 DOE/SF/90506-1, Oct."
 1181 Sizmann, R. L. (1991). "Solar Radiation Conversion." In: *Solar Power Plants.*
 1182 *Fundamentals, Technology, Systems, Economics*, Springer-Verlag, ed., Berlin,
 1183 17-83.
 1184 Skocypec, R. D., Boehm, R. F., and Chavez, J. M. (1988). "Heat transfer modeling of
 1185 the IEA/SSPS volumetric receiver." *AIChE Symposium Series*, Publ by AIChE,
 1186 Houston, TX, USA, 146-153.
 1187 Skocypec, R. D., Boehm, R. F., and Chavez, J. M. (1989). "Heat transfer modeling of
 1188 the IEA/SSPS volumetric receiver." *Journal of Solar Energy Engineering,*
 1189 *Transactions of the ASME*, 111(2), 138-143.
 1190 Téllez, F. (2003). "Thermal Performance Evaluation of the 200 kWh SolAir Volumetric
 1191 Receiver." Ciemat-PSA, Madrid.
 1192 Téllez, F., Romero, M., Heller, P., Valverde, A., Reche, J. F., Ulmer, S., and Dibowski,
 1193 G. (2002). "Thermal performance of "SolAir 3000 kWh" ceramic volumetric
 1194 solar receiver." *Proceedings of 11th SolarPACES International Symposium on*
 1195 *Concentrated Solar Power and Chemical Energy, Technologies*, Zürich,
 1196 Switzerland.
 1197 Téllez, F. M., Romero, M., and Marcos, M. J. (2001). "Design of "SIREC-1" Wire
 1198 Mesh Open Volumetric Solar Receiver Prototype." *International Solar Energy*
 1199 *Conference*, Washington, DC, 357-364.
 1200 Uhlig, R. (1998). "Analyse eines Quarzglasfensters unter Druck- und
 1201 Temperaturbelastung mit Hilfe der Methode der Finiten Elemente."
 1202 Diplomarbeit Fachhochschule für Technik Esslingen, Juni 1998.
 1203 Winkler, C., Fricker, H. W., Silva, M., and Garcia, G. (1989). "Tests with the
 1204 volumetric wire receiver Mk II. report no. TM-51-89-18. [in German]." Paul
 1205 Scherrer Institute (PSI), CH5232 Villigen-PSI.

9. Figures

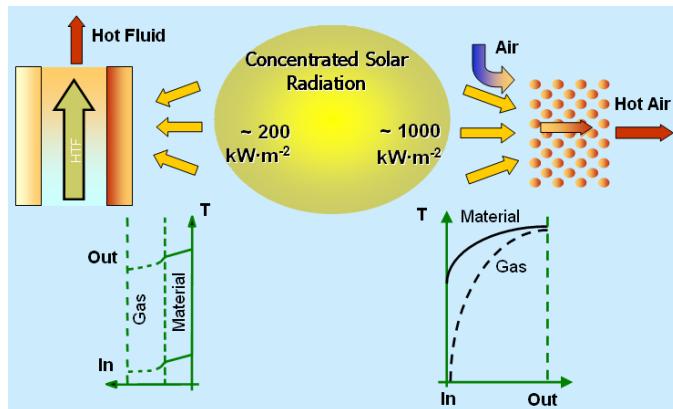


Fig. 1. Performance scheme across a tubular and a volumetric receiver (Hoffschmidt 1997)

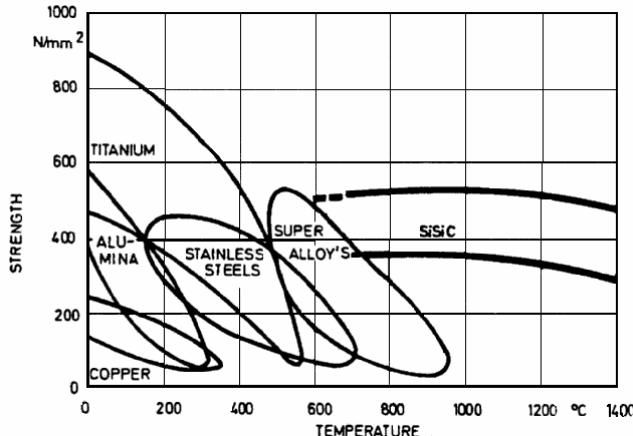


Fig. 2. Bend strength of different material versus the material temperature (Becker et al. 1989)

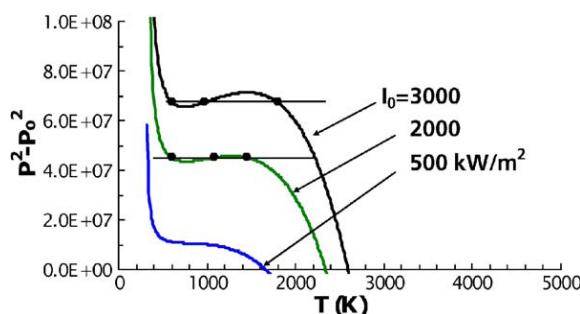


Fig. 3. Quadratic pressure drop versus the air temperature for different solar fluxes (Becker et al. 2006)

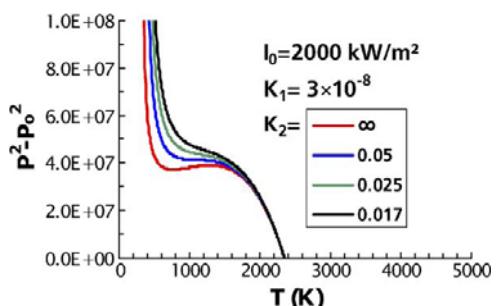


Fig. 4. Quadratic pressure drop difference as a function of the air outlet temperature for several values of the inertial coefficient (Becker et al. 2006)

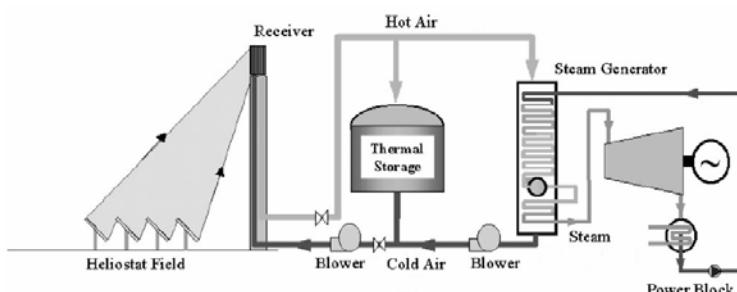


Fig. 5. Schematic plant concept

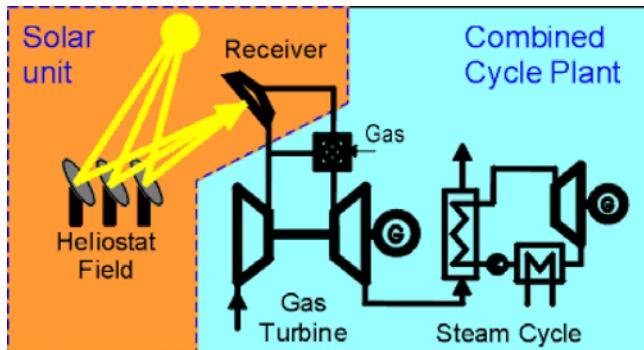


Fig. 6. Scheme of a solarized combined cycle power plant

Fig. 7. Detail of the hexagonal shape cups of the TSA project

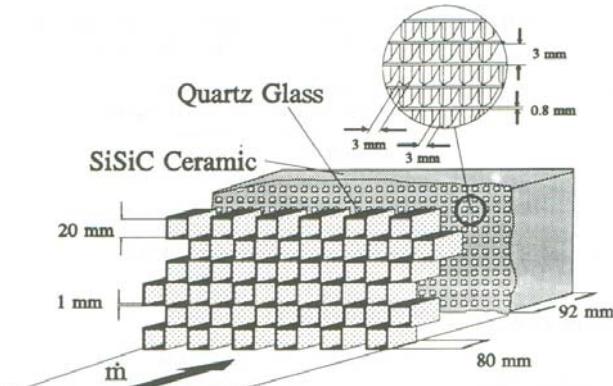


Fig. 8. Artist view of the foil receiver with the quartz cover (Pitz-Paal et al. 1991a)

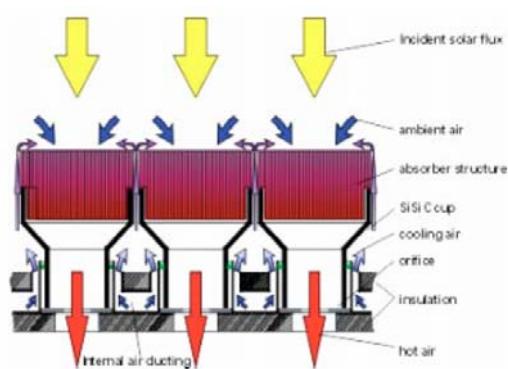


Fig. 9. Performance of HiTRec receiver

Fig. 10. Assembly Solair 3000

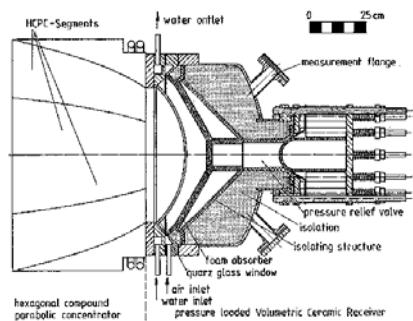


Fig. 11. Scheme of PLVCR 500 receiver (Pritzkow 1993)

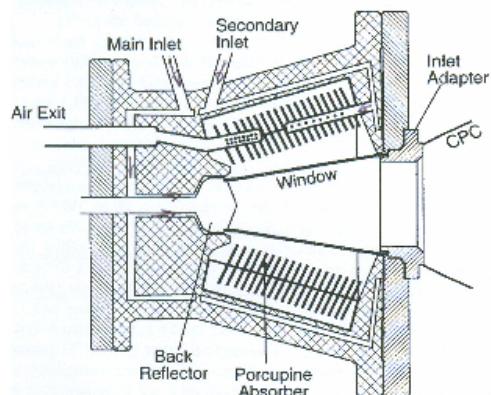


Fig. 12. Schematic cross-section of the DIAPR tested at WIS in 1996 (Kribus et al. 2001)

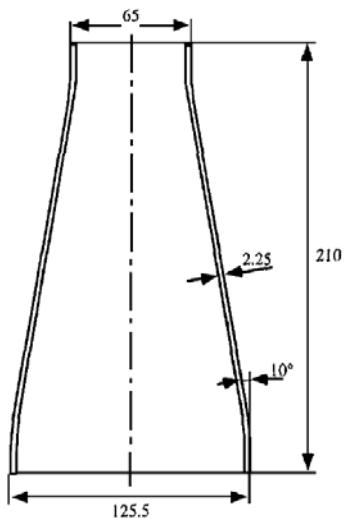


Fig. 13. Design of the frustum-like high pressure window. Dimensions are in millimetres

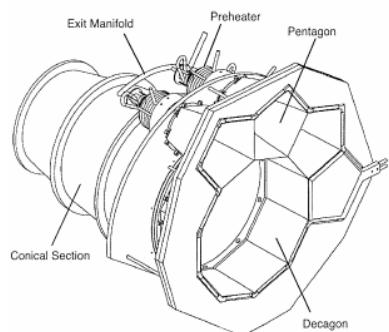


Fig. 14. Assembly of the concentrator array and preheaters over the central stage. (Kribus et al. 1999)

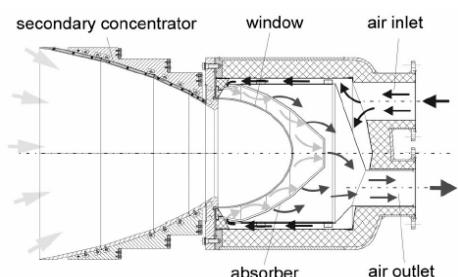


Fig. 15. Refos receiver module (Buck et al. 2002)

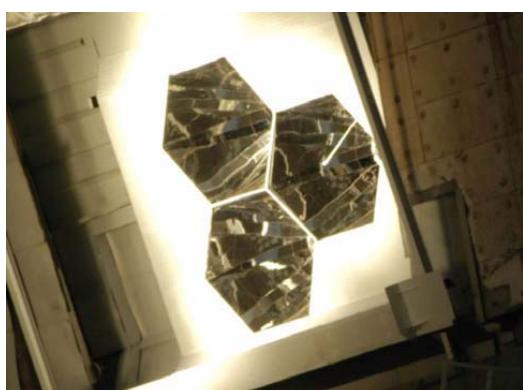


Fig. 16. Solgate solar receiver cluster

Table 2. Main characteristics of solar receivers with volumetric absorber.

Name	Material	Air return ratio, (%)	Thickness, (mm)	Diameter, mm	Average Flux (kW/m ²)	Peak Flux (kW/m ²)	Average Outlet Air Temperature (°C)	Maximum Outlet Air Temperature (°C)	Maximum Material Temperature (°C)	Efficiency (%)	Gas Temp. °C	Tested in	Power, kW
Mk-I	AISI 310	-	-	62	1000	-	--	-	-	70-90	842	Swiss Alps	3
Sulzer 1	AISI 310	-	-	875	265	960	780	830	-	68	550	PSA	200
Sulzer 2	AISI 310	-	-	875	218	757	689	800	-	79	550	PSA	200
CATREC 1	X ₅ CrAl ₂ O ₅ +Ce	-	90	940	254	844	570	826	1070	80	570	PSA	200
TSA	Inconel 601	60	50	280-cups	300	800	700	950	-	79	700	PSA	2500
Bechtel 1	Nichrome 80/20	-	54	67	660	-	820	-	-	69	820	New Mexico State University	2.3
Bechtel 2	Nichrome 80/20	-	-	875	-	-	563	656	-	66	563	PSA	200
CATREC 2	X ₅ CrAl ₂ O ₅ +Ce	-	90	756	-	-	460	560	1069	70	460	PSA	200
SIREC	Alloy 230	45	190	875	300	-	710	973	-	48	710	PSA	250
SANDIA FOAM	Al ₂ O ₃	-	30	875	410	824	550	730	1350	54	730	PSA	200
CeramTec	SiSiC	-	100	950	330	840	500	782	1320	59	782	PSA	200
Conphoebus Naples	SiSiC	-	150	706	255	917	550	788	1238	60	788	PSA	200
Selective Receiver	SiSiC	-	92+80	835	600	750	620	750	1400	62	620	PSA	200
HiTRec I	re-SiC	-	-	Hexagonal shape	600	-	800	980	-	68	980	PSA	200
HiTRec II	re-SiC	45	-	Hexagonal shape	450	900	700	800	1000	72	800	PSA	200
SOLAIR 200	re-SiC / SiSiC	40	-	Square shape	450	620	700	815	-	75	800	PSA	200
SOLAIR 3000	re-SiC	52	-	Square shape	500	800	750	-	-	75	750	PSA	3000
PLVCR-5	SIRCON	-	18	150	300	470	-	1050	-	71	1050	Sandia	3
PLVCR-500	SIRCON	-	25	650	420	550	625	960	-	57	960	PSA	500
DIAPR 30-50	Alumina-silica	-	350	420	3600	5300	-	1200	-	71	1200	Weizmann	50

											Institute Sciences	
DIAPR Multistage	Alumina-silica	-	350	420	2500	4000	900	1000	-	-	1000	Weizmann Institute Sciences
REFOS	Inconel 600	-	-	-	350	600	800	900	-	67	800	PSA
SOLGATE	Inconel 600 and SiC	-	-	-	550	800	800	960	-	70	960	PSA