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Abstract

Solar thermal power plants (STPP) are focused on reducing costs while increasing performance. In this context central receiver
(CR) technology working with volumetric receiver shows a high potential to improve efficiencies by allowing higher operating
temperatures. This technology requires the implementation of efficient thermal energy storage (TES) that allows predictable
electricity delivery to the grid. Moreover, to compete with the advantage of molten salt technology storage, the CR technology
based in air as heat transfer fluid (HTF) must identify TES solutions that enable efficient thermal storage times, that could be
considered dispatchable, and competitive specific costs under 20 €/kWhy,. It may be considered that the reference solution for
thermal storage in STPP-CR with open volumetric receiver continues being the TSA project developments, also adopted in the
experimental plant in Jiilich.

Knowing the present market situation, CIEMAT-PSA developed a lab-scale packed bed storage system, with the main objective
of identifying economically competitive materials and configurations for efficient regenerative heat storage. For the newer
configurations, CIEMAT-PSA has 4-Al,0; commercial balls with two diameters — 9 and 13 mm —, and two densities — 2.3 and
3.5 g/em® — that allows different configurations to be analyzed.

Dynamics tests with 9 mm Al,O5 balls and 2.3 g/cm® have been carried out for air inlet temperatures near 400°C until 640°C.

In addition, a simplified dynamic model, whose formulation is widely assumed in the literature as reasonable to represent the
realistic thermal performance, will be used, in order to compare the experimental and predicted temperature profiles, during the
charging process.
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1. Introduction

Solar energy is not available constantly producing a net electrical output in inherent state of change. Moreover,
the energy demand of most domestic and industrial applications is also time dependent while the time of need
normally differs from the solar energy supply. Consequently, power plants needs may require a functional low-cost
storage of energy to mitigate the changes in solar radiation, to meet portions of these energy needs or demand peaks.

STPP with power tower technology based on air-cooled receivers are a promising technology, with a simpler
design, operational advantages, the potential for high conversion efficiencies and on the verge of commercial
receiver development [1]. This opens up good opportunities for a rapid market introduction. Commercial
implementation of power tower technology with open volumetric receiver depends among other factors on cost-
effective large-scale solutions for heat storage. It may be considered that the reference solution for thermal energy
storage continues being the TSA project tested at PSA in 1991. It consisted of a 2.5 MWy, volumetric air receiver
together with a thermal storage and steam generator. However, rather than aspects of storage design, the system
demonstration was in the focus of work. The storage was based on a packed bed of aluminum oxide in spherical
shape, providing a thermal capacity of about 1 MWh. The tested concept showed a fully functional behavior
although this system did not allow a direct scale-up to commercial size: high costs, in the order of 140 €/kWhy, [2],
for the high-purity aluminium oxide and increased thermally-induced mechanical loads during cyclic operation
represent the main barriers [3]. The heat storage of the Jiilich power tower plant [4] uses refractory in a stacked
arrangement and therefore avoids such mechanical issues.

This type of technology is based on sensible heat storage where thermal energy can be stored by rising or
dropping of temperatures of thermal storage media. The thermal energy stored in a mass of material can be
expressed as [5]:

For a material to be useful in a TES application, it must have good thermal capacity, 0-C » » and be cheap enough.
Another important parameter in sensible TES is the thermal diffusivity [5] that point out the rate at which the heat
can be released and extracted. Table 1 shows the main characteristics of the most commonly-used solid thermal
storage materials [5, 6] for medium to high temperature SHS applications.

Table 1. Solid-state sensible heat storage materials [5-6]

Storage materials Working Density Thermal Specific heat Volume Specific heat

temperature (°C)  (kg/m®) conductivity (kJ/kg/K) expansion (kWh"/m*/K)
(Wm/K) (107°/K)

Cast steel 200-700 7800 40.0 0.60 - 1.30

Silica fire bricks 200-700 1820 1.5 1.00 - 0.51

Magnesia fire bricks 200-1200 3000 5.0 1.15 - 0.96

Alumina (99.5%) > 750 3960 35.0 0.80 16.2 0.88

Cast iron (BS grade 3D) > 750 7800 - 0.54 324 1.17

High alumina concrete > 750 2400 - 0.98 43.5 0.65

Graphite (pure) > 750 2230 - 0.71 23.7 0.44

Magnesia (hot pressed) > 750 3565 - 0.94 24 0.93

Silicon carbide (hot pressed, > 750 3210 - 1.04 13.2 0.93

commercial purity)
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Regenerative heat storage provides a considerable design freedom and flexibility that is to be investigated [3].
One of the targets to be studied is the implementation of economically competitive materials and configurations for
efficient heat storage [7]. Therefore, CIEMAT-PSA has developed a lab-scale packed bed system as experimental
facility. This system could be operated in static and dynamic configuration. For the first one, the experimental loop
allows the characterization of effective thermo-physical parameters of the bed, material thermal conductivity,
thermal losses, stored energy, etc. for different filler materials while the second allows a quite-agile characterization
of the global storage at different working temperatures, filler materials, charges and discharges strategies, etc.

As a result, the main goal for this experimental capability is to analyze the feasibility of different materials as
heat storage for the packed beds, attempting to find economical materials that match the required thermal properties.
For large storage systems, specific costs for the storage sub-system under 20 €/kWhy, [8-9] seems to be possible in a
near future contrasting with the original 140 €/kWhy, in the Phoebus-TSA study [2]. And at the same time, it will
allow us to model the thermal behavior of this storage.

For the thermal verification of the packed bed, the testing facility is going to be operated with four different
alumina spheres, as it was the reference filler material used in the TSA project for the air technology verification.
Table 2 depicts the commercial characteristics and the expected energy density. It is expected to analyzed further
materials for comparison with the ones presented in this paper.

Table 2. Commercial alumina spheres characteristics

Material Size (mm) Density (kg/m®) Color Expected energy density (kWh/m®) Filler material cost ($/kg)
Alumina (70%) 9/13 2300 Light yellow 380 1.3
Alumina (99%) 9/13 3500 Pure white 580 1.6

This paper presents the dynamic results for 9 mm alumina spheres with 70% purity. The next experimentation
steps will analyze the remaining filler materials, after an improvement in the hot air extraction system. The tests
were divided in two phases:

o First, the thermal behavior of the tank was analyzed for an air inlet temperature nearly 600°C and different mass
flow rates.

e Second, the thermal behavior of the tank was analyzed for one mass flow rate and different air inlet temperatures.

Moreover, a mathematical equation that describes the behavior of the packed bed is presented.

Nomenclature

CR Central receiver

HTF  Heat transfer fluid

SHS Sensible heat storage

STTP  Solar thermal power plants

TES Thermal energy storage

Ratio between thermal losses area and tank volume, 1/m
Specific heat, J/kg/K

Filler material mean diameter, m

Mass velocity per unit area, kg/ m*/s

Inter phase heat transfer coefficient, W/m*/K
Volumetric heat transfer coefficient, W/m*/K
Thermal conductivity, W/m/K

Perimeter, m

Filler material mean radius, m

Time, s

Temperature, K

HT RIS QUL ®
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Velocity of the fluid, m/s

Global losses coefficient, W/m%/K
Thickness, m

Density, kg/m®

Porosity, -

R N el

Subscripts

amb Ambient
eff Effective

f Fluid
S Solid
th Thermal

2. Experimental TES system prototype

The experimental packed bed TES prototype designed by CIEMAT-PSA is composed by an insulated stainless
steel vessel filled with 0.1 m® of 70% alumina spheres with 9 mm diameter. Fig. 1 shows the TES in static
configuration and the vessel filled with alumina spheres, before the lid application.

—

Fig. 1. Packed bed in static arrangement (left), Vessel with thermocouples distribution inside the filler material (right)

The packed system is equipped with 35 K-type thermocouples units of 400 mm long located at 7 levels with 5
measurements each level. At each level, the thermocouples record the internal temperature during the test at
different depths. Moreover, 5 PT100 surface sensors record the external temperature of the packed bed, for the
thermal losses evaluation.

Air is the fluid that carries the energy and circulates through the packed bed delivering or recovering the energy.
There are two possible circulations through the tank, charging or discharging. During the charging process, hot air
circulates from the top to the bottom of the tank delivering the energy to the solid media. During the discharging
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process, the fluid flow is the opposite, and cold air (ambient or exhaust air) is pumped through the packed bed from
the bottom to the top of the tank leaving the tank at a higher temperature, recovering the thermal energy previously
transferred. The flow direction is important since, for the single-tank TES system concept, thermal stratification is
achieved and maintained over the time exploiting the buoyancy effect of the air contained into the storage [10].

In order to simulate the solar radiation absorbed by the volumetric receiver, the hot air is provided by a 15 kW
electric heater. For the evaluation of the thermal efficiency during the charging/discharging steps, the total electrical
energy consumption is registered.

The tests carried out are summarized in Table 3: test 1-to-4 for an air inlet temperature of approximately 570°C
and four different mass flow rates, and test 5-to-8 for an almost constant air mass flow rates, in between 63-69 kg/h,
and four different air inlet temperatures.

Table 3. Tests carried out at constant air inlet temperature (1-4) and constant mass flow rate (5-8)

Test 1 2 3 4 5 6 7 8
Tair inets (°C) 570 570 570 570 430 500 570 640
m, (kg/h) 38 54 66 75 69 69 66 63

3. Thermal evaluation and model description

Various charging tests for different mass flow rates and air inlet temperatures, with 9 mm 70 % alumina spheres,
have been performed to check the thermal behavior of the TES prototype. During the tests the mass flow rate was
not measured directly. An indirect measurement was calculated with the information of the heater power and the
induced temperature increment, as follows:

. Power

cpuir ) AT (2)

The instantaneous amount of energy stored in the packed bed during the process has been calculated to study the
thermal efficiency during charging/discharging processes. The expression used for the energy calculation is:

Qstored = m.cpm,_ .At.(]—;’n,tank - T;)ut,tank) (3)

Finally, for the evaluation of the material thermal behavior, the charging efficiency was computed as the ratio
between the total stored energy in the tank and the total energy consumption during the process.

tond

stored.dt
_ b
ncharging - = (4)

consumption

Model the behavior of the tank, based on the experimental data, is an important tool to predict the performance of
the tank under different conditions or even to study larger prototypes. The thermal behavior of the tank is described
by the local thermal non-equilibrium equations [11], which describe the heat transfer between the fluid and the
packed bed (Eq. 5 and Eq. 6). The energy balance equations for the porous filler material and air can be written as:

o,
(1-e}poc, —

o°T
=(1- g)ks-gj +h (1, -1 )
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oT, oT, o°T,
epre, o tupre, L= ek L -1)) ©

The Biot number is defined as the ratio of resistances due to particle conduction to the one due to convection. The
solid particle temperature gradients are generally ignored when the Biot number is less than 0.1 [12].

_iD

Bi=
2k,

(N

For the determination of the convective heat transfer in the packed bed, between the solid and the fluid, the
expression of Gunn [13] is adopted as it is typically used for packed beds:

}Z—D = (7-106+58)(1+0.7-Pr'"* Re?? )+ (1.33 - 2,45 —1.2:67 ) Pr'/* Re?? ®)

S

With the aforementioned expressions and an assumed thermal conductivity for the 70% purity alumina balls of
15 W/m/K, the Biot number is nearly 0.02, below 0.1. For this reason, a simplified uni-dimensional mathematical
model is presented, considering that the air temperature and the filler material temperature are almost the same. The
energy balance equation can be written as:

or o o°T
(ec, )eff'a—tf +elpe, )f'”f-'a—; =ky—s~Uall-T,,) ©)

To simplify the analysis, the following assumptions are made:

The heat transfer by radiation between pebbles is not considered,

The thermal properties of fluid and solid are kept constant within the charging/discharging process,
The temperature of TES varies along the axial direction,

The heat transfer coefficient though the chassis is kept constant during the storage process.

With the implementation of the differential equation in Matlab the numerical model can be run under different
conditions.

4. Results

Fig. 2 represents the average temperature profile at each height during the charging process for different air mass
flow rate (38-75 kg/h) for 9 mm 70 % alumina spheres. With the present placement of the thermocouples (Fig. 1),
94 % of the measurements are less than 5 % dispersion to the average value presented. The air inlet temperature for
all these cases was increases progressively from ambient to a maximum of nearly 570°C. Tests were performed until
all the tank levels were under stationary state. Level 0.5 corresponds to the air inlet temperature while level 0
corresponds to the air outlet temperature.
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Fig. 2. Temperature profiles along tank height at different times during a charging process for: (a) first 38 kg/h, (b) second 54 kg/h, (c) third 66
kg/h, (d) fourth 75 kg/h.

The values obtained for the thermal charging efficiency, according with the eq. 4, of the test carried out are
showed in the Fig. 3 and Fig. 4
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Fig. 4. Charging efficiencies for different air inlet temperature and an

Fig. 3. Charging efficiencies for different mass flow rates with an inlet
air mass flow rate of approximately 67 kg/h

air temperature of 570 °C

For a maximum air inlet temperature of 570°C and different air mass flow rates the maximum charging efficiency
is 80.7% for test 2 (Fig. 3). For higher or lower values of the air mass flow rate the thermal behavior of the tank is
worse, with it’s explained for a poorest heat transfer through the packed bed. Specially significant are the results of
test 4 with an air mass flow of 75 kg/h, where the heat transfer is very poor, reducing considerably the residence
time of the HTF into the packed bed, (test 4 presents two times the velocity of test 1).

On the other hand, for an almost constant air mass flow rate, 67 kg/h, and different air inlet temperatures (430-
640°C), the maximum charging efficiency is 80.3% for test 6 (Fig. 4). Test 5 presents similar efficiency to test 6, but
for higher air inlet temperature the charging efficiency decrease, mainly because of the thermal losses through the
chassis of the packed bed. Table 4 shows the maximum efficiencies for the test performed.
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Table 4. Maximum charging efficiency for the tests carried out

Test 1 2 3 4 5 6 7 8
Maximum charging thermal efficiency, (%) 79.2 80.7 786 664 79.5 80.3 78.6 74.7

Further experimentation is being carried out to analyze other possible materials and configurations with the aim
of identifying cheaper materials and/or configurations of materials, that make TES using air as HTF a competitive
option.

With the aforementioned numerical model, a comparison for test 3/7 is carried out. Fig. 5 depicts the results
between experimental (exp) data of temperature distribution into the packed bed (solid line) with the numerical
(numer) simulation results (dashed lines).
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Fig. 5. Temperature profile in the packed bed, experimental (exp) and numerical (numer), during a charging process for test 3/7

The main differences between the numerical model and the experimental data are due to the assumption in the
model that the air inlet temperature into the packed bed is at a constant 570°C (horizontal dash dark blue line), while
in the experimental test bed the inlet air does not achieve the target temperature until minute 500 (solid dark blue
line). Moreover, even though simulations results and experimental data curves are not overlapped, specially during
the transient state, the temperature gradients are well described by the uni-dimensional equation.

Other reasons for which the experiment and the simulation do not match are that the thermal losses through the
chassis of the storage system are kept constant (temperature independent) for the whole axial length. This
simplification should not introduce much uncertainties as the thermal losses were evaluated at an average chassis
temperature, but surely that the introduction of a temperature dependent convective heat transfer between the chassis
and the ambient would improve the numerical estimation. Moreover, an important simplification is related to the
thermal properties of the fluid and the solid, considered thermal independent. In the case of alumina, the
simplification is quite acceptable, as the thermal properties presents a slight variation over the temperature range but
for the air used as HTF the variation in the working range (20-600°C) is large enough to influence over the
numerical results.
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5. Outlook

Due to the possibility of achieving the envisaged specific costs for the storage sub-system under 20 €/kWhy,, this
paper describes a lab-scale packed bed storage system developed by Ciemat-PSA with the main objective of
identifying economically competitive options on materials and geometries for regenerative heat storage using air as
HTF.

First dynamic tests with 9 mm 70 % alumina spheres, have been performed to check the behavior of the TES
facility during different charging strategies. Results for the packed bed under different working states have been
presented. A maximum charging efficiency of 81% for 9 mm 70 % alumina spheres during the charging process
occur for an air inlet temperature of 570°C and an air mass flow rate of 54 kg/h. One of the objectives of the facility
is to study cheaper materials with moderate energy densities, to analyze the compromise between the material cost
and store energy, with the objective of find economical solutions for future plant developments.

Furthermore, a numerical model has been described and checked with the experimental results. Some
discrepancies are observed and justified. The main necessaries improvements are due to the fluid thermal properties
and the thermal losses through the chassis that should be considered temperature-dependent. Moreover, the radiative
heat transfer mechanisms have to be implemented, due to the high working temperatures, which should increase the
model confidence.

Future works will study deeply the influence of the radial component, discharging strategies and the remaining
filler material and will present transient calculation with no air flow to determine how long the thermocline can be
maintained.
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