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A B S T R A C T

In order to prove the capability of operational cameras in nuclear fusion devices, the videos from the cameras
at JET were used to detect the occurrence of MARFEs, an edge plasma phenomenon. Three techniques were
tested in this work: two already reviewed in other publications and a new one based on intensity masks. Once
these methods were validated, their output was used to develop several Machine Learning models to improve
performance. A final Machine Learning model was devised using both data from the operational cameras and
several signals and diagnostics from other instruments at JET. The outcomes achieved using all the methods
presented were deemed satisfactory, leading to the final Machine Learning model exhibiting an impressive
accuracy rate of 96.9%. Furthermore, the models allow for detection both in frame by frame (if only video
data is used) and in 2 ms time steps should all diagnostics be used.
1. Introduction

In the realm of energy prospects, nuclear fusion emerges as the
flagship of clean energy for the future. With its promise of being a sus-
tainable and nearly limitless resource, nuclear fusion holds tremendous
potential. This process involves the fusion of light elements, primarily
helium (He), deuterium (2𝐻), and tritium (3𝐻), resulting in the release
of vast amounts of energy. To recreate the extreme conditions necessary
for these reactions, plasma — an ionised gas generated by electrical
currents — is employed in experimental nuclear fusion devices. Among
these devices, JET stands as the largest operational tokamak of its
generation, before ITER and JT-60SA, which has started its operations
recently. To gain a better understanding of various physical phenom-
ena and develop effective control mechanisms, multiple diagnostic
tools have been implemented. This paper will specifically explore the
significance of operational cameras as valuable diagnostic tools.

Operational cameras possess substantial untapped informational
value, despite being underutilised in comparison with other diagnostics
in several nuclear fusion devices. In this paper, the value of these
operational cameras for plasma diagnostics will be proven by analysing
the detection of MARFEs (Multifacetic Asymmetric Radiation From the
Edge2), an edge plasma phenomenon with data taken directly from
JET’s operational cameras.

∗ Correspondence to: Av. Complutense, 40, Moncloa - Aravaca, 28040 Madrid, Spain.
E-mail address: alejandro.gonzalez@ciemat.es (A. González Ganzábal).

1 See the author list in J. Mailloux et al. 2022 (https://doi.org/10.1088/1741-4326/ac47b4).
2 See Appendix B for a list of all the acronyms used.

After a brief introduction regarding MARFEs as a physical phe-
nomenon and JET’s operational cameras (Sections 1.1 and 1.2, respec-
tively), this paper will delve into the construction process of the MARFE
database in Section 2 and will examine various detection models de-
veloped exclusively for this work (see 2.1) or adapted from existing
publications by other authors (2.2 and 2.3). Furthermore, models with
Machine Learning architecture were also created and will be explored
in Section 3. Subsequently, we present the derived results and conduct a
comprehensive analysis of the predictions, drawing comparisons among
them in Section 4. The final conclusions of this work can be found in
Section 5.

1.1. MARFE

MARFEs are low-temperature, high-density regions that appear at
the plasma periphery when the electron number density surpasses a
critical threshold. Adjusting parameters such as the plasma current or
reducing lighter impurities can increase this threshold as it was exper-
imentally found [1]. Understanding these manipulations is crucial for
studying MARFE properties and behaviour. Previous studies [1,2] have
examined the effects of MARFE on the main and edge plasma, revealing
significant changes in the peripheral region, but not so many in the
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Fig. 1. Figure shows the view from the KL1-O8WA camera, alongside the schematic view inside the chamber. A review of the main areas present in the simplified view can be
found in Appendix B, albeit not all of them are relevant for this work.
main area. In tokamaks, discharges with MARFEs are strongly linked
with disruptions (a violent event in which the magnetically confined
plasma is forced into termination as a consequence of instabilities)
due to the action of neutral particles. These particles migrate towards
the plasma edge region, triggering ionisation, charge exchange, and
recombination processes [2], which can lead to instabilities and the
plasma termination. The detection of MARFEs is crucial to avoid and
control disruptions, a critical field of research, since these events may
severely damage the nuclear device.

The shift in temperature results in a radiation flow that can be ob-
served with the cameras of the device. Some authors [3–5] have already
developed techniques that take advantage of the videos generated. Out
of these, one has been replicated in this work and the other has been
used as a starting point to develop a similar detection method. A third
method based on intensity masks has also been developed ad-hoc for
this paper. As a last step, and in order to improve the results of the
3 tested method, several Machine Learning models were trained and
tested.

1.2. JET’s operational cameras

Only one of the operational cameras, labelled KL1-O8WA [6], has
been used for this work. This is a wide angle, COHU colour CCD-based
camera that operates in the visible spectrum [7] with a frame rate
of near 42 ms and a fixed resolution of 576 × 720 pixels. For each
experiment produced in JET (usually called pulse or discharge), a video
of 1050 frames is recorded. These videos can be synchronised with
other real time signals and alerts by converting the frame rate into real
time with 1D time arrays also available for each pulse. For the sake of
simplicity, unless otherwise specified, whenever a video/video event is
mentioned, it should be considered that it has been already properly
synchronised. Fig. 1 [8] offers a visual glimpse into the captured video
footage from these cameras, and it is accompanied by an illustrative
scheme of the octant. In the KL7 view, the divertor (visually accentu-
ated in orange) fulfils its purpose as a specialised segment within the
vessel, tasked with waste collection. Within this context, the divertor
serves as the focal point for observing the primary plasma dynamics
under normal operational circumstances, channelling and absorbing
the predominant heat load while ensuring the protection of critical
neighbouring areas.

MARFEs and other instabilities will appear near the areas marked
as IWGL (Inner Wall Guard Limiter) and UIWP (Upper Inner Wall
Protector). In this paper, for the sake of simplicity, these zones will
be labelled as the High Field (HF) area. Thus, in our case and as proof
2

of principle, a MARFE occurrence will be characterised on video by a
rapid flux of radiation from the divertor to the HF.

As an example, Fig. 2 depicts the observation of a MARFE: the
radiation from the plasma moves quickly from the divertor area to
the High Field (frames 2 to 4), and remains there for the rest of the
pulse. An increase of intensity can be noticed once the MARFE has been
set, starting from frame 13. To simplify the illustration, a selection of
relevant frames was chosen to depict the sequence of interest while
minimising the total number of frames presented.

In addition to the data from the operational cameras, and in order
to evaluate how other signals and diagnostics can be used to improve
the MARFE detection, other sources of data were used. A collection of
other signals was added (see Appendix A), alongside several electron
temperature curves and electron density profiles measured alongside
different points over the radius of the torus. This combination of data
from JET’s signals and the videos from operational cameras has already
been used in other analysis with good results [9].

These signals were resampled using interpolation with the previous
neighbour, as other interpolation methods could potentially trigger an
alarm without detecting proper anomalies accurately in one of JET’s
instruments. JET’s alarms are managed through PETRA,3 a security
framework connected to JET’s Real Time Protection Sequencer (RTPS),
which prevents disruptions utilising mitigation processes [10] relying
on real time data from its instruments. The signals were resampled with
a time step of 2 ms, which is the same time step used by PETRA.

The importance of these operational cameras lies in three funda-
mental points:

• Economical Advantage: compared to the experimental cameras
integrated within the JET framework, these operational devices
present an economically convenient option. In terms of compu-
tational power and disk storage, operational cameras are also
more convenient to work with, as the videos from experimental
cameras can be up to 2.3 times larger and might not cover the
complete duration of the discharge.

• Full Plasma Insight: operating within a broad field of view, these
cameras comprehensively capture essential plasma data for di-
agnostic analysis. This obviates the need to depend on imagery
from several video sources. More advanced cameras, like the
experimental fast cameras that also capture the full view of the
chamber do not record the whole pulse (such as KL8-EW8 A

3 Plasma Events TRiggering Alarm.
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Fig. 2. Figure shows the record of a MARFE obtained from the JET camera for discharge 94 905.
or KLDT-E5WC) but simply a few seconds depending on the
configuration that was set for the discharge (i.e: for pulse 94 626,
the full discharge is recorded for KL1-O8WA and only half a
second for KL1-E8WA).

• Simplicity: video acquisition by operational cameras is usually
easier, which makes it possible to guarantee that the pulses have
an associated video. Other more complex cameras do not have
videos available for all discharges during the full pulse. The
configuration for the operational cameras is not modified between
pulses, thus guaranteeing homogeneity, which is vital for working
with Machine Learning techniques.

2. Methodology and database

To develop and evaluate the methods proposed, we gathered a
database with 104 pulses. Each discharge was meticulously analysed by
manually examining video footage and assessing the Mode-Lock signal
and the plasma current. Special attention was put into identifying the
starting and finishing times of sudden changes correlated with observed
instabilities in the High Field. Among the 104 pulses, 27 showed no
visible MARFE. In case of doubt, and to ensure proper diagnostic of
a MARFE occurrence, the session logs for the discharges were also
consulted.

After completing the dataset, three methodologies based entirely on
direct experimentation with the videos were developed and evaluated.
To refine each technique, 80 discharges were carefully selected, while
the remaining 24 discharges were used for testing. These approaches
utilise direct data from the video to make the MARFE detection. After
the detection, all the data that has been used is stored into files that
can be used for new Machine Learning techniques (see Section 3). All
these methods produce a binary alarm (1 for presence, 0 for absence)
indicating the presence of a MARFE in a discharge and a binary array
that uniformly classifies all video frames for every pulse that can be
easily synchronised in time with the video and other physical events.

2.1. Method 1: analysis of intensity masks

This method consists on evaluating the average intensity of the
video frame by frame in two separated masks. One of the masks
evaluates the divertor area, which is where most of the intensity is
focused under normal conditions in the video, while the second mask
focuses on assessing the High Field region, which is more susceptible
to the occurrence of MARFEs.

To create these masks, the videos of several discharges were evalu-
ated. First, the divertor mask was created by grouping several frames
right before a MARFE by multiplying the image matrices. This will be
referred as the divertor mask. Similarly, the frames after a MARFE of
3

Fig. 3. The figure shows the two masks used in the process of detection via masks.
The blue mask corresponds to the divertor mask, and the green mask corresponds to
the MARFE mask.

each pulse were selected and added in a similar way. The divertor
mask was subtracted from this MARFE mask to avoid confusion. A
noise threshold was imposed to both resulting images. Finally, the two
masks were binarised by applying an auto-clustering algorithm to both
images.

In the analysis process, both masks are applied to each frame of
the video. The occurrence of a MARFE/HF instability is anticipated
when the average intensity of the MARFE mask exceeds that of the
divertor mask. Fig. 3 visually depicts the appearance of both masks
on a single video frame, utilising a two-colour scheme to differentiate
between them.

An example of how this technique operates with a discharge can be
seen in Fig. 6(a).

2.2. Method 2: analysis of regions of interest

For this method, the technique published in [3] has been repro-
duced. This approach is based on the analysis over time of the average
intensity of certain ROIs (Regions Of Interest of size 2 × 2 pixels)
distributed over all video frames. The positions and sizes of the ROIs are
the same as in the original paper [3], which used genetic algorithms to
search the optimal sizes and placements. The average intensities of the
ROIs are then evaluated over time for all video frames, and whenever
a shift of intensity is detected for one or several ROIs with respect to
the one from the divertor, a MARFE/HF phenomena is considered for
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Fig. 4. Figure shows one video frame in which each ROI has been marked. Although
the size of each ROI is 2 × 2 pixels, the area marked is bigger to make it easier to
spot.

these frames. The different ROIs are shown in a video frame in Fig. 4,
following the colour scheme used in its plotting example in Fig. 6(b).

It should be noted that with both this method and the one described
in 2.1, a standard normalisation procedure was performed to scale the
measures (simply dividing them by 255). The results do not change if a
normalisation process is applied, as the rules for a detection are based
on intensity shifts and their ratio to a general threshold. For values
below that threshold, the intensity is not evaluated, as it is considered
noise.

2.3. Method 3: analysis of KNN-based regions

This approach employs a K-Nearest Neighbors (KNN) algorithm
to divide frames into two distinct regions based on their brightness
levels. The KNN algorithm separates a set of data points into 𝐾 non-
overlapping clusters based on the likelihood of each element of belong-
ing to a certain cluster [11].4 It measures intensity, centroid displace-
ment, and number of pixels in the brightest KNN region within the High
Field, marked as a rectangular mask created manually to define this
area. It is an updated version of a previously published method [5],
with additional information for improved detection. This method con-
siders an HF phenomenon whenever there is a shift in intensity between
the high field and the outer part of the frame, an overlap between the
HF and the bright region (measured in number of pixels) and a sudden
change in the position of the intensity region centroid. Unlike other
approaches, it evaluates intensity, position, and displacement modulus
of the region, not just the displacement magnitude.

Two preprocessing techniques for the video frames were considered
for this method in order to check if detection could be enhanced:

1. Whether or not use normalisation: as mentioned above, normal-
isation would allow to use this method in real time. To evaluate
this proposal, a set of maxima and minima values was obtained
by running the algorithm with 30 pulses. These values were used
to normalise the output value for each frame.

2. Whether or not performing denoising techniques to each frame
in order to improve the results. The algorithm chosen was
‘wiener2’, which compares the statistical information of each
pixel and its surroundings with the statistics of the complete
image to produce a filtered image through estimation [12],
similar to signal processing denoising techniques. A comparison

4 See Chapter 10.3.1.
4

Fig. 5. The Figures show a comparison between the same video frame with 5(a) and
without 5(b) running the denoising algorithm.

between a video frame with and without running the denoising
algorithm can be seen in Fig. 5.

None of these two considerations seemed to improve the detection
rates, so the definitive KNN regions were created without normalising
and without the denoising algorithm.

2.4. Example of MARFE detections

The output for the three aforementioned models can be seen in
Fig. 6, alongside all the variables used for the prediction. In the Figure,
the three methods are compared in time, highlighting the detected
MARFE at roughly the same time (near 𝑡 ≈ 54.5 s). Thus, in Fig. 6(a)
the MARFE is detected when the intensity of the HF mask surpasses
the intensity of the divertor mask. In Fig. 6(b) the intensity of the ROI
corresponding to the divertor decreases drastically and it is surpassed
by the intensity of the ROIs located over the IWGL. The pixel coordi-
nates shown in the legend of Fig. 6(b) are referred to the video frame
coordinates, as seen in Fig. 4 and uses the same colour scheme.

Lastly, in Fig. 6(c) the intensities inside and outside the HF are
shown, as well as the number of pixels inside the HF and the modulus
of the displacement vector of the centroid. It should be noted that these
variables have been normalised for easier representation. It can be seen
how the data registered from the intensities correlates with changes in
the KNN-generated bright region and with the MARFE detection times,
as expected.

In all three detection methods, there is a small increase in the
intensity of the divertor area after the first MARFE detection. This
phenomenon may arise because the MARFEs are not effectively sta-
bilised within the HF; instead, they oscillate between the HF and
the divertor regions. This is why a correction routine is executed to
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Fig. 6. Examples of the three methods used for non-statistical detection for a given pulse, in this case, 98 392. 6(a) corresponds to the mask method, 6(b) depicts the ROI method,
and 6(c) refers to the KNN method.
avoid disjointed detection times (cases with consecutives zeros and
ones that might arise due to noise or other factors without any further
utility or physical meaning), which produces smooth and homogeneous
detection intervals.

3. The machine learning techniques

After executing all the existing methodologies on the complete
dataset and with the objective of obtaining better and more detailed
results, three distinct Machine Learning models were formulated. These
models use the binary results from the predictions produced by each
method to classify pulses 3.1 and the frame-by-frame data generated for
each discharge (3.2, 3.3), respectively. This data is stored in separate
files created every time a discharge is evaluated with the methods
described before (2.1, 2.2, 2.3) and contains the information used
in each method. The architectures of the models, as well as their
hyperparameters, were obtained by optimisation functions.

3.1. Binary model

The first model implemented is built upon a kernel logistic regres-
sion framework. Logistic regression is a Machine Learning technique
5

that estimates the probability for a given data point of belonging to
a certain class using a linear regression. By also using the kernel
approach, the data points are first portrayed in a higher dimensional
space [11].5

The objective of this model is to classify individual pulses into two
categories: those exhibiting a MARFE (1) and those that do not (0).
This model utilises the three final binary outputs obtained from the
previous methods as input features. The purpose of this approach is to
address any potential biases inherent in each individual technique by
aggregating their final predictions. Consequently, the model is trained
using a dataset comprising the 104 observations, which are divided
into a 70% training set and a 30% testing set (including 8-fold cross
validation). Thus, each of the 104 observations will be characterised
by the three final binary alarms of the methods described in 2.

5 See Chapter 4.3: Linear Regression.
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3.2. Video-based models

A second model, in this case, a neural network, was developed
with a database created with all the video data extracted by the non-
statistical approaches, which allowed to create a larger dataset capable
of frame-by-frame MARFE detection, instead of relying on classifying
entire discharges. This database consists of 1854 observations, 861 of
these being labelled as having MARFEs, with a total of 10 feature
vectors per discharge:

• Columns 1–2: the mean intensities of the MARFE mask and the
divertor mask for each frame.

• Columns 3–8: the mean intensity over time for each ROI for each
frame.

• Columns 9–10: the modulus of the displacement of the bright KNN
region and the number of pixels in the bright KNN region that
overlap with the High Field region.

The intensities used in the KNN-based method were neglected, as
they were deemed redundant, since both the mask and ROI approach
already made use of average intensity values. The neural network has
a single fully connected hidden layer with 188 neurons with a relu
activation for the hidden layer and a softmax activation for the output
layer.

To compensate for the more computationally demanding KNN-
based method, a second neural network was created with the same
database as the prior model. In this case, only the intensities from the
masks and ROI approaches (8 feature vectors for 1854 observations)
were considered. Both neural networks employ a 70%/30% training-
test split, with a 20-fold cross validation set. The resulting architecture
of the neural network consists of three fully connected hidden layers
with sizes 147-1-4, with an hyperbolic tangent activation function and
again, a softmax output activation, with a LBFGS optimiser.

3.3. ‘‘Comprehensive’’ model

A third and final Machine Learning method, this time with a KNN
(not to be mistaken with the method presented in 2.3) architecture
was devised. This time, the video data from all the aforementioned
techniques is used alongside the data from several diagnostics and
signals from other instruments at JET, including electron temperature
curves and electron number densities profiles over several lengths over
the torus. An example of some of these signals can be found in Fig. 7.

All the data for this model has been resampled to 2 ms time step as
mentioned in 1.2. The final, normalised datasets for every pulse have
the following structure:

1. From columns 1 to 28: feature vectors from several JET instru-
ments and alarms. The complete list can be found in Appendix A.

2. From columns 29 to 40: the data extracted from using the three
video-based algorithms. These are the same feature vectors that
have been used in 3.2.

3. Columns 41 to 103: the electron temperature curves.
4. Columns 104 to 166: the electron number density profiles.
5. Column 167: target variable: 1 if MARFE, 0 otherwise.

Unfortunately, since not all the desired signals are available for all
the JET discharges presented in the database, some pulses had to be
removed. This final database contains a total of 1509 observations (761
with MARFE, 748 without) from 69 discharges, with a train–test split
of 70%–30% with a 20-fold cross validation batch.

4. Results

The forthcoming section delves into the outcomes derived from the
aforementioned methodologies elucidated in the preceding chapters.
Furthermore, this section encompasses supplementary observations and
comprehensive conclusions that can be gleaned from each method.
6

Fig. 7. Plots show an example of electron number density profiles 7(a) over the torus
at four different times and the evolution over time of three normalised real time signals
7(b) over time.

4.1. Fluctuations of intensities in the mask method

Since the mask method hinges upon the average intensity values
within each mask, a straightforward assessment of the mean intensity
passed from the divertor to the MARFE detection mask can be per-
formed. For this purpose, the average intensity of the divertor mask
is subtracted from the divertor mask in the frame in which the MARFE
has been detected. The absolute values of these intensity differences
have been meticulously illustrated in Fig. 8 alongside their disruptional
behaviour.

MARFE detections with intensity shift values exceeding 100 (mean
pixel intensity) are observed to be disruptive, characterised by ex-
ceptionally bright and rapid MARFE events or instances where video
recordings experienced issues like a complete white screen. Conversely,
non-disruptive MARFEs typically exhibit low intensity shifts, indicating
a relatively dim region within the mask that still qualifies as a MARFE.
These cases, often referred to as ‘soft MARFEs’ or ‘soft-landing MAR-
FEs’ in JET log files, are characterised by slow MARFE progression,
frequently occurring near the divertor.

4.2. Intensity loss at divertor area

Examining the data from the ROI closest to the divertor (light blue
in Figs. 4 and 6(b)) in comparison with the mean intensity after the
MARFE for can give information regarding how sudden the shift in
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Fig. 8. Figure shows a bar plot with the intensity shifts detected. The red bars indicate
that the given pulse was disruptive.

Fig. 9. The bar plot depicts the intensity shift values for the divertor area for the
MARFE pulses in the database.

intensity was in the moment of the detection. Fig. 9 shows the results
for the database, emphasising between disruptive and non-disruptive
pulses.

Again, it can be seen that all the pulses with an intensity shift
greater than a certain value are always disruptive. In addition, it should
be noted that all pulses with MARFE and with a negative value (cases
in which the divertor value did not decrease right after the detection)
are non-disruptive. Sadly, there are not enough occurrences of this
phenomenon to properly study it in this database.

4.3. KNN regions analysis

As stated in 2.3, the KNN approach is based in both the mean
intensity of the HF and the results obtained from running a KNN region
algorithm in each frame. Given that the previous methods have already
employed intensity shifts in a more comprehensive manner, the focus
of comparison will now be on the modulus of the displacement vector.
Fig. 10 shows the displacement vector (in pixels/frame) of the main
centroid of the first frame with MARFE according to the KNN method.

The most noticeable result is the clear correlation between the
obtained negative values with disruptive pulses. A negative value, in
this context, indicates that after a fast movement of the region centroid
over the frame, it remained in the same position, which would indicate
a very fast radiation flux that stays localised in the nearby area of
7

Fig. 10. Bar plot shows the different values for the displacement vector (in
pixels/frames) for pulses with MARFE for both disruptive and non-disruptive pulses.

Fig. 11. The graph shows the results obtained for each method in classifying MARFE
based on videos.

the video frames. Similarly to the case with the divertor’s intensity
shift, there are not enough pulses in which this happens to make a
statistically relevant conclusion.

4.4. Results for classification

In Fig. 11 the classification outcomes for individual pulses derived
from the three primary approaches are presented. The figure illus-
trates the distribution of True Positives (TP; the MARFE was properly
detected), False Positives (FP; there was a detection, but no MARFE
was identified), True Negatives (TN; no detection and there was not a
MARFE), and False Negatives (FN; no detection, but it was labelled as
a MARFE occurrence) within the dataset returned by each model not
based on Machine Learning. In order to consider a proper detection, the
returned times must partially overlap with the detection times found
when creating the database.

The overall accuracy values of each method are 0.885 for the KNN
method, 0.904 for the ROI method and finally, 0.914 for the mask-
based approach. These accuracy scores have been calculated using
Eq. (1), where 𝑁 is the number of predictions.

𝑎𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑁

(1)

The three techniques score similarly but interestingly enough have
some visible differences when comparing their confusions matrix val-
ues.

Regarding the Machine Learning models, the accuracy for training
and testing for each model can be found in Table 1.
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Table 1
Table shows the results for the Machine Learning models. The second Video-based
model (marked with *) stands for the video-based model without any data from the
KNN model in its feature vectors.

Model Train acc. (%) Test acc. (%)

Binary model 93.2 90.3
Video based 94.7 94.6
Video based* 93.2 94.2
Comprehensive 98.4 96.9

Table 2
Table shows the results for the True Positives, True Negatives, False Positives and False
Negatives for the different Machine Learning techniques for the testing dataset. Again,
Video based* stands for the video based model without data from the KNN model.

Model TP TN FP FN

Binary model 21 7 3 0
Video based 244 282 3 7
Video based* 239 272 5 15
Comprehensive 206 227 2 4

Table 3
Table shows the results for the prediction of MARFEs and soft-landed MARFEs. Again,
the second video-based* model stands for the model without KNN-region analysis data
in its feature vectors.

Model Arch. Train acc. (%) Test acc. (%)

Video based SVM 95.5 91.2
Video based* SVM 94.6 93.3
Comprehensive KNN 99.3 98.0

Table 2 shows in a more detailed way the distribution of TP, TN,
P and FN of the Machine Learning techniques for the testing data.

After conducting thorough tests on the aforementioned classifi-
ation methods and achieving satisfactory results, a subsequent ex-
eriment was formulated to assess the capability of these models in
istinguishing between the two types of MARFEs: the soft landed
ARFEs (described briefly in 4.1) and the ones more likely to disrupt

he plasma, which are also more common.
Following the scheme in Table 1, three different models were cre-

ted: two based solely on video data (including and excluding the
nputs from the model based on KNN-generated regions) and a final
odel with all 166 feature vectors (as in 3.3). The results for the

rchitecture and accuracy in the training and testing sets can be found
n Table 3. The base dataset for the training of these models is the
ame as the one used for the training of each model for the Machine
earning methods previously described. The only major change is that
he target variable now differentiates between no MARFE, MARFE and
he soft-landed MARFE. Again, the architecture and hyper-parameters
ere obtained via optimisation functions.

Fig. 12 shows the confusion matrices for all the three classification
odels for no MARFE (marked as 0), MARFEs (labelled as 1) and

oft-landed MARFEs (labelled as 2). While the prediction results are
utstanding, more inputs for soft-landed MARFEs can be added to
mprove the database.

. Conclusions

This work summarises key findings achieved by establishing a
ARFE database from JET pulses and analysing operational cam-

ra data, resulting in effective MARFE classification. These outcomes
mphasise the significance of operational cameras for detection and
uggest broader applicability, including for tokamaks like ITER or
T-60SA.

In this research, three methods were used to classify MARFEs:
pplying masks to frames with a 91.4% accuracy, analysing Regions of
8

nterest with 90.4% accuracy (as previously published), and tracking
KNN-formed regions with 88.46% accuracy, albeit computationally
intensive.

These methods not only offer accuracy but also valuable insights
into the discharge process. For example, the mask-based approach ex-
amined average intensity differences between the High Field and diver-
tor regions during MARFEs, revealing a disruptive behaviour threshold.
Additionally, tracing the intensity centroid’s movement aids in identi-
fying the main intensity blob and studying radiation flux dynamics.

The data produced by the previous methods and their outputs
was used to create Machine Learning models. The first model utilised
a kernel logistic regression architecture and binary results from the
MARFE detectors as inputs, achieving a test accuracy of 90.1% for
classifying discharges. However, this model did not demonstrate sig-
nificant improvement over non-statistical approaches regarding pulse
classification.

The second model utilised all the frame-by-frame information from
intermediate files generated by the non-statistical techniques to create
a comprehensive video dataset. This dataset was used to train a neural
network model, enabling frame-by-frame prediction of MARFEs with
a test accuracy of 94.6%. To address the computational demands of
the KNN-based approach, a secondary neural network was designed
using inputs solely from the mask and ROI methods, resulting in a test
accuracy of 94.2%.

These results indicate that the video data obtained from JET’s
operational cameras is a reliable and valuable source of information
for MARFE detection.

The third and final Machine Learning model, utilising a KNN-based
architecture, incorporated data from previous videos alongside other
JET instruments and diagnostics to create a new dataset of 166 feature
vectors. This model achieved the highest testing accuracy for MARFE
detection with a score of 96.9% in time steps of ms.

Additionally, extra Machine Learning models were created to dif-
ferentiate between MARFEs and soft-landed MARFEs, not linked with
disruptional behaviour, obtaining excellent results. For video only mod-
els similar in database design to the ones previously described, a test
accuracy of 93.3% was obtained. Another ‘comprehensive’ model with
166 distinct feature vectors was created emulating the first dataset that
incorporated additional JET signals, which obtained a final test score
of 98%.

6. Future work

After reviewing the technique explained in this work, it is evident
that they offer distinct advantages for effective implementation with
existing technology. To enhance and apply these techniques further,
three discernible avenues are proposed:

1. Real-Time Validation: A crucial step forward involves subjecting
the carefully developed models to rigorous real-time scenarios
that encompass a diverse range of JET discharges. This robust
validation process will aim to definitively establish their suit-
ability for direct integration into real-time operations, mirroring
the well-established PETRA framework.

2. Expanding the MARFE Database: Notably, the methodologies,
particularly those rooted in Machine Learning, have demon-
strated remarkable effectiveness when exclusively applied to
video files. Thus, a practical avenue for progress involves de-
cisively expanding the MARFE database by incorporating video
files exclusively. This focused approach promises to significantly
enhance the database’s reach and utility.

3. Database Enrichment and Rigorous Statistical Validation: A piv-
otal stride involves resolutely expanding the existing database,
coupled with a thorough and comprehensive statistical valida-
tion of the conclusions drawn in the preceding section. This de-
termined effort serves as a strong means to substantiate and un-
derscore the robustness and profound significance of the derived

insights.
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Fig. 12. Confusion matrices obtained for the mask and ROI model (a), full video model (b) and the model with all 166 feature vectors (c).
4. Possible correlations with other phenomena: given that it is
possible to expand the database and obtain good timings for the
occurrence of the MARFE, it is now possible to find whether or
not there are possible correlations between MARFEs and other
unused signals/physical phenomena, such as external heating or
more concise discharge configurations.

5. Investigate potential associations between MARFE events and
the device’s mechanical configuration, encompassing valve type
and specific fuelling gas conditions. This aligns with the previous
suggestion of exploring correlations between MARFE and other
signals.
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Appendix A. List of signals

The different real time signals from other JET instruments were
saved in individual files per discharge. The following list details each
variable and the node from the JDC that contains each set. Each
node indicates the path used to download the signal using the jetdsp
pplication found in JET’s machines. More information regarding the
ata and metadata of each signal can be obtained through the JET
ashboard or the Simple Access Layer (SAL), the JET API for Python.
dditional details are present in JET’s Data Handbook.

1. Plasma Current (XG/RTSP/KC1IPLA)
2. ModeLock (XG/RTSP/LOCA)
3. Plasma Internal Inductance (xg/rtss/LI)
4. Plasma Density (XG/RTSS/Ne1KG1)
5. Poloidal Beta (XG/RTSS/BPDIA)
6. Total Input Power (XG/RTSS/PTOT)
7. Plasma Vertical Position (XG/RTSS/ZCC)
8. Radiated Power (XG/RTSS/KB5Ptot)
9. Stored diamagnetic energy derivative (XG/RTSS/FDWDT)

10. Bolometry signal for Core plasma lower section. The bolom-
etry data comes from KB5 diagnostic and corresponds to the
calibrated radiation power (jpf/db/B5HR-PBOL:014)

11. Bolometry signal for Core plasma upper section (jpf/db/B5HR-
PBOL:015)

12. Bolometry signal for lower section (jpf/db/B5HR-PBOL:010)
13. Bolometry signal for upper section (jpf/db/B5HR-PBOL:020)
14. Vertical Soft X-ray Core plasma measurement signal. Signal in

amperes, from KJ34. This applies to all following Vertical Soft
X-ray signals (jpf/db/J4-SXR<T09)

15. Vertical Soft X-ray High Field Side measurement signal (jpf/db/
J4-SXR<T02)

16. Vertical Soft X-ray High Field Side measurement signal (JPF/DB/
J4-SXR<T03)

17. Vertical Soft X-ray Low Field Side measurement signal (JPF/DB/
J4-SXR<T26)

18. Vertical Soft X-ray Low Field Side measurement signal (JPF/DB/
J4-SXR<T27)

19. High Field Side Line Integrated Density Signal. Taken from KG4.
Units in m−2. Applies to all integrated densities (JPF/DF/G1R-
LID:001)

20. Core Plasma Line Integrated Density Signal (JPF/DF/
G1R-LID:002)

21. Core Plasma Line Integrated Density Signal (JPF/DF/
G1R-LID:003)

22. Low Field Side Line Integrated Density Signal (JPF/DF/G1R-
LID:004)

23. Real time signal of Total ICRH Power used for the discharge
(XG/RFLM/PL)

24. Processed signal of Total ICRH Power used for the discharge (not
to be mistaken with the one above); (PPF/ICRH/PTOT)

25. Plasma Diamagnetic Energy (JPF/GS/BL-WDIA<S)
26. Plasma MHD Energy (JPF/GS/BL-WMHD<S)
27. Plasma Total Energy (can be found either at JPF/XG/RTSS/

WTOT or at JPF/XG/RTSP/WTOT)
28. Jump to Termination signal. Not to be confused with the JTT

stop from JET’s Dashboard (JPF/XG/RTSP/RtpsJTT)
10
Appendix B. List of acronyms

The list of acronyms used in this work are the following:

• CCD: Charge-Couple Device
• FN: False Negative
• FP: False Positive
• HF: High Field
• ICRH: Ion Cyclotron Resonance Heating
• ILA: ICRF Load-tolerant antenna
• IWGL: Inner Wall Guard Limiter
• JDC: JET Data Centre
• JET: Joint European Torus
• KNN: K-Nearest Neighbour
• LBFGS: Limited-memory Broyden–Fletcher–Goldfarb–Shanno al-

gorithm
• MARFE: Multifacetic Asymmetric Radiation From the Edge
• PETRA: Plasma Events TRiggering Alarm
• RFA/RFB Radio Frequency systems for ion cyclotron range of

frequencies, a heating system
• ROI: Region Of Interest
• RTPS: Real Time Protection Sequencer
• SAL: Simple Access Layer
• TN: True Negative
• TP: True Positive
• UDPT: Upper Dump Plate Tiles
• UIWP: Upper, Inner Wall Protections

References

[1] B. Lipschultz, B. LaBombard, E.S. Marmar, M.M. Pickrell, J.L. Terry, R. Wat-
terson, S.M. Wolfe, MARFE: An edge plasma phenomenon, Nucl. Fusion 24 (8)
(1984) 977–988.

[2] Peng Shi, G. Zhuang, K. Gentle, Qiming Hu, Jie Chen, Qiang Li, Yang Liu,
Li Gao, Xiaolong Zhang, Hai Liu, Zhipeng Chen, Lizhi Zhu, Fuming Li, Yinan
Zhou, Zhong Zeng, Linzi Liu, Jiyang He, First time observation of local current
shrinkage during the MARFE behavior on the J-TEXT tokamak, Nucl. Fusion 57
(11) (2017) 116052.

[3] G.A. Rattá, J. Vega, A. Murari, D. Gadariya, JET Contributors, PHAD: a phase-
oriented disruption prediction strategy for avoidance, prevention, and mitigation
in JET, Nucl. Fusion 61 (11) (2021).

[4] T. Craciunescu, A. Murari, I. Tiseanu, J. Vega, JET-EFDA Contributors, Phase
congruency image classification for MARFE detection on JET with a carbon wall,
Fusion Sci. Technol. 62 (2) (2012) 339–346.

[5] L. Spolladore, R. Rossi, I. Wyss, P. Gaudio, A. Murari, M. Gelfusa, Detection of
MARFEs using visible cameras for disruption prevention, Fusion Eng. Des. 190
(2023) 113507.

[6] Valentina Huber, Alexander Huber, David Kinna, Guy Matthews, Itziar Balboa,
Adrian Capel, Paul McCullen, Philippe Mertens, Gennady Sergienko, Scott
Silburn, Klaus-Dieter Zastrow, JUVIL: A new innovative software framework for
data analysis of JET imaging systems intended for the study of plasma physics
and machine operational safety, Fusion Eng. Des. 123 (2017) 979–985.

[7] JET Data Wiki, CJET viewing systems, 2024, https://wiki.jetdata.eu/open/index.
php/JET_viewing_systems#Views. (Online; accessed 30-January-2024).

[8] JET Data Wiki, Camera views for KL7-P8WA and KL1-O8WA, 2023, https://wiki.
jetdata.eu/open/images/5/56/KL7_model.png. (Online; accessed 17-July-2023).

[9] G.A. Rattá, J. Vega, A. Murari, D. Gadariya, C. Stuart, G. Farías, Characterization
of physics events in JET preceding disruptions, Fusion Eng. Des. 189 (2023)
113468.

[10] C.I. Stuart, G. Artaserse, P. Card, I.S. Carvalho, R. Felton, S.N. Gerasimov, A.
Goodyear, R.B. Henriques, D. Karkinsky, P.J. Lomas, P. McCullen, F. Rimini,
A.V. Stephen, D.F. Valcárcel, J. Waterhouse, M. Wheatley, PETRA: A generalised
real-time event detection platform at JET for disruption prediction, avoidance
and mitigation, Fusion Eng. Des. 168 (2021) 112412.

[11] J. Gareth, D. Witten, T. Hastie, R. Tibshirani, An introduction to statistical
learning with applications in R: by Gareth James, Daniela Witten, Trevor Hastie,
and Robert Tibshirani, New York, Springer Science and Business Media, 2013,
$41.98, eISBN: 978-1-4614-7137-7, Stat. Theory Relat. Fields 6 (1) (2022) 87.

[12] MAthWorks, Noise removal, 2020, https://es.mathworks.com/help/images/
noise-removal.html. (Online; accessed 10-April-2023).

http://refhub.elsevier.com/S0920-3796(24)00387-9/sb1
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb1
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb1
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb1
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb1
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb2
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb2
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb2
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb2
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb2
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb2
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb2
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb2
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb2
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb3
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb3
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb3
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb3
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb3
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb4
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb4
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb4
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb4
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb4
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb5
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb5
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb5
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb5
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb5
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb6
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb6
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb6
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb6
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb6
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb6
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb6
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb6
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb6
https://wiki.jetdata.eu/open/index.php/JET_viewing_systems#Views
https://wiki.jetdata.eu/open/index.php/JET_viewing_systems#Views
https://wiki.jetdata.eu/open/index.php/JET_viewing_systems#Views
https://wiki.jetdata.eu/open/images/5/56/KL7_model.png
https://wiki.jetdata.eu/open/images/5/56/KL7_model.png
https://wiki.jetdata.eu/open/images/5/56/KL7_model.png
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb9
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb9
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb9
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb9
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb9
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb10
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb10
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb10
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb10
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb10
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb10
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb10
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb10
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb10
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb11
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb11
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb11
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb11
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb11
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb11
http://refhub.elsevier.com/S0920-3796(24)00387-9/sb11
https://es.mathworks.com/help/images/noise-removal.html
https://es.mathworks.com/help/images/noise-removal.html
https://es.mathworks.com/help/images/noise-removal.html

	Advancing MARFE detection in JET's operational camera videos through Machine Learning techniques
	Introduction
	MARFE
	JET's operational cameras

	Methodology and Database
	Method 1: analysis of intensity masks
	Method 2: analysis Of Regions Of Interest
	Method 3: analysis of KNN-based regions
	Example of MARFE detections

	The Machine Learning techniques
	Binary model
	Video-based models
	``Comprehensive'' model

	Results
	Fluctuations of intensities in the mask method
	Intensity loss at divertor area
	KNN regions analysis
	Results for classification

	Conclusions
	Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. List of signals
	Appendix B. List of acronyms
	References


