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Abstract

The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a conse-
quence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability 
of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able 
to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species 
or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements 
is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: 
first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a 
precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The 
sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the 
phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an 
update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular 
emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation.
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Accumulation of toxic elements is a risk to  
the environment

The concentration of metals and metalloids, such as cadmium 
(Cd), mercury (Hg), lead (Pb), or arsenic (As), is augment-
ing in the environment mainly due to mining and metallurgy 
activities (Alloway, 2012), as well as some agronomic practices 
that utilize metal-containing fertilizers, sewage sludge amend-
ments, or pesticides (Järup, 2003). Metal(loid) contamination 
frequently occurs in restricted areas, but the weathering of 
mineral ores, the presence of organic matter, or the soil micro-
biological activity enhances the mobility of these pollutants 
(Moreno and Neretnieks, 2006). Subsequently, hazardous 
elements drain to underground water and superficial streams, 

while the erosion of waste dumps and spillages of slurry 
mine tailings may spread the contamination over hundreds 
of square kilometres (Salomons, 1995). Additionally, illegal 
gold and silver mining using Hg amalgams causes devastating 
effects in endangered tropical forests in Brazilian Amazonia 
and Indonesia, which release over 1000 tons of Hg per year 
into the environment (Lima et al., 2005, Spiegel, 2012).

The persistence of toxic elements in the environment, their 
bioaccumulation, and biomagnification in the trophic chain, 
where plants are primary producers located at the first stage 
in terrestrial ecosystems, represent a serious threat to human 
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health (Järup, 2003). Neuronal diseases, encephalopathy, 
kidney and liver failures, abdominal pain, cardiovascular 
and gastrointestinal symptoms, and different types of can-
cer, appeared in patients suffering from food poisoned with 
Cd (Järup and Åkesson, 2009), Pb (Needleman, 2004), As 
(Kapaj et al., 2006), or Hg (Myers et al., 2000; Ekino et al., 
2007). Mercury is one of the most toxic metal(loid) pollut-
ants according to the EPA, which recommended a drastic 
reduction of Hg industrial utilization and the development 
of confinement technologies to limit the spread of Hg in the 
environment (Keating et al., 1997).

Phytoremediation

Different options are available for alleviating the environmen-
tal impact of toxic elements, such as soil removal and wash-
ing using physical-chemical procedures, which are typically 
aggressive to the environment, very costly, or inefficient in 
widespread contaminated areas or when deep soil horizons 
are affected (Ali et al., 2013). Furthermore these techniques 
imply the need for transport and containment of the contami-
nated soil, or the creation of restricted landfills to store wastes 
(Dermont et al., 2008). In contrast, phytoremediation is envis-
aged as an environmental friendly and inexpensive procedure, 
taking advantage of the natural ability of plants to absorb 
mineral nutrients from the soil (Peuke and Rennenberg, 2005; 
Vangronsveld et al., 2009; Ali et al., 2013). The efficiency of 
a particular phytoremediation approach largely depends on 
edaphic factors affecting the chemical speciation and bio-
availability of the metal(loid) contaminants (Prasad, 2003). 
Nevertheless, it can be improved by selecting metal(loid)-
tolerant plants able to augment rapidly their biomass, and 
adapted to the specific climatic conditions of the polluted soil 
(Clemens et al., 2002). Phytostabilization is particularly use-
ful and the most feasible phytoremediation strategy in highly 
contaminated soils, or in soils with continuous release of haz-
ardous metal(loid)s from the bedrock (Ernst, 2005), as occurs 
in Hg-polluted soils of Almadén (Spain) (Carrasco-Gil et al., 
2013). Phytostabilization allows the retention of metal(loid) 
contaminants in the rhizosphere, preventing them leaching 
off  to groundwater from the polluted soil, and provides veg-
etation cover to reduce soil erosion (Singh and Prasad, 2011). 
The mechanisms for stabilizing metal(loid)s in the rhizos-
phere comprise binding with cell wall components, alteration 
of their redox status and precipitation, or complexation with 
plant-derived ligands (Barceló and Poschenrieder, 2003).

Phytotoxicity of hazardous metals and 
metalloids

The selection of plants tolerant to toxic metal(loid)s is a pre-
requisite for implementing phytostabilization technologies, 
which depends on the activation of different defence mecha-
nisms (Hall, 2002; Gallego et al., 2012). The toxic symptoms 
may include root growth inhibition, impairment of photo-
synthesis and mitochondrial respiration, or DNA degrada-
tion and cell death. These responses depend largely on plant 

species, phenological status, time of exposure, and the chemi-
cal proprieties of each toxic metal(loid) (Sanitá di Toppi and 
Gabbrielli, 1999; Schützendübel and Polle, 2002; Hernández 
et  al.,, 2012). In fact, specific stress signatures appear in 
response to Cd, Hg, As, or Cu in different plant species 
(Sobrino-Plata et al., 2009; Cuypers et al., 2011; Opdenakker 
et al., 2012; Sobrino-Plata et al., 2013; Mészáros et al., 2014). 
We must emphasize that the strongest phytotoxic symptoms 
are recurrently observed in roots, where the vast majority 
of toxic metal(loid)s accumulate in non-hyperaccumulator 
plants (Lin and Aarts, 2012).

Induction of oxidative stress

The induction of oxidative stress by toxic metal(loid)s is one 
of the major alterations in plant cells (Hall, 2002). The gen-
eration of reactive oxygen species (ROS), such as superoxide 
(O2

•–) and hydrogen peroxide (H2O2), when the cellular redox 
balance is compromised, promotes the oxidation of mem-
brane lipids, proteins, and/or nucleic acids, affecting plant 
metabolism (Ortega-Villasante et  al., 2005; Rellán-Álvarez 
et  al., 2006). Redox-active metals, like Fe or Cu, interact 
with O2

•– and H2O2 and generate the extremely reactive •OH 
radical through Fenton and Haber-Weiss reactions (Briat and 
Lebrun, 1999). Conversely, toxic metals like Cd or Hg are 
thought to generate ROS indirectly by altering the antioxi-
dant machinery at different levels (Sharma and Dietz, 2009). 
Although chloroplasts are a major source of ROS in plants, 
evidence suggests the prominence of mitochondria; it is esti-
mated that 1–5% of the O2 consumed by isolated mitochon-
dria results in ROS production (Møller, 2001; Noctor et al., 
2007). Arabidopsis leaf cells treated with Cd accumulated 
ROS primarily in mitochondria, and then in chloroplasts (Bi 
et al., 2009). Similarly, Heyno et al. (2008) found that ROS 
were generated under Cd stress at the mitochondrial elec-
tron chain by partial reductions of O2. Peroxisomes are also 
an important source of O2

•– and H2O2, where there is ame-
lioration by the ample catalase activity of these organelles 
(Sandalio et  al., 2006, Mhamdi et  al., 2010), particularly 
under Cd stress (Rodríguez-Serrano et  al., 2009). Plasma 
membrane NADPH oxidases are also receiving major atten-
tion as a source of the apoplastic ROS burst occurring under 
biotic and abiotic stresses (Mittler et al., 2004). In fact, H2O2 
accumulated in the apoplast of alfalfa root epidermal cells 
after 1 to 3 hours of exposure to Cd or Hg (Ortega-Villasante 
et al., 2005), which was suggested to be associated with acti-
vation of plasma membrane NADPH oxidases (Ortega-
Villasante et al., 2007), a process that was also observed in 
Hg-treated alfalfa and Arabidopsis plants (Montero-Palmero 
et al., 2014a).

The ROS-scavenging antioxidant system under 
metal(loid) stress

Plant cells possess a number of antioxidant enzymes and 
metabolites that maintain ROS levels under tight control, 
distributed in the cytoplasm and organelles with strong oxi-
dative metabolism. Superoxide dismutase (SOD), ascorbate 
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peroxidase (APX), catalase (CAT), monodehydroascorbate 
reductase (MDHAR), glutathione dehydrogenase (ascor-
bate) (also known as dehydroascorbate reductase, DHAR), 
and glutathione reductase (GR) are enzymes that contribute 
to cellular redox homeostasis, many using antioxidant metab-
olites like ascorbate (AsA), glutathione (GSH), or NADPH 
as substrates (Foyer and Noctor, 2005). The cellular redox 
homeostasis is maintained basically by the transformation 
of O2

•– into H2O2 by SOD and the subsequent scavenging of 
H2O2 by CAT and APX. The latter enzymes reduce H2O2 to 
H2O, resulting in oxidation of AsA, which is regenerated in 
the AsA-GSH cycle, where GSH is converted to oxidized GSH 
(glutathione disulphide; GSSG) (Nakano and Asada, 1987). 
In turn, GR regenerates GSH from GSSG using NADPH as 
an electron donor. This process is required to maintain the 
cellular redox equilibrium, which results in a fairly constant 
high GSH/GSSG ratio (Gill et al., 2013).

The oxidative stress induced by toxic metal(loid)s is 
accompanied by changes in the cellular antioxidant machin-
ery (Schützendübel and Polle, 2002; Gratão et al., 2005). In 
fact, some of the stress responses invoked by those pollutants 
have been attributed to alterations in the activity of ROS-
scavenging enzymes like SOD, APX, CAT, or GR (Sharma 
and Dietz, 2009). There were increases or decreases in the 
activities of these enzymes dependent on the plant species, 
age, organs sampled, metal dose, and exposure time (Sanitá di 
Toppi and Gabbrielli, 1999; Schützendübel and Polle, 2002). 
For example, GR activity increased in alfalfa roots treated 
with Cd, but was severely inhibited by identical Hg doses 
(Sobrino-Plata et  al., 2009), while its activity was modestly 
increased in As-stressed Silene vulgaris (Sobrino-Plata et al., 
2013). On the other hand, APX activity increased transiently 
when exposed to Cd or Hg, but was drastically inhibited 
in Hg-poisoned alfalfa seedlings (Ortega-Villasante et  al., 
2007). In most cases, oxidative stress symptoms generally 
appear when treatments are long enough to attain extensive 
cell damage, probably causing a general failure of metabolism 
(Gratão et  al., 2005). These observations do not provide a 
meaningful functional hypothesis, as it is difficult to distin-
guish between primary responses and non-specific second-
ary stress responses (Sharma and Dietz, 2009). Therefore, 
it is critical to establish the experimental conditions for 
characterizing the specific defence mechanisms triggered by 
toxic metal(loid)s (Hernández et  al., 2012). For example, 
Arabidopsis treated with 5 µM Cd for 72 h suffered no signifi-
cant lipid peroxidation, but did show relevant transcriptional 
changes (Jozefczak et al., 2014).

Cellular functions of GSH in plants

GSH is a multifaceted essential tripeptide (γ-glutamylcysteinyl 
glycine, γ-Glu-Cys-Gly) metabolite fundamental for main-
taining cellular redox homeostasis (Fig.  1), which is also 
known to play a role in stress perception and signalling, 
defence reactions, and plant development (Noctor et  al., 
2012). GSH is used to detoxify xenobiotics through glu-
tathione S-transferases (GSTs), and metal(loid)s through 

the synthesis of phytochelatins (PCs) (Noctor et al., 2011). 
Glutathione is the major soluble S-containing metabolite, out-
ranking Cys, which is the first acceptor of reduced sulphur in 
the cells (Saito, 2004), and can be degraded to its constituent 
amino acids mainly in vacuoles by γ-glutamyl transpeptidases 
(GGTs), which generate the Cys-Gly dipeptide (Ohkama-
Ohtsu et al., 2007). An alternative pathway for GSH recycling 
may be catalysed by phytochelatin synthase (PCS), through 
the γ-glutamyl transpeptidation of γ-glutamylcysteine (γ-EC) 
(γ-Glu-Cys) conjugates (i.e. free PCs) (Fig.  1; Blum et  al., 
2010). Finally, the cellular level of GSH fluctuates between 
GSH and GSSG forms, as a function of GR activity at the 
expense of NADPH (Noctor et al., 2012). If  required, GSH 
level can be recovered by activation of the sulphur assimila-
tory pathway, as described for plants subjected to different 
stress factors including xenobiotics, toxic metals, or fungal 
pathogens (Rausch and Wachter, 2005).

Cellular redox balance and GSH

Energy conversion in all living organisms depends on electron 
transfer reactions involving O2 in chloroplasts and mitochon-
dria, where stable reducing substances like NADPH or GSH 
are fundamental (Fig. 1) (Foyer and Noctor, 2005). The redox 
potential of the [GSH]2/GSSG redox pair (–240 mV) versus 

Fig. 1.  Roles of GSH in plant cells, with emphasis on the main processes 
that occur under toxic metal(loid) stress (shown in red). The middle 
redox potential (eH) difference between NADPH and GSH facilitates the 
prevalence of GSH over oxidized GSH (GSSG), an equilibrium that is 
displaced to GSH by GR. PCs are synthesized from GSH through PCS. 
GSTs detoxify organic peroxides that are highly induced under metal 
stress. GGT and/or PCS catalyse the turnover of GSH and PCs, which 
permits recycling of metabolic sulphur (needed to synthesize S-containing 
amino acids like Cys and Met). Post-translational and transcriptional 
activation are part of the ‘redox switch’, as occurs, for example, with the 
redox-sensitive transcription factor NPR1. These responses comprise 
glutathionylation of key sulfhydryl residues of proteins, by GRX and TRX 
sensitive to cellular eH.
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a lower redox potential of NADPH (–320 mV) favours the 
prevalence of GSH over GSSG under normal (unstressed) 
growing conditions (Foyer and Noctor, 2011). This results 
in a GSH/GSSG ratio of 10 to 1, which is kept fairly con-
stant by GR (Gill et al., 2013). Only in a strongly oxidizing 
environment, when the redox potential increases (over –100 
mV), does the proportion of GSH disulphide increase appre-
ciably (Foyer and Noctor, 2011). Therefore, the cytosolic GR 
is essential for maintaining the cellular redox balance under 
H2O2-generating conditions (Mhamdi et al., 2010), and the 
GSH/GSSG proportion is an indicator of the overall redox 
environment in the cell (Jozefczak et al., 2012).

Maintenance of cellular redox homeostasis is highly com-
partmentalized and varies between cell types (Zechmann and 
Müller, 2010). The GSH/GSSG redox status changes during 
the cell cycle, as GSH is recruited into the nucleus during the 
G1 phase of mitosis, promoting a more oxidizing environment 
at the cytosol that induces GSH biosynthesis (Díaz-Vivancos 
et al., 2010). Viable and proliferating cells must acquire a suf-
ficiently negative redox potential, which corresponds to a high 
GSH/GSSG ratio after cytokinesis, whereas higher redox 
potentials (more oxidative) are found in apoptotic and senes-
cent cells (Schafer and Buettner, 2004). On the other hand, the 
negative redox potential of the [GSH]2/GSSG pair allows the 
renewal of the AsA consumed to eliminate H2O2 in the AsA-
GSH cycle (Foyer and Noctor, 2005). Additionally, glutathione 
peroxidase (GPX) and GST consume GSH directly for the 
scavenging of H2O2 and organic peroxides, thereby promoting 
a more oxidized environment (Anjum et al., 2012).

Plant defence responses to biotic and abiotic stresses depend 
on signals produced by minute changes in the cellular redox bal-
ance (Schafer and Buettner, 2004), which requires equilibrated 
GSH/GSSG and NADPH/NADP+ redox pairs (Queval et al., 
2007). Glutaredoxin (GRX) and thioredoxin (TRX) mediate 
the redox status of protein thiol groups (‘thiol switches’), and/or 
the S-glutathionylation of Cys residues, which in turn modify 
the activity of different targeted proteins (Rouhier et al., 2008). 
Such post-translational modifications regulate rate-limiting 
Calvin cycle and glycolysis steps, which depend on the GSH/
GSSG redox status and GR activity (Noctor et al., 2012). In 
addition, reversible S-glutathionylation is considered a protein-
protective mechanism under stress to prevent unwanted oxida-
tion of key thiol residues (Cheng et al., 2006). The depletion 
of plant GSH changes the transcriptional profile, possibly as 
a consequence of nuclear and cytosolic redox potentials rising 
(more oxidant) (Schnaubelt et al., 2014). Indeed, several redox-
sensitive transcription factors that are modified by TRX and/
or GRX, such as NONEXPRESSOR OF PATHOGENESIS-
RELATED PROTEIN1 (NPR1), are highly dependent on the 
cytosolic GSH/GSSG redox balance for their activation and 
transit to the nucleus (Foyer and Noctor, 2005; Noctor et al., 
2012).

Biosynthesis of GSH

The synthesis of GSH occurs in two ATP-dependent enzymatic 
steps: the first is catalysed by γ-glutamylcysteine synthetase 
(γ-ECS, AtGSH1 gene) to bind Glu and Cys in chloroplasts, 

synthesizing γ-EC (Zechmann, 2014). Glutathione synthetase 
(GS, AtGSH2 gene) catalyses the second step where Gly is 
added to γ-EC (Noctor et  al., 2011). The GSH2 immature 
mRNA undergoes alternative splicing: the longest transcript 
harbours a signal peptide that targets the protein to the 
chloroplasts, and the shortest transcript encodes a cytosolic 
variant (Wachter et al., 2005). When the synthesis of GSH 
occurs in the cytosol, γ-EC is exported through chloroqui-
none-like transporters (CLTs) (Maughan et  al., 2010). The 
compartmentalization and distribution of GSH in organelles 
is important for tolerance to stress, as there is rapid GSH 
distribution to organelles where ROS accumulate, possibly 
though plastidial CLTs and other known transporters at the 
mitochondrial and nuclear membranes (Zechmann, 2014). 
Transporters of GSSG and GSH-conjugates at the tonoplast 
may also contribute to maintenance of the cytosolic GSH 
redox balance in response to oxidative stress (Queval et al., 
2011).

γ-ECS is the rate-limiting step of GSH synthesis, which 
depends on the cellular Cys and Glu pools, the degree of γ-
ECS activation, and a feedback inhibition by γ-EC and GSH 
(May et al., 1998). The use of γ-ECS inhibitors like buthio-
nine sulfoximine (BSO) (Griffith and Meister, 1979), as well 
as the availability of different Arabidopsis allele mutants of 
γ-ECS and GS, provides information about mechanisms 
regulating GSH metabolism (Rausch et  al., 2007). Several 
knockdown Arabidopsis γ-ECS mutant alleles have dimin-
ished GSH concentrations relative to the wild type (WT): (i) 
root-meristemless 1 (rml1-1) has severe developmental altera-
tions (3% of WT GSH; Vernoux et al., 2000); (ii) cadmium-
sensitive 2-1 (cad2-1) presents sensitivity to Cd (30% of WT 
GSH; Cobbett et al., 1998); (iii) regulator of APX2 1-1 (rax1-
1) shows growth inhibition under high irradiance stress (45% 
of WT GSH; Ball et al., 2004); (iv) phytoalexin-deficient 2-1 
(pad2-1) is extremely sensitive to pathogenic interactions 
(20% of WT GSH; Parisy et  al., 2007); (v) zinc tolerance 
induced by iron 1 (zir1) is defective in Fe-dependent Zn toler-
ance (15% of WT GSH; Shanmugam et al., 2012); and (vi) 
non-response to cadmium 1 (nrc1) fails to adjust metabolism 
to Cd (36% of WT GSH; Jobe et al., 2012). Comparison of 
these genotypes and the crystallization of γ-ECS (also known 
as γ-glutamylcysteine ligase, γ-GCL) has revealed unique fea-
tures in plants (Hothorn et al., 2006). Plant γ-ECS has two 
characteristic intramolecular disulphide bridges, CC1 (Cys341 
and Cys356) and CC2 (Cys178 and Cys398); the first provides 
sensitivity to the cellular redox environment (Hicks et  al., 
2007), and the second mediates the redox homodimerization 
under oxidative stress (Gromes et al., 2008).

Plant tolerance and detoxification 
mechanisms

Plant cells possess diverse mechanisms to tolerate toxic 
metal(loid)s (Fig. 2). The cell wall is the major reservoir of 
Cd and Hg in root cells (Lozano-Rodriguez et  al., 1997; 
Van Belleghem et al., 2007; Carrasco-Gil et al., 2011, 2013). 
Cell walls constitute a heterogeneous matrix that contains 

2904  |  Hernández et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jxb/article/66/10/2901/533101 by guest on 19 January 2023



carboxylic groups of acidic polysaccharides (i.e. homoga-
lacturonan) and phenolic polymers (lignin and suberin) 
(Krzesłowska, 2011). Hg could also be bound to extensins, 
a group of cell wall proteins rich in Cys (Carrasco-Gil et al., 
2013). The cell wall composition is modified under metal(oid) 
stress, accumulating pectins and hemicelluloses (Zhu et  al., 
2013). In fact, the accumulation of suberin restricts the move-
ment of metallic ions through the root apoplast, limiting their 
transfer to the xylem (Lux et al., 2011). Exudates from roots 
and symbiotic mycorrhizal fungi can also affect the incorpo-
ration of Cd at the rhizosphere (Janoušková et al., 2006).

The next barrier of permeability is the plasma mem-
brane, where numerous transport mechanisms have been 
characterized (Fig.  2). Transporters or ion channels of 
essential nutrients facilitate the accumulation of hazardous 
metal(loid)s in the cytosol, which are neutralized by active 
efflux to the apoplast and vacuole by transporters like P-type 
HEAVY METAL ATPASE (HMA2/4 and HMA3), ZINC 
ARABIDOPSIS TRANSPORTER (ZAT)-Zn/Cd, and/ 
or CATION EXCHANGER (CAX)-H+/Ca2+ antiporters 
(Chiang et al., 2006; Morel et al., 2009). Plant cells also syn-
thesize different metabolites that bind the metal(loid)s ions to 
decrease their free cytosolic concentration (Fig. 2). An impor-
tant group of ligands is formed by Cys-rich peptides like met-
allothioneins (MTs) and PCs (Cobbett and Goldsbrough, 
2002). MTs are low molecular weight peptides that are tran-
scriptionally regulated in a tissue-specific manner (Hassinen 
et  al., 2011). Additionally, MTs are mainly involved in the 
detoxification of essential metals that accumulate at toxic 
concentrations, as occurs in Zn-treated poplar (Castiglione 
et al., 2007) or Cu-stressed Arabidopsis (Guo et al., 2008).

PCs are considered the main metal(loid) ligands in differ-
ent plant species, with the (γ-Glu-Cys)n-Gly (n = 2–11) gen-
eral structure, and are synthetized by PCS from GSH and 
analogous tripeptides (Cobbett and Goldsbrough, 2002). 
The activity of PCS increases rapidly under Cd, Hg, or As 
stress (Clemens et  al., 1999; Ha et  al., 1999). An array of 
metal(loid)-PC complexes can be translocated to the shoots 
(Mendoza-Cózatl et  al., 2011), but are mainly sequestered 
in vacuoles through ABCC transporters (AtABCC1 and 

AtABCC2 subfamilies in Arabidopsis; Mendoza-Cózatl 
et  al., 2010). Malfunctioning ABCC transporters enhanced 
the transfer of Cd and Hg to Arabidopsis shoots, which com-
promised their detoxification (Park et al., 2012). Additionally, 
the orthologous rice gene (OsABCC1) is also critical for the 
vacuolar sequestration of As in roots (Song et al., 2014). On 
the other hand, x-ray spectrometric in vivo analysis (EXAFS) 
showed that a large proportion of Hg was associated with Cys 
(biothiols or Cys-rich polypeptides) in alfalfa seedlings and 
Marrubium vulgare plants (Carrasco-Gil et al., 2011; 2013). 
However, Cd and Zn were not associated with S-ligands in 
vacuoles of mature Noccaea caerulescens leaves, and Cd was 
only bound to biothiols in young tissues (Küpper et al., 2004). 
Therefore, it is feasible that biothiols might not function as 
toxic metal ligands in hyperaccumulator plants, but rather 
intervene in the amelioration of the oxidative stress triggered 
by these contaminants (Na and Salt, 2011).

GSH, sulphur metabolism and tolerance to toxic 
metal(loid)s

GSH plays a dual role as antioxidant and precursor of PCs in 
plants exposed to toxic metal(liod)s (Jozefczak et al., 2012). 
The cellular concentration of GSH decreases transiently 
under metal(loid) stress as it is oxidized to GSSG, increas-
ing the [GSH]2/GSSG redox potential, or used as a precur-
sor of PCs (Semane et al., 2007). Cellular redox homeostasis 
largely depends on the GSH/GSSG balance maintained by 
GR activity (Noctor et al., 2012). Interestingly, under moder-
ate metal(loid) stress conditions, the GR activity increases in 
pea (Dixit et al., 2001), wheat (Yannarelli et al., 2007), alfalfa 
(Sobrino-Plata et  al., 2009; Wang et  al., 2011), S.  vulgaris 
(Sobrino-Plata et al., 2013), and Arabidopsis (Sobrino-Plata 
et al., 2014b). On the other hand, root GR activity is strongly 
inhibited by Hg even at low doses; a characteristic stress 
signature that can be used as an index of Hg accumulation 
(Sobrino-Plata et al., 2009, 2013). Interestingly, plants with 
a depleted GSH concentration, like the cad2-1 Arabidopsis 
mutants, suffered a remarkably stronger GR inhibition than 
WT (Col-0) plants after a 48 h exposure to 3 and 30 µM Hg, 

Fig. 2.  Mechanisms of metal (M2+) detoxification and tolerance in plant cells. The metals bind to cell exudates or walls (1). Once metal enters the 
protoplast, the cytosolic concentration can be reduced by transport to the apoplast or vacuole by ZIP, CAX, and/or HMA2/4- and HMA3-ATPase 
transporters (2). The concentration of cytosolic free M2+ is also reduced by chelation with various ligands, such as MTs or PCs; complexes (M-PCs) are 
ultimately transported to the vacuole via ABCC-transporters (3).
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without clear changes in the GSH/GSSG ratio (Sobrino-
Plata et al., 2014a). The catalytic centre of GR contains criti-
cal Cys residues sensitive to the cellular redox status, where 
Hg could be bound due to its high sulphur hydride affinity 
(Sobrino-Plata et al., 2009). The strong Hg-derived GR activ-
ity inhibition was not followed by a significant accumulation 
of GSSG, as was observed in cytosolic GR1 Arabidopsis 
mutants. These plants maintained a GSH/GSSG ratio simi-
lar to Col-0, and only when ROS accumulation was induced 
in the gr1 cat2 double mutant (which is unable to eliminate 
photorespiratory H2O2) did GSSG accumulate remarkably 
(Mhamdi et al., 2010). It is feasible that compartmentation 
of ROS generation, GSH biosynthesis, or the generation of 
alternative unknown reductants could help to maintain the 
cellular redox status under moderate stress.

The cellular GSH pool can also be replenished by the 
activation of the sulphur assimilation process, a multi-
staged pathway subjected to strict control at various limit-
ing steps (Fig.  3; Saito, 2004). Sulphur assimilation begins 
with the uptake and distribution of sulphate (SO4

2−) in the 
plant cells, which is controlled by high-affinity transporters 
(AtSULTR1,2; Buchner et  al., 2004). Sulphate is activated 
through its conversion to adenosine 5′-phosphosulphate 
(APS) from ATP in a reaction catalysed by ATP sulphury-
lase (ATPS) (Hatzfeld et  al., 2000). APS is reduced to sul-
phite (SO3

2–) by adenylyl-sulphate reductase (glutathione) 
(APRS) (also known as APS reductase), a plastidial enzyme 
that uses GSH as an electron donor (Koprivova et al., 2008). 
This step and the SO4

2− uptake are the most-limiting steps 
in the sulphur assimilation process (Vauclare et  al., 2002). 
In fact, reduced sulphur molecules (i.e. GSH) are negative 
feedback signals of SULTR, ATPS, and adenylyl sulphate 
reductase (APSR) activities (Kopriva and Rennenberg, 2004). 
Subsequently, sulphite reductase catalyses the conversion of 
SO3

2– to sulphide (S2–) using reduced ferredoxin supplied by 
Photosystem I (Nakayama et al., 2000). Cys biosynthesis is a 
two-step process, and the final step prior to GSH metabolism 
is where acetyl-CoA and serine are bound by serine acetyl-
transferase (SAT) to generate O-acetyl serine (OAS), which 
accepts S2– to produce Cys though O-acetylserine thiol-lyase 
(OAS-TL) (Wirtz and Hell, 2006).

Sulphur starvation and the depletion of the cellular pool 
of GSH increase the expression of SO4

2− assimilation genes 
in a ‘demand-driven’ regulation (Davidian and Kopriva, 
2010). Sulphur-containing metabolites provide tolerance to 
biotic and abiotic stresses, which impose a complex regula-
tion of the S-assimilatory pathway at transcriptional and 
post-translational levels in conjunction with endogenous 
factors (Rausch and Wachter, 2005). Genes involved in the 
uptake of SO4

2−, its reduction, or the synthesis of Cys are 
upregulated in plants exposed to toxic metal(loid)s (Nocito 
et al., 2006). Sulphate starvation and Cd exposure promoted 
the overexpression of Sultr1,2 in a dose dependent manner 
(Lancilli et al., 2014). Similarly, SAT and OAS-TL genes were 
overexpressed in Cd-treated Arabidopsis, which accumulated 
Cys (Howarth et al., 2003). Short-term treatments with Cd 
also increased GSH concentration in Arabidopsis along with 
the upregulation of γ-ECS and GS genes (Jozefczak et  al., 

2014). Interestingly, some of these transcriptional changes 
depended on jasmonate signalling in Arabidopsis plants 
(Xiang and Oliver, 1998).

The contribution of GSH and PCs in the detoxification of 
Cd and Hg was recently studied in Arabidopsis γ-ECS and PCS 
mutants (Sobrino-Plata et  al., 2014a, b). We identified several 
Hg-biothiol complexes by the Hg multi-isotopic fingerprint in 
the roots of barley, maize, and alfalfa plants; for example, these 
included Hg-PC2 [Hg-(γ-Glu-Cys)2-Gly], Hg-hPC2 [Hg-(γ-Glu-
Cys)2-Ala], Hg-GC2 [Hg-(γ-Glu-Cys)2], or Hg2-(GC2)2 {Hg2-[(γ-
Glu-Cys)2]2} (Carrasco-Gil et al., 2011). We also detected some 
of these complexes in Hg-infiltrated leaves of Arabidopsis Col-0 
and rax1-1, but not in the cad2-1 genotype, plants that were read-
ily more sensitive to Hg (Sobrino-Plata et al., 2014a). A mini-
mum amount of GSH was required to show similar behaviour 
to Col-0, higher in rax1-1 than cad2-1 (45% and 30% WT GSH 
levels, respectively). In hydroponically grown rax1-1 Arabidopsis 
plants, the PC concentration and population resembled that of 
Col-0, whereas cad2-1 and pad2-1 were more sensitive (Sobrino-
Plata et al., 2014b). Two OAS-TL Arabidopsis mutants (oas-a1.1 

Fig. 3.  Sulphur assimilatory pathway, GSH synthesis, and AsA-GSH 
antioxidant system. Toxic metals (M) promote the generation of O2

•–, 
H2O2, or OH•, reduced by SOD, CAT, and APX. GR recovers the levels of 
GSH from oxidized GSH (GSSG) using NADPH. (DHA, dehydroascorbate; 
MDHA, monodehydroascorbate). Metal(loid)s induce the S-assimilatory 
pathway (SULTR, SO4

2– transporter; SiR, sulphite reductase). Mutants of 
γ-ECS (cad2-1, pad2-1, rax1-1) and PCS (cad1-3) are shown in red.
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and oas-a1.2), with 75% WT GSH levels, accumulated a similar 
amount of PCs to the WT, but the plants were more sensitive 
to Cd (López-Martín et al., 2008). Arabidopsis mutants unable 
to synthesize PCs (cad1-3) were also more sensitive to Cd and 
Hg than Col-0, but conversely were less affected than all γ-ECS 
mutants (Sobrino-Plata et al., 2014a). PC metabolism is impor-
tant for detoxification, since the absence of PCs and/or the 
malfunction of metal(loid)-PC tonoplast transporters result in 
altered metal(loid) distribution and speciation (Park et al., 2012; 
Sobrino-Plata et al., 2014b; Song et al., 2014). In this sense, the 
overproduction of Cys in transgenic Arabidopsis plants overex-
pressing OAS-TL increased the concentration of Cd in leaves, 
perhaps as a consequence of the altered biothiol metabolism 
(Dominguez-Solis et al., 2004). Interestingly, cad1-3 overaccumu-
lated GSH even under unstressed conditions, possibly due to PCS 
functioning in the turnover of GSH conjugates by γ-glutamyl 
transpeptidation (Blum et  al., 2010). Perhaps the cad1-3 high 
GSH concentration phenotype partially prevented the oxidative 
stress induced by Cd and Hg (Sobrino-Plata et al., 2014b).

Our results suggest that a minimum amount of GSH is essen-
tial for maintaining the cellular redox balance and tolerance to 
toxic metal(loid)s, which largely depend on the [GSH]2/GSSG 
redox potential (Foyer and Noctor, 2011). We observed that 
even in Hg-poisoned alfalfa seedlings, the GSH/GSSG ratio 
was fairly constant (Ortega-Villasante et  al., 2007; Sobrino-
Plata et al., 2014a). Jobe et al. (2012) found that depletion of the 
GSH cellular pool in the nrc1 γ-ECS and nrc2 GS Arabidopsis 
mutants caused a substantial cellular redox disturbance, 
which led to the overexpression of SULTR1,2. Interestingly, 
the upregulation of SULTR1,2 did not occur under Cd stress 
when plants were incubated with Cys and γ-EC, suggesting that 
reduced biothiols act as repressors of S-assimilatory pathway 
limiting steps. ATPS and APSR are key enzymes controlled 
by the cellular redox potential (Yi et al., 2010). In this sense, 
the activity of γ-ECS increases remarkably when two critical 
disulphide bridges (CC1 and CC2) of the enzyme remain oxi-
dized (Gromes et al., 2008). The depletion of GSH in pad2-1 
mutants resulted in a significantly higher basal cellular redox 
state (more oxidative) than in Col-0 plants, with γ-ECS becom-
ing more oxidized (Dubreuil-Maurizi et al., 2011). Surprisingly, 
pad2-1 failed to trigger anti-pathogen responses with an attenu-
ated hypersensitive response and supressed expression of PR1 
and NPR1 genes compared with Col-0 plants, implying that 
an appropriate GSH/GSSG balance is required to cope with 
biotic stress. We detected changes in the accumulation of γ-
ECS in rax1-1 plants exposed to Cd and Hg, perhaps reflecting 
post-translational modifications under stress at a certain GSH/
GSSG redox status, which may influence the plant responses to 
toxic metal(loid)s (Sobrino-Plata et al., 2014a, b); this requires 
further characterization.

Crosstalk between ROS, GSH, and 
other endogenous factors under 
metal(loid) stress

The concentration of GSH and the cellular redox potential 
are fundamental parameters that modulate the responses of 

plants to hazardous environmental conditions. Such responses 
rely on a complex network of stimuli, where secondary mes-
sengers and phytohormones intervene (Foyer and Noctor, 
2005, 2011). The depletion of GSH causes drastic changes in 
root development and architecture, as is the case through the 
absence of a proper root meristem in rml1-1 (contains only 
3% of GSH compared to the WT; Vernoux et al., 2000). It 
is feasible that the root architecture is modulated by absci-
sic acid through glutathione peroxidases, and is influenced 
by the cellular concentration of GSH (Passaia et al., 2014). 
The depletion of GSH by BSO caused a drastic alteration 
in the root tips’ auxin gradient, possibly associated with an 
aberrant distribution of PIN auxin transporters (Koprivova 
et al., 2010). However, the low GSH concentration in cad2-1 
mutants did not affect the sensitivity to auxins, nor did the 
inhibition of auxin transport have any effect on the GSH/
GSSG ratio, but the supply of auxins decreased the root GSH 
pool (Schnaubelt et al., 2014). Changes in auxin distribution 
affects ROS, GSH, and AsA distribution, which would lead 
to the oxidized environment gradient that is required for cor-
rect root apical meristem development (Tognetti et al., 2012). 
Ethylene, jasmonate, or salicylic acid also seem to modulate 
the rate of GSH biosynthesis or the [GSH]2/GSH redox pair 
(Yoshida et al., 2009; Noctor et al., 2011). Ethylene mediates 
the S-assimilation process inducing ATPS activity, which led 
to an accumulation of sulphur in Ethephon-treated mustard 
plants (Iqbal et  al., 2012). Conversely, the severe depletion 
of GSH in rml1-1 caused the overexpression of ethylene 
response factors of the ERF family (i.e. ERF11, ERF2, and 
ESE3) (Schnaubelt et  al., 2014). Therefore, environmental 
stress conditions could trigger the ethylene response, which 
may in turn promote the activation of the S-assimilatory 
process, as occurred in ozone-exposed Arabidopsis (Yoshida 
et al., 2009).

Toxic metals cause changes in the distribution of auxin in 
roots, which seems to depend on the accumulation of ROS 
and the induction of oxidative stress (Potters et  al., 2007). 
Jasmonates also mediate the responses of Arabidopsis to Cd, 
in particular influencing the expression of γ-ECS and GS 
genes, promoting GSH biosynthesis (Xiang and Oliver, 1998). 
Ethylene enhanced the concentration of GSH in the leaves of 
mustard plants exposed to Cd, suggesting that this phytohor-
mone stimulates the sulphur-assimilatory process (Masood 
et al., 2012). In this regard, the contribution of ethylene and 
other stress-related phytohormones in the early responses of 
plants to toxic metals have become apparent from several tran-
scriptomic studies (Montero-Palmero et al., 2014b). There is a 
consistent pattern of differentially expressed genes related to 
ethylene responses, with peak responses at the shortest times 
(3–6 hours) of Hg-exposed alfalfa (Montero-Palmero et al., 
2014a), Medicago truncatula (Zhou et al., 2013), barley (Lopes 
et al., 2013), and rice (Chen et al., 2014). It was found that 
the early H2O2 burst induced by Hg (Ortega-Villasante et al., 
2007) is attenuated in ethylene-insensitive Arabidopsis ein2-5 
mutants and alfalfa seedlings pre-incubated with 1-methyl-
cylopropene (Montero-Palmero et al., 2014a). Similar behav-
iour was found in Arabidopsis plants with altered ethylene 
production [1-aminocyclopropane-1-carboxylic acid (ACC) 
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synthase double knockout mutant, acs2-1/acs6-1], which did 
not produce ethylene after short-term Cd treatment and were 
less sensitive than the WT (Schellingen et al., 2014).

Concluding remarks and perspectives

GSH is a fundamental metabolite for coping with metal(loid) 
toxicity in plants. On the one hand, GSH affects the dynam-
ics of metal(loid)s through the accumulation of PCs and the 
storage of meta(loid)-PC complexes in vacuoles. On the other 
hand, GSH is essential for maintaining negative values of the 
cellular redox potential, which is required for controlling 
metabolic responses via redox switches, post-translational 
modifications, and signalling processes. Recent evidence sup-
ports the notion that ROS, GSH, and cellular redox status are 
also interconnected with phytohormone signalling in plants 
exposed to toxic metal(loid)s. We are just starting to under-
stand the basic components of this complex responsive sys-
tem, but extra efforts should now aim to detail how it works; 
this could be tackled by using the collection of mutants with 
altered biothiol metabolism and phytohormone perception. 
The information obtained would be useful for improving 
plant tolerance, enhancing detoxification systems, which can 
then contribute to the development of sustainable biotech-
nologies, and attenuating the environmental impact of haz-
ardous metal(loid)s.
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