

1 **ALKALINE TWIN-SCREW EXTRUSION FRACTIONATION OF OLIVE-**
2 **TREE PRUNING BIOMASS**

3 *Negro, María José; Duque, Aleta; Manzanares, Paloma; Sáez, Felicia; Oliva, José

4 Miguel; Ignacio Ballesteros; Mercedes Ballesteros

5 Biofuels Unit. Energy Department. CIEMAT

6 * Corresponding author. *E-mail:* mariajose.negro@ciemat.es

7 **ABSTRACT**

8 The present study investigates and optimizes a one-step alkaline-extrusion pretreatment
9 process using olive tree pruning as feedstock. In this work, a range of pretreatment
10 conditions (temperature, screw speed and alkaline catalyst to dry matter ratio) were
11 evaluated according to different parameters: composition of pretreated substrates,
12 glucose and xylose recovery, degradation products generation, enzymatic hydrolysis
13 yield and overall sugars yield. Results show that enzymatic digestibility is remarkably
14 improved by extrusion although not significant variations are found on the chemical
15 compositions of extruded material produced at different conditions. The maximum
16 glucose sugar production value, after pretreatment and enzymatic hydrolysis, was close
17 to 21 g/ 100 g raw material, which corresponds to about 69 % of the theoretical
18 production yield.

19

20 *Keywords:* Bio-refineries; extrusion; agricultural waste; pretreatment, lignocellulose,
21 enzymatic hydrolysis.

22 **1. INTRODUCTION**

23 Lignocellulosic biomass has been receiving major research attention during the last
24 three decades due to its important potential for conversion to sugars and fuels (Balat,
25 2011). Its role in the diversification of the current bioethanol production based on
26 starchy or sugar-based biomass appears to be a key factor to boost implementation of
27 lignocellulosic biomass conversion to ethanol into the current fuel market. The
28 production of fuel ethanol from agricultural or other lignocellulosic residues may be
29 advantageous because of the local availability of the raw material, usually at reduced
30 prices. Olive tree pruning (OTP) biomass is a highly available renewable agricultural
31 residue in the Mediterranean countries with no industrial applications. Olive tree
32 pruning is a periodical culture operation performed every two years after fruit harvest
33 by means of which less productive branches are cut off and trees are regenerated, the
34 main objective being to improve production. Currently, olive trees are cultivated in
35 more than forty countries, and the total dedicated surface is about 10.4 million ha
36 (Faostat, 2013). In Mediterranean areas, the residual biomass from olive pruning
37 reaches an average 1.31 t ha^{-1} in annual, and 3.02 t ha^{-1} in biennial, pruning (Velázquez-
38 Martín et al., 2011). Other studies state the residue yield ranging from 1 to 5 and from 4
39 to 11 t ha^{-1} , respectively, for the Spanish and the Italian orchard (Sánchez et al., 2002;
40 Spinelli and Picchi 2010). A typical OTP lot includes leaves (around 25% by weight),
41 thin branches (around 50% by weight), and thick branches or wood (25% by weight),
42 although the proportions may vary depending on culture conditions, tree age, production
43 and local pruning practice. This biomass constitutes an important energy and chemicals
44 source that, till date, is not being used commercially. This residue contains variable
45 amounts of carbohydrates as well as phenolic and terpenic compounds, etc., which
46 makes it an interesting source for bio-refinery products (Romero-García et al., 2014).

47 The composition of OTP biomass permits to develop a multiproduct industry that takes
48 advantage of the various components in biomass and their intermediates, therefore
49 maximizing the value derived from the biomass feedstock.

50 As an alternative, olive tree pruning residues may be used as raw material for
51 ethanol production. Due to the recalcitrant nature of the lignocellulose, a pretreatment
52 step is required for increasing fermentable sugars in the hydrolysis step. It is necessary
53 to choose pretreatment conditions that produce highly digestible solid material resulting
54 in high sugar yields from enzymatic hydrolysis and at the same time, prevent the
55 degradation of soluble sugars, so maximizing overall sugar yield. Many pretreatment
56 methods have been evaluated for ethanol production (Alvira *et al.*, 2010). Particularly
57 for OTP biomass dilute acid (Cara *et al.*, 2008), liquid hot water (Cara *et al.*, 2007), un-
58 catalysed steam explosion (Ballesteros *et al.*, 2011), phosphoric acid-catalysed steam
59 explosion (Negro *et al.*, 2014) and salts such as FeCl_3 (López-Linares *et al.*, 2013) have
60 been tested. All these pretreatments have in common the obtaining of a pretreated
61 material in which soluble fraction is mainly composed of the hemicellulose sugars,
62 while cellulose and lignin remain in insoluble solid fraction.

63 Regarding pretreatment, extrusion process is a novel and promising physical
64 method for biomass fractionation. Twin-screw extruders are a specialized category of
65 continuous processing equipment that is especially suited for aggressive mixing under
66 reactive conditions. They contain synchronous, parallel axis shafts with intermeshing
67 screw elements that can be configured to impose very high compression and shear
68 forces on materials (Scott *et al.*, 2011). In extrusion pretreatment, the material is
69 subjected to heating, mixing and shearing, resulting in physical and chemical
70 modifications during the passage through the extruder (Karunanity and
71 Muthukumarappan, 2010). Screw speed and barrel temperature are believed to cause

72 important effect in the disruption of the lignocellulose structure caused by extrusion,
73 which results in defibrillation and shortening of the fibres, and, in the end, increased
74 accessibility of carbohydrates to enzymatic attack (Karunanithy and Muthukumarappan,
75 2010). The different extrusion parameters must be taken into account to achieve the
76 highest efficiency in the process. Recent extrusion studies showed a significant
77 improvement on sugar recovery from corn stover (Liu et al., 2013), switchgrass
78 (Karunanithy and Muthukumarappan, 2010), *Miscanthus* (Kang et al., 2013), prairie
79 cord grass (Karunanithy and Muthukumarappan, 2010), pine wood (Karunanithy et al.,
80 2012), and barley straw (Duque et al., 2013) through enzymatic hydrolysis. This
81 improvement is attributed to the reduction in cellulose crystallinity, increase in surface
82 area, pore size and volume (Karunanithy and Muthukumarappan, 2013), and the
83 delignification effect during dissolution-regeneration steps (Um *et al.*, 2013).

84 On the other hand, alkali treatment is reported to break hydrolysable linkages in
85 lignin and glycosidic bonds of carbohydrates (Carvalheiro et al., 2008). As a result, it
86 produces swelling of the fibers leading to increase in internal surface area, reduction in
87 the degree of polymerization and crystallinity, and disruption of the lignin structure.
88 Moreover, alkaline saponification of acetyl and uronic ester bonds also occurs,
89 improving the enzymatic digestibility of pretreated material (Chen et al., 2013).

90 The high potential of OTP biomass as raw material for the production of fuels
91 and chemicals makes the search of new and efficient fractionation technologies a matter
92 of interest. The present study focuses on the extrusion of OTP biomass in a one-step
93 alkaline-extrusion process, in order to obtain a biomass fractionation. To our best
94 knowledge, there is no literature on alkali-extrusion of olive tree pruning residues. In
95 this work, a range of pretreatment conditions [temperature (70, 90, 110 °C), screw speed
96 (70 and 140 rpm) and alkaline catalyst to dry matter ratio (5 and 10 g NaOH/100 g DM

97 biomass) were evaluated according to different parameters: composition of pretreated
98 substrates, glucose and xylose recovery, degradation products generation, enzymatic
99 hydrolysis yield and overall sugar yield.

100 **2. METHODOLOGY**

101 **2.1 Olive tree pruning**

102 OTP was collected after fruit-harvesting, air-dried at room temperature to
103 equilibrium moisture content of about 10%, and milled using a hammer mill to a
104 particle size smaller than 4 mm. Fraction 1-4 mm was utilized in this work, while
105 fraction less than 1 mm was discharged.

106 **2.2 Pretreatment**

107 A twin-screw extruder) consisting in six modules (Clextral Processing Platform
108 Evolum® 25 A110, Clextral, France), was used in this study. OTP biomass was fed into
109 the first module through a volumetric screw feeder KMV KT20 (K-tron), which has a
110 flow capacity up to 16 Kg/h for OTP milled at 4 mm. Biomass was feed at 0.6 kg/h to
111 provide a continuous and constant feeding flow. The screw profile, which diagram is
112 depicted in Figure 1, has been previously described by Duque et al. (2013). Briefly, the
113 screws were configured to have a constantly decreasing pitch in module 1 and 2, a zone
114 with neutral kneading blocks in module 3 and reverse screws in module 4. In module 5
115 a filtration step was set up in order to separate liquid from solid fraction (filtrate and
116 extrudate, respectively) after extrusion. Right after that module, a reverse screw is used
117 in module 6. In order to add the catalyst (NaOH solution at 10-20% w/v, flow rate 0.3
118 L/h) and water (flow rate 6 L/h) to the process, two metering pumps connected to the
119 extruder were used.

120

121 Operating conditions were set to achieve moderate values of NaOH/DM ratio, 5
122 and 10 % (w/w), barrel temperature (70, 90 and 110 °C) and screw speed of 70 and 150
123 rpm. These conditions were chosen based on previous studies carried out in our
124 laboratory with other herbaceous residues, such as barley straw (Duque et al., 2013).
125 Pretreatment runs were performed in triplicate.

126 After extrusion, OTP extruded material was recovered and washed thoroughly
127 with slightly acidic water (pH around 4), until neutral pH. The filtrate was collected and
128 total soluble solids, sugars, aliphatic acids, furans and phenols content was determined.
129 A portion of washed extruded solid (WES) was dried at 40°C and analyzed for
130 carbohydrates and lignin composition, as described below.

131 [Insert Figure 1 here]

132

133 2.3 Enzymatic hydrolysis

134 The washed water-insoluble residue of pretreated OTP was enzymatically
135 hydrolyzed by the novel enzyme preparations Cellic CTec 2 and Cellic HTec 2. The
136 enzymes were kindly provided by Novozymes A/S (Denmark). Cellic CTec 2 is a
137 cellulase preparation, which in addition shows high beta-glucosidase activity. Cellic
138 HTec 2 is a hemicellulase preparation with endoxylanase activity. All the enzymatic
139 hydrolysis assays were performed in 100-mL Erlenmeyer flasks in triplicates using
140 WES as substrate. Enzyme preparation used was a mixture of Cellic Ctec2:Cellic Htec 2
141 (in a proportion 3:1 in volume) and was added in a dosage of 15 FPU of cellulose/g
142 substrate. The assays were run in 50 mM sodium citrate buffer (pH 5) at 50 °C, 150 rpm
143 and 5% (w/v) dry WES load. At 72 h, samples were withdrawn, centrifuged at 9300 g
144 for 10 min and the supernatants were analysed for sugars concentration by HPLC, as

145 described below in analytical methods. Additionally, blanks of the enzyme mixtures
146 were analyzed by HPLC to subtract the sugar content present in the enzyme
147 preparations used. Enzymatic hydrolysis yields (EH) were determined considering the
148 glucose/xylose produced during enzymatic hydrolysis, which is referred to the potential
149 glucose/xylose (calculated based on the glucan/xylan content in the WES) and is
150 reported as percentage. Average values of the three replicates were presented.

151 **2.4 Analytical Methods**

152 The composition of raw material and WES obtained after pretreatment were
153 determined according to National Renewable Energy Laboratory (NREL) analytical
154 methods for biomass (Sluiter *et al.*, 2011).

155 Sugar content in filtrate and EH media was quantified by high performance liquid
156 chromatography (HPLC) using a Waters 2695 liquid chromatograph with refractive
157 index detector. A CARBOSep CHO-682 LEAD column (Transgenomic, Omaha, NE)
158 operating at 75 °C with Milli-Q water (Millipore) as mobile-phase (0.5 mL /min) was
159 used.

160 Phenolic compounds were analysed by HPLC (Agilent, Waldbronn, Germany)
161 employing an Aminex HPX-87H column (Bio-Rad Labs, Hercules, CA) at 65 °C. The
162 mobil phase was 89% (5 mM H₂SO₄) and 11% acetonitrile at flow rate of 0.7 mL/min.
163 A 1050A Photodiode-Array detector (Agilent, Walsbronn, Germany) was employed for
164 detection. Total phenols were also quantified according to a slightly modification
165 version of Folin-Ciocalteau as described Moreno *et al.* (2013).

166 Formic and acetic acid were quantified by HPLC (Waters, Milfors, MA) using a
167 410 Water refractive index detector. An Aminex HPX-87H (Bio-Rad Labs, Hercules,

168 CA) column maintained at 65 °C and mobile phase of 5 mM H₂SO₄ at flow rate of 0.6
169 mL/min were employed.

170 Total starch content was measured using the Total Starch Assay Kit (Megazyme,
171 Ireland).

172 **3. RESULTS**

173 **3.1 Composition of raw material**

174 Table 1 shows olive tree pruning biomass composition. OTP has 22.3% of
175 cellulose and 17.4% hemicellulose (oven dry weight). Total lignin content accounts for
176 17.8%. Acetyl groups represent about 2.3% of raw material and total ash accounts for
177 4.1 %. It is worth noticing that this lignocellulosic residue has an extractive content of
178 24.5%, which includes 6.2% of glucose (as oligosaccharides, probably starchyose and
179 raffinose). Other sugars are present in the water extract in trace amounts. The
180 proportion of the extractive fraction is greater than that reported for other agricultural
181 residues like barley straw. In previous reports on OTP, extractive contents ranged from
182 23.3% (Ballesteros et al., 2011) to 31.4% (Cara et al., 2008), and the variability was
183 attributed mainly to the heterogeneity of the residue (variable proportions of small
184 branches and leaves). The high proportion of extractives could be related to a higher
185 content of leaves in the raw material.

186 [Insert Table 1 here]

187 **3.2. Extrusion pretreatment in combination with alkali**

188 Results of WES and filtrate composition after the different extrusion
189 experiments are depicted in Tables 2 and 3, respectively. The alkali-extrusion
190 pretreatment resulted in a cellulose and hemicellulose enriched-solid (Table 2),
191 compared to raw material. Glucan in WES (values ranging from 31.0 to 38.8 %), is

192 increased by 1.3 to 1.6 fold in relation to the content in raw material. Hemicellulose
193 content in WES ranges from 21.2 to 26.5%, while AIL was 24.4-27.3%. Hemicellulose
194 was mostly composed of xylan (70%) and arabinan (16%).

195 Regarding total solid recovery values, in most cases it was close to 100% (data
196 not shown). The recovery of glucan is in the range 92-100 % in the solid fraction, while
197 xylan recovery in solid fraction varies from 92 to 99%. It is interesting to attain high
198 values of hemicellulose recovery in the pretreated solid to enhance the total fermentable
199 sugars production through enzymatic hydrolysis of xylan using specific enzymes.

200 [Insert Table 2 here]

201 In the water-soluble fraction generated from pretreatment (filtrate) (Table 3),
202 sugars were present in considerable proportions as oligomers, so that a post-hydrolysis
203 step was performed to determine the total amount of sugars. The sugar production
204 ranged from 7.2 to 9.5 g/100 g raw material. It is worth noting that glucose is the most
205 abundant sugar in the liquid fraction at any condition. Considering that non-structural
206 derived glucose was present at high proportion in the aqueous extract fraction of raw
207 material, it is likely that the most part of this component was transferred to liquid
208 fraction after one-step alkaline-extrusion process. The second major sugar found in
209 filtrates was mannitol; sugar production of this sugar ranged from 1.65 to 3.5 g/100 g
210 raw material. This component, with interesting applications in the food and
211 pharmaceutical industries, is also present in olive tree leaves (Ghoreishi and
212 Shahrestania, 2009). Mannitol is used as an excipient in pharmacy, and as anticaking
213 and free-flow agent, lubricant, stabiliser and thickener, and low calorie sweetener, in the
214 food industry.

215 [Insert Table 3 here]

216 Regarding other products in filtrates, acetic acid was detected in all pretreatment
217 conditions. Acetic acid production is due to the action of soda on acetyl groups release
218 from hemicelluloses. In fact, when pretreatment was done with water instead of soda,
219 acetic acid was not found in the filtration liquid (data not shown).

220 Totals phenols were also determined in the filtrate, and values ranged from 1.7
221 to 3.3 g/100 g raw material. By HPLC analysis of monomeric phenols, cumaric acid and
222 ferulic acid were detected (about 30 mg/100 g raw material, about 27 mg felulic acid
223 /100 g raw material), and in less proportion, hydroxybenzoic acid (10 mg/100 g raw
224 material). During alkaline pretreatment, the lignin macromolecule is dissolved and
225 degraded into small fractions. It has been reported that the reaction involves the
226 cleavage of phenolic alfa-O-4 linkages, cleavage of non-phenolic beta-O-4 linkages, and
227 removal of residual lignin fractions, either by cleavage of C-C linkages or carbohydrate
228 degradation, releasing lignin-carbohydrate fractions that are mainly oxidized into
229 aliphatic carboxylic acids (Sun et al., 2002). As expected, due to low operation
230 temperatures and basic conditions, neither furfural nor 5-hydromethyl furfural were
231 detected.

232 *3.3 Enzymatic saccharification*

233 The effect of temperature, alkali concentration and screw speed on the
234 enzymatic digestibility of the solid fraction obtained after extrusion pretreatment was
235 evaluated and results are shown in Table 2. EH yield depends on the barrel temperature
236 and in general, EH yield increases as the temperature rises. The untreated raw material
237 displayed maximum EH yield about 8 % after 72 h enzymatic hydrolysis in tests
238 performed in parallel to pretreated substrates and 19 % EH yield when extrusion
239 pretreatment was undertaken with water instead of alkali. The alkali extruded samples
240 exhibited a higher enzymatic digestibility, yielding up to 65%. The comparison of EH

241 yield values from water-extruded and alkaline- extruded OTP demonstrates the positive
242 effect of alkaline addition during extrusion on enzymatic hydrolysis of extruded OTP.
243 The addition of 5 g NaOH/100 g DM allows increasing EH yield by 1.7 fold, while 10 g
244 NAOH/g DM results in 3.4 fold increase in experiments at 110°C. The EH yield
245 increased with NaOH loading and barrel temperature, but screw speed effect was not
246 significant (p<0.05) by ANOVA analysis.

247 On the other hand, xylan conversion yield rises as alkaline concentration
248 increases in all temperatures tested, attaining values close to 70% of theoretical in
249 WES at 110°C and 10 NaOH/100 g DM and 150 rpm. In untreated material, yield was
250 3.3%. It means that the digestibility of xylan is enhanced by one-step alkaline extrusion
251 pretreatment due to deconstruction of lignocellulose structure and facilitating of the
252 xylanase enzymes action. Similar results in xylan hydrolysis were reported on barley
253 straw using the same equipment, where the hydrolysis yield for xylan resulted in 71% of
254 theoretical (Duque et al., 2013).

255 In order to optimize the overall process yield, both carbohydrate recovery in the
256 solid residue after pre-treatment step, and hydrolysis yield in the enzymatic step must be
257 taken into account. This parameter is an important indicator of the potential amount of
258 sugars that could be used for ethanol or other by-products production. Overall sugar
259 yields were evaluated and results are shown in Table 2. At the best conditions (150 rpm,
260 110°C, 10 NaOH g/100 g DM) an overall yield of 21.01 g glucose /100 g olive tree
261 pruning and 9.54 g xylose/100 g olive tree pruning was obtained. A 68.7% of total
262 glucose is available after one-step alkaline extrusion pretreatment and enzymatic
263 hydrolysis yield. The maximum sugars recovery recorded in this study was comparable
264 to those obtained in pine were a maximum of 66.1% of sugars was obtained. However

265 these experiments were carried out at significantly higher temperature of 180°C without
266 alkaline treatment (Kuranunity and Muthukumarappan, 2012).

267 The comparison of the effectiveness of one-step alkaline extrusion process with
268 other pre-treatments performed on OTP resulted in an improvement in overall sugar
269 yield. Table 4 show results obtained for different pretreatments on OTP biomass in
270 relation to glucose overall yield and sugars overall yield. Results are also expressed as
271 percentage of theoretical, due to the different composition of raw materials. Maximum
272 overall sugar recovery yield achieved in the extrusion pretreatment of OTP is highest
273 than those obtained using different pre-treatments such as liquid hot water and steam
274 explosion (both un-catalysed and acid-catalysed) pretreatments. Though overall sugars
275 yield values obtained were slightly lower than results from diluted acid pretreatment,
276 one of the main advantages of extrusion fractionation process over other thermo-
277 chemical methods is that the process can be carried out at lower temperature, preventing
278 the formation of inhibitory compounds coming from the degradation of
279 hemicelluloses/lignin.

280 [Insert Table 4 here]

281 CONCLUSIONS

282 Results in this work show that one-step alkaline –extrusion process is a suitable method
283 to fractionate OTP resulting in high sugars recovery values. Fractionation followed by
284 enzymatic saccharification leads to a glucose yield equivalent to 69% of potential
285 glucose present in raw material. Regarding the effect of process parameters studied on
286 EH yield, it is demonstrated by ANOVA analysis that NaOH loading and barrel
287 temperature positively affect sugars release by EH ($p<0.05$), but screw speed effect was
288 not significant. This result together with the huge amount of this residue yearly

289 generated, its low cost and lack of other alternatives of use, makes this process an
290 attractive option for its upgrading. Nevertheless, research on the improvement of sugar
291 yield using extrusion process must be continued to optimize the use all sugars present in
292 this biomass.

293 **ACKNOWLEDGEMENTS**

294 This research was supported by funding from Ministerio de Economía y Competitividad
295 (Spain) ref. ENE2011-29112-C02.

296 **REFERENCES**

297

298 Alvira, P., E. Tomás-Pejó, M.J. Negro., 2010. Pretreatment technologies for an efficient
299 bioethanol production process based on enzymatic hydrolysis: A review.
300 *Bioresour. Technol.* 101, 4851-4861.

301 Balat, M. 2011. Production of bioethanol from lignocellulosic materials via the
302 biochemical pathway: a review. *Energy Convers Manage.* 5, 858-75.

303 Ballesteros, I., Ballesteros M., Cara, C., Sáez, F., Castro, E., Manzanares, P., M. J.
304 Negro, M.J., Oliva J. M. 2011. Effect of water extraction on sugars recovery
305 from steam exploded olive tree pruning. *Bioresour. Technol.* 102 (11), 6611-
306 6616.

307 Cara, C., Romero, I., Oliva, J.M., Sáez, F., Castro, E., 2007. Liquid hot water
308 pretreatment of olive tree pruning residues. *Appl. Biochem. Biotechnol.* 137-140,
309 379-394.

310 Cara, C., Ruiz, E, Ballesteros, M., Manzanares, P., Negro, M.J., Castro, E. 2008a.
311 Production of fuel ethanol from steam-explosion pretreated olive tree pruning.
312 Fuel 87, 692-700.

313 Cara, C., Ruiz, E., Oliva, J.M., Sáez, F., Castro, E. 2008b. Conversion of olive tree
314 biomass into fermentable sugars by diluted acid pretreatment and enzymatic
315 saccharification. *Bioresour. Technol.* 99, 1869-1876.

316 Carvalheiro, F., Duarte, L.C., Gírio, F.M., 2008. Hemicellulose biorefineries: A review
317 on biomass pretreatments. *J. Sci. Ind. Res.* 67, 849-864

318 Chen, Y, Stevens, M.A., Zhu, Y., Holmes, J., Xu, H. 2013. Understanding of alkaline
319 pretreatment parameters for corn stover enzymatic saccharification. *Biotechnol.*
320 *Biofuels*, 6, 8.

321 Duque, A., P. Manzanares, I. Ballesteros, Negro, M.J., Oliva, J.M., Sáez, F. and
322 Ballesteros, M. 2013. Optimization of integrated alkaline-extrusion pretreatment
323 of barley straw for sugar production by enzymatic hydrolysis. *Process Biochem.*
324 48, 775-781. 9.

325 FAOSTAT (2013). http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E (last
326 accessed 5th December, 2014)

327 Ghoreishi, S.M., Shahrestania, R.G., 2009. Subcritical water extraction of mannitol
328 from olive leaves. *J. Food Eng.* 93, 474-481.

329 Kang, K.E., Han M., Moon S.K., Kang H.W., Kim Y., Cha Y.L., Choi G.W. 2013.
330 Optimization of alkali-extrusion pretreatment with twin-screw for bioethanol
331 production from Miscanthus. *Fuel* 109, 520-526.

332 Karunanithy, C., Muthukumarappan, K., Gibbons W.R., 2012. Extrusion pretreatment
333 of pine wood chips. *Appl. Biochem. Biotechnol.* 167, 81-99.

334 Karunanithy C. and Muthukumarappan K. 2010. Effect of extruder parameters and
335 moisture content of switchgrass, prairie cord grass on sugar recovery from
336 enzymatic hydrolysis. *Appl. Biochem. Biotechnol.* 162, 1785-1803.

337 Karunanithy, C., Muthukumarappan K., 2013. Chapter on 'Thermo-mechanical
338 pretreatment of feedstocks' in Green Biomass Pretreatment for Biofuels
339 Production edited by Dr. Tingyue Gu, Springer-Verlag London Limited., pp 31-
340 65.

341 Lamsal, B., Yoo, J., Brijwani, K., Alvari, S., 2010. Extrusion as a thermo-mechanical
342 pre-treatmeent for lignocellulosic ethanol. *Biomass and Bioenerg.* 34, 1703-
343 1710.

344 Liu, C., van der Heide, E., Wang H., Li B., Yu, G., Mu, X. 2013. Alkaline twin-screw
345 extrusion pretreatment for fermentable sugar production. *Biotechnol. Biofuels* 6,
346 97.

347 López-Linares, J.C., Romero, I., Moya, M., Cara, C., Ruiz, E., Castro, E., 2013.
348 Pretreatment of olive tree biomass with FeCl_3 prior enzymatic hydrolysis.
349 *Bioresour. Technol.* 128, 180-187.

350 Moreno, A.D., Tomás-Pejó, E., Ibarra, D., Ballesteros, M, Olsson, L. 2013. In situ
351 laccase treatment enhances the fermentability of steam-exploded wheat straw in
352 SSCF processes at high dry matter consistencies. *Bioresour. Technol.* 143, 337-
353 343.

354 Negro, M.J., Álvarez, C., Ballesteros, I., Romero, I., Ballesteros, M., Castro, E.,
355 Manzanares, P., Moya, M., Oliva, J.M., 2014. Ethanol production from glucose
356 and xylose obtained from steam exploded water-extracted olive tree pruning
357 using phosphoric acid as catalyst. *Bioresour. Technol.* 153, 101–107.

358 Romero-García, J.M, Niño, L., Martínez-Patiño, C., Álvarez, C., Castro, E., Negro, M.J.
359 2014. Biorefinery based on olive biomass. State of arte and future trends.
360 *Bioresour. Technol.* 159, 421-432.

361 Sánchez, S., Moya, A.J., Moya, M., Romero, I., Torrero, R., Bravo, V., San Miguel,
362 M.P., 2002. Aprovechamiento del residuo de poda del olivar. *Ingeniería*
363 *Química* 34, 194-202.

364 Scott, CT, Samaniuk, J.R., Klingenberg, D.J. 2011. Rheology and extrusion of high-
365 solids biomass. *Tappi J.*, May, 47-52.

366 Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W. 2010.
367 Compositional analysis of lignocellulosic feedstocks. 1. Review and description
368 of methods. *J. Agric. Food Chem.*, 58, 9043-9053.

369 Spinelli, R., Picchi, G., 2010. Industrial harvesting of olive tree pruning residue for
370 energy biomass. *Bioresour. Technol.* 101, 730–735.

371 Sun, R.C, Sun, X.F., Fowler, P., Tomkinson, J., 2002. Structural, physic-chemical
372 characterization of lignins solubilized during alkaline peroxide treatment of
373 barley straw. *Eur. Polym. J.* 38, 1399-1407.

374 Um, B.H., Choi, C.H., Oh, K.K. 2013. Chemicals effect on the enzymatic digestibility
375 of rape straw over the thermo-mechanical pretreatment using a continuous twin
376 screw-drive reactor (CTSR). *Bioresour. Technol.* 130, 38-44.

377 Velázquez-Martín, B., Fernández-González, E., López-Cortés, I., Salazar-Hernández,
378 D.M., 2011. Quantification of the residual biomass obtained from pruning of
379 trees in Mediterranean olive groves. *Biomass Bioenerg.* 35, 3208-3217.