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A synthetic Mirnov coils diagnostic for non-axisymmetric magnetic configurations is presented and used to
study the capabilities of the poloidal array of single-axis coils and the two helical arrays of tri-axial coils
installed in the TJ-II stellarator. This tool integrates the plasma currents induced by Alfvén-like perturbations
of the electric potential inside the plasma and provides the induced magnetic field oscillations anywhere
outside of it. The simulated signals can then be analyzed in the same manner as the experimental ones, and a
scan on the radial position and width of the potential perturbation is conducted to find the limiting values
that produce identifiable signals. We find, not surprisingly, that core-localized modes are indistinguishable
from one another; and that the identification of low-n, low-m modes is often subject to off-by-one errors. We
also determine the optimal polarization basis in which to analyze the tri-axial coils signals and address the
diagnostic performance when resolving components of gap modes. Additionally, selected cases have been
analyzed with a simplified plasma response model, showing that plasma shielding of the mode currents may
further deteriorate the accuracy of the mode identification method. We conclude with the analysis of an
experimental case taken from the TJ-II database to illustrate the usefulness of the diagnostic.

I. INTRODUCTION

The characterization and control of fast-particle driven
Alfvén eigenmodes (AEs) is a key issue for burning plasma
operation1. AEs have been shown to trigger fast-particle
transport2 and reduce heating efficiency3 in fusion de-
vices, therefore deteriorating performance and endanger-
ing plasma-facing components. On the other hand, exter-
nally triggered AEs have also been proposed as a plasma
exhaust mechanism4 which could prove very advantageous
in a power plant. For those reasons, the validation of AE
physics models is indispensable for the informed design
of future reactors.

The experimental determination of the spatial structure
of AEs through the identification of its poloidal (m) and
toroidal (n) mode numbers is an integral part of this task,
as it allows for theory-experiment comparisons. Of the set
of diagnostics that provide information on mode numbers,
Mirnov coil arrays distributed around the plasma column5

are one of the more widely used. Typically, tokamaks
currently in operation like DIII-D6, ASDEX Upgrade7,8

or TCV9 have a large number of poloidal Mirnov coils and
a much smaller number of toroidal ones, that are usually
enough for low-n modes10. An exception to this trend is
MAST-U and its OMAHA poloidal array11 with only 10
coils that are optimized to minimize the spatial aliasing
of the measured signal and thus are able to resolve high
mode numbers with a comparatively sparse arrangement
of sensors. Compared to stellarators, the toroidal and
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poloidal mode numbers of the most common modes are
more easily identified in tokamaks, with the poloidal
number being the most problematic.

The non-axisymmetry of stellarators, however, makes
mode identification much more challenging in these de-
vices, since gaps in the shear Alfvén continuum, produced
also by helical couplings, lead to modes with different
toroidal and poloidal mode numbers that evolve with the
same frequency4. The coil arrangements are also more
diverse in stellarators. LHD has a 16-sensor helical array,
along with a 6-sensor toroidal array of tri-axial coils12.
In W7-X there are several poloidal arrays13,14, both open
and closed, and a smaller number of coils distributed
toroidally, for a total of 125 sensors that measure fluctu-
ations in the poloidal direction. H-1NF had a 16-sensor
helical array of tri-axial coils15 and two poloidal arrays16.

An in-depth analysis on the limitations of this type
of diagnostic for determining both toroidal and poloidal
structure of high frequency AEs in non-axisymmetric
configurations, in particular modes excited within HAE
(Helical Alfvén Eigenmode) gaps, has not been carried
out to date. A recent study by Büschel et al.17 presents
a synthetic diagnostic to explore the performance of the
poloidal arrays of W7-X using different spatial distribu-
tions of coils and several magnetic configurations, inte-
grating the perturbed field at the plasma edge using the
virtual casing method implemented in the EXTENDER_P
code18. Some more work has been done in tokamaks:
in TCV a study was conducted focusing on the model-
ing of uncertainties introduced by coil hardware on an
ideal mode excited at the coil locations19 and, in a recent
work20, the response of the Mirnov coils to a distribution
of currents was modeled to serve as a forward function
for a Bayesian inference-based tomographic reconstruc-
tion diagnostic, addressing the possibility of including the
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plasma response to the current perturbation as well.
In this paper, the arrays of Mirnov coils installed in

the TJ-II stellarator have been used for this purpose, as
they provide good poloidal and toroidal21 coverage of the
device, with a coil arrangement that is similar to the one
installed in H-1NF. NBI (Neutral Beam Injection) driven
Alfvén eigenmodes have been extensively studied in TJ-II
experiments and previous work focused on the determina-
tion of the poloidal mode number was done using SVD
(Singular Value Decomposition)22,23 or spatiotemporal
Fourier transforms24, without specifically addressing the
limitations of the diagnostic. The work focuses on deter-
mining the amplitude of the magnetic field oscillations at
the locations of the Mirnov coils produced by an Alfvén
wave in the plasma. Using a new synthetic diagnostic
developed for this purpose, an arbitrary potential pertur-
bation, consistent with the structure of the shear Alfvén
waves that can be destabilized in the device, is applied
to model these oscillations. We then take the synthetic
signal measured by each coil and, using signal analysis
techniques such as the 3D Lomb Periodogram, we re-
construct the mode structure and compare the original
mode numbers with those obtained from the analysis.
With this diagnostic, we have explored the capabilities
of the different sets of Mirnov coils installed in the TJ-II
stellarator, performing a scan on the parameters that
define the spatial structure of the potential perturbation.
Note also that modelling HAE or TAE (Toroidal Alfvén
Eigenmode) coupled modes in the real 3D geometry can
provide information on the radial structure of the poten-
tial perturbations and their expected low/high field side
asymmetries in amplitude, which have been measured in
TJ-II using Heavy Ion Beam Probes (HIBP)25. For cases
with toroidal mode number n = 0, a simplified model of
the plasma response has been included in the synthetic
diagnostic to investigate the impact of plasma shielding
on the mode currents and on the poloidal mode structure
as seen by the Mirnov array.

The physics underlying the AEs model used in the syn-
thetic diagnostic and the plasma response calculation is
described in appendix A. Section II describes the spatial
distribution of the different sets of Mirnov coils installed
inside the device. One of them, which measures only one
component of the field at each position, is indicated for
the measurement of the poloidal mode number while the
other two are helical sets of triaxial coils measuring the
three components of the magnetic field at each position.
Section III describes the mode number analysis technique
applied to both synthetic and real signals, and section
IV describes the results of the simulations and addresses
the performance of the arrays taking into account aspects
such as mode position in the plasma or magnetic field
polarization at the measurement locations, which is re-
lated to mode polarization in the plasma in a non-trivial
way due to the highly three-dimensional structure of the
equilibrium field. Section V showcases the analysis of
a discharge of TJ-II, where the lessons learned are ap-
plied to experimental data. Our conclusions and further

discussion are held in section VI.

II. EXPERIMENTAL SET-UP

TJ-II is a medium (R0 = 1.5 m, a ≤ 0.22 m, V ≤ 1 m3)
four-period (Nfp = 4) heliac stellarator, with magnetic
field on axis of B0 = 0.95 T. Low density plasmas heated
by a combination of NBI and ECRH (Electron Cyclotron
Resonant Heating) are an excellent testing ground for in-
vestigating NBI driven Alfvén wave excitation due to their
high content of fast ions25,26. Most of the experiments car-
ried out to date have used the so-called standard magnetic
configuration and therefore the performance analysis with
the synthetic code will only be done in this configuration.
The magnetic equilibrium was calculated using the VMEC
code27, and transformed to Boozer coordinates (s, θ, φ)
using the BOOZ_XFORM code28.

FIG. 1. Coil locations around the plasma column. Poloidal
array shown in green, and helical array in blue (upper sub-
array) and red (lower sub-array).

In figure 1, the coil locations relative to the Last Closed
Flux Surface (LCFS) are shown. The poloidal array
(green) consists of 25 coils that measure the changes in
magnetic field in the approximate poloidal direction, and
covers approximately 270 degrees. The helical array (blue
and red) is made up of two symmetrical sub-arrays that
wrap around the central and helical main field conductors
(not shown in the figure) for a full period of the device.
Each sub-array consists of 32 tri-axial sensors that allow
us to determine the three-dimensional time evolution of
the magnetic flux at their center.

FIG. 2. Orientation vectors normal to the detection planes of
the helical array tri-axial coils (red, green and deep blue) and
the coils of the poloidal array (black).

Figure 2 depicts the design orientations of the coils.
By construction, the uncertainty in the orientation of the
poloidal array coils is low, as they are perfectly aligned
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inside a rigid metallic tube. The tri-axial sensors, on the
other hand, are located inside a semi-rigid corrugated
tube that had to be twisted for its installation inside the
vacuum vessel. The alignment of each tri-axial set of coils
inside the tube is more sensitive to positioning errors and
a calibration was necessary to determine their true ori-
entations. Once these orientations are known, the signal
can be projected over arbitrary directions in software, as
the coils in each sensor are orthogonal. A comprehensive
description of the helical array, its characteristics and the
related calibration experiments can be found in ref. 21.
For the numerical study of the diagnostic performance
we have assumed ideal coils distributed according to the
position and orientation of the original design, thus avoid-
ing adding an extra layer of complexity. However, the
calibration is essential for the analysis of the experimen-
tal data and has been taken into account in the analysis
presented in section V.

III. MODE NUMBER ANALYSIS

The Lomb-Scargle periodogram29,30 is widely used in
astrophysics to identify periodicities in non-evenly-spaced
observation data. In plasma physics, a 3D generalization
was introduced by Zegenhagen31 to conduct mode analysis
with non-equispaced coils in W7-AS. The Lomb-Scargle
periodogram fits the data yij to the sinusoidal model

yij + ϵij = a cos(αij) + b sin(αij) , (1)

where ϵ is noise, assumed to be white, αij ≡ mθj +nφj −
ωti is the phase of the perturbation with mode numbers
m and n and frequency ω, with i being the time label
and j the coil label. In this model, we assume that
both the functional forms of the phase term of the field
perturbation outside the plasma and the phase term of
the Alfvén mode itself are the same. Since magnetic
coordinates are not defined outside the LCFS, we map
the outer spatial position of each coil to that of the closest
position in the plasma. Therefore, the coil angles φj and
θj are, as in ref. 31, the Boozer angles of the closest point
in the LCFS to the coil. In figure 3 they are shown for
the standard configuration.

The periodogram is given by

PLS(ω, n,m) = 1
Y Y


[∑

ij yij cos(αij − τ)
]2

∑
ij cos2(αij − τ) +

[∑
ij yij sin(αij − τ)

]2

∑
ij sin2(αij − τ)

 , (2)

where YY =
∑

ij y
2
ij and τ is a phase shift term given by:

tan 2τ =
∑

ij sin 2αij∑
ij cos 2αij

. (3)

For a more in-depth discussion on this phase shift term,
that differs from the one given in31, see appendix B. With
this definition, the periodogram is normalized, giving
results in the range [0, 1], with PLS = 0 corresponding to
zero agreement with the measured signals (simulations in
this case) and PLS = 1 corresponding to perfect agreement.
When applied to experimental data, the analysis starts by
finding the frequency f0 of the detected eigenmode from
an spectrogram obtained either via the Short-Time Fast
Fourier Transform (STFFT) or the DMUSIC (Damped
Multiple Signal Classification) method32. At this time,
the frequency is selected manually, but mode following
algorithms33,34 can be readily applied for an automated
analysis once the method has been shown to be sound.
Then, a scan is performed over the relevant n and m mode
numbers, that is, the ones that can be resolved given the
distance between coils. The results are plotted as a 2D
colormap of PLS(n,m). For our present purposes, mode
frequency and mode numbers are inputs for the synthetic

0 /8 /4 3 /8 /2
-

- /2

0

/2 #1 and #32

#1 and #32

Upper array
Lower array
Poloidal array

FIG. 3. Boozer angles evaluated at the closest point on the
LCFS to each coil for the poloidal array (green markers) and
the upper (blue) and lower (red) helical sub-arrays.

modelling and the potential perturbation associated with
the mode is given by equations 6 and 7.

The signals measured by the poloidal array have a non-
negligible dependency on the toroidal mode number since
the array is not located at a constant toroidal magnetic
angle, as seen in figure 3. On the other hand, since
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the helical sub-arrays follow a straight line in magnetic
coordinates, approximately given by

θ(φ) = −Nfpφ+ θ0 , (4)

the measured signals therefore depend both on the toroidal
and the poloidal mode numbers. This link between
poloidal and toroidal angles limits the identifiable mode
numbers, introducing false positives in a phenomenon akin
to aliasing. The phase difference between signals mea-
sured by two coils separated ∆φ in the toroidal direction
will be:

δ = (n−Nfpm)∆φ = l∆φ , (5)

where l is an integer. For a constant value of l, all the
modes that satisfy n−Nfpm = l will suffer aliasing and
will appear indistinguishable using a single sub-array.
Having two helical sub-arrays that combine measurements
at two poloidal locations for each toroidal plane helps
mitigate this problem. This can be seen in the top row
of figure 4, where the Lomb periodogram of each helical
sub-array for a simulated mode is depicted.
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FIG. 4. Example Lomb periodograms for the upper (HAU),
and lower (HAL) helical sub-arrays, and both of them com-
bined (HA) on the top row; and on the bottom row the poloidal
(PA), the combined helical sub-arrays again (HA) for clarity,
and the product of the two periodograms (PA·HA), all for a
m = 6, n = 3 synthetic mode.

The periodograms of each sub-array individually are
virtually identical, a stripe with slope 1/Nfp, but the extra
poloidal information given by the sub-array separation in
the poloidal direction is enough to partially remove the
uncertainty. Only after adding the measurements of the
poloidal array can we arrive at an unambiguous determi-
nation of both toroidal and poloidal mode numbers. This
can be seen best in the bottom row of figure 4, that shows
Lomb periodograms for the poloidal array (PA panel),
the two helical arrays, combined (HA panel), and the
product of the previous two. There, the dependency on
the toroidal angle φ of the poloidal array shows up as a
slight slope in the mode identification of the PA panel,
that otherwise (if the array had φ = constant) would

appear as a horizontal stripe. Similarly, in the HA panel,
a diagonal stripe appears, with slope 1/Nfp as discussed
before. Having both sub-arrays provides enough informa-
tion to discard some of the modes, and that is the reason
why the stripe is not continuous. The most robust way to
perform the mode identification given these limitations in
the coil arrangement has proved to be taking the product
of the PA and HA periodograms and finding its maximum.
To our knowledge, this is the first time that this method
has been used.

As the amplitude of the detected perturbation depends
on both the mode numbers and the distance between
the coil and the radial position and extension of the
perturbation, the normalization of the measured signals
has been found to improve the robustness of the mode
identification. For instance, a low intensity signal at some
of the coil locations is interpreted by the periodogram as
a minimum in the spatial structure of the mode, so false
positives can be introduced this way.

IV. SIMULATIONS

We divide this section into two main subsections, one of
them dedicated to the simulations with a single synthetic
mode and the other to the simulations dealing with cou-
pled modes. In the first subsection the essential aspects
to be taken into account are first illustrated using the
poloidal array. We discuss the treatment of the mode
polarization, that is necessary for the mode analysis using
the helical arrays. In the second subsection, where we
study coupled mode simulations with both arrays, our
goal is to investigate the ability of the diagnostic to re-
solve different pairs of physically relevant coupled modes.
To account for arbitrary mode coupling, the synthetic di-
agnostic considers potential perturbations (see appendix
A) of the form

δϕ(s, θ, φ, t) =
∑
mn

δϕω
mn(s)ei(mθ+nφ−ωt) , (6)

where δϕω
mn ∈ C is the radial profile of the m,n mode

and s =
√
ψ is the radial coordinate used by the VMEC

code, being ψ the normalized toroidal magnetic flux. As
we will only consider linear coupling, the code has been
designed so that several modes can be simulated at the
same time with arbitrary phase differences and intensities
given by the arguments of δϕω

mn.
The plasma equilibrium must be discretized to carry

out the simulations, and a suitably fine grid is mandatory
for accurate results. Convergence studies have shown that,
for TJ-II, ns ×nθ ×nφ = 100×150×1000 is enough to get
robust results. The radial derivatives are taken using five-
points finite differences, while the θ and φ derivatives are
found using Fast Fourier Transforms (FFT), exploiting
the flux-surface periodicity of the modes. The thermal β
is rather low in the plasmas that typically exhibit AEs
activity in TJ-II, and therefore a vacuum equilibrium is
taken for all the studied cases.
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The spatial structure of the electrostatic potential per-
turbation is given by equation 6, and the radial profile
δϕω

mn is taken to be Gaussian:

δϕω
mn(s) = Aω

mn exp
[
− (s− s0)2

σ

]
, (7)

with Aω
mn ∈ C. The current is calculated from the vec-

tor potential perturbation using equation A7, which we
rewrite here for convenience:

δJext = − 1
µ0

∇ × ∇ × δA∥b0 . (8)

A. Single mode simulations

We start by running the synthetic diagnostic code for
single mode perturbations defined by their mode numbers
n, m and their frequency ω. In figure 5 the potential
perturbation for a single m = 5, n = 7, s0 = 0.3, σ =
0.015 mode is shown for several toroidal cuts at constant
φ in a half period of the device.

Z 
[m

]

FIG. 5. Potential perturbation in six toroidal (φ = constant)
cuts along a half-period of the device for a mode with m = 5,
n = 7, s0 = 0.3 and σ = 0.015.

Figure 6 shows the parallel component of the vector
potential and the component along eφ of the induced
current associated to the potential pertubation shown in
figure 5. The structure of the current perturbation is
notably more complex than that of its potential, which is
to be expected since it arises from the double curl of the
vector potential. Also, from this expression we see that
narrower modes will have higher current densities, as the
slopes will be more steep and thus the derivatives will be
larger.

For each pair of selected mode numbers (m,n), a
scan has been conducted over the position of the radial
maximum of the perturbed potential, s0, and its width,
parametrized by σ. The resulting simulated perturbations
have then been analized with the Lomb periodogram and
the dominant mode numbers (mout, nout) obtained with
the synthetic diagnostic have been compared with the
input mode numbers (min, nin). In the single mode simu-
lations, the mode numbers have been taken arbitrarily and
have no direct relation to the actual mode numbers that
can be excited in this particular magnetic equilibrium.

1.2 1.3 1.4

R [m]

0.2

0.1

0.0

0.1

0.2

Z 
[m

]

Aa)

1.2 1.3 1.4

R [m]

Jextb)

FIG. 6. 2D projection of the plasma cross-section at constant
toroidal boozer angle φ = π/4, showing the parallel component
of the perturbed magnetic vector potential (δA∥) in (a) and
the contravariant φ component of the current perturbation
(δJφ

ext) in (b), for the potential perturbation shown in figure 5.

1. Poloidal array

We begin by evaluating the ability of the poloidal array
to identify poloidal mode numbers. For that, we must
take into account that the signal measured by the probes
is δḂp = δḂ · P, where P is the vector perpendicular to
the coil winding plane (see figure 2), and lies in the RZ
plane.

0.00 0.02 0.04

Time [ms]

-2

0

2

B
 [r

ad
]

s0=0.26

0.00 0.02 0.04

Time [ms]

s0=0.50

FIG. 7. Normalized synthetic signals measured by the poloidal
array for an m = 6, n = 0 mode. On the left, when the mode
is core-localized (s0 = 0.26) and on the right, when a more
external location is taken (s0 = 0.5). The signals have been
re-scaled and are spaced in the y-axis proportionally to their
associated Boozer angle.

In figure 7, the simulated signals obtained by applying
the Biot-Savart integral (equation A12) to the potential
of an m = 6, n = 0 mode are shown, with the maximum
of the potential perturbation taken at two different radial
positions, a central one (s0 = 0.26) and a more external
one (s0 = 0.50). The signals are normalized both for clar-
ity and to avoid distance-dependent effects, and spaced
proportionally to the coil separation in poloidal boozer
angle. For this case we have taken modes oscillating at
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a frequency of 150 kHz. The differences in the inter-coil
phases of the signals are very noticeable, with the core-
localized one displaying a very small phase shift between
the coils in the array. The more external mode, however,
shows evident phase differences that, when studied with
the Lomb periodogram, allow for the correct identification
of the mode number. The phase information of the rotat-
ing mode structure appears to be lost when the mode is
located deep in the plasma core.

-10 0 10

n

-10

0

10

m

s0=0.26

-10 0 10

n

s0=0.50

0 20

n
 Pnm

s0=0.26
s0=0.50

0.25

0.50

0.75

PLS [a.u.]

FIG. 8. Lomb periodograms applied to the signals shown in
figure 7. The outermost mode is correctly identified, while
the innermost one is not. On the right, the sum over n of the
periodogram values, with the input mode number shown as a
green horizontal line

Figure 8 depicts the Lomb periodograms applied to
the signals shown in figure 7. On the right of the figure,
the sum over n of the periodogram results is plotted.
The identified poloidal mode number is the one that
corresponds with the maximum of this sum. This method
has proven to be the most robust to automatically identify
a single m for the poloidal array, rather than trying to find
the maximum over the periodogram results. The latter
approach regularly suffers from off-by-one errors due to
the slight slope of the periodogram that was discussed in
section III, as there is a dependence on the toroidal angle
φ in the poloidal array. As expected from the signals,
the core localized mode cannot be correctly identified,
being instead mistaken for a m = 0 mode. The outermost
mode, on the other hand, is correctly identified by the
periodogram.

This outcome must be taken into account when anal-
ising experimental data since the identification of the
core-localized mode number invariably fails. This is not
a limitation of the analysis technique, but rather a well-
known limitation of this type of diagnostic that cannot
be avoided. The structure of core-localized modes cannot
be experimentally characterized by measurements in the
periphery, as is the case for magnetic diagnostics. For
instance, observations in tokamaks35 have shown that
magnetic fluctuation diagnostics are indeed less sensitive
to core-localized modes and therefore, care must be taken
into not trying to analise a mode outside of the diag-
nostic’s operational limits. For that, diagnostics such as
HIBP36, that can provide potential perturbation profiles,
or tomography of soft X-ray (SXR) measurements, pro-
portional to the plasma fluctuations structure37, are the

0.025

0.050 m = 2
n = 0

m = 2
n = 3

m = 2
n = 7

0.025

0.050 m = 4
n = 0

m = 4
n = 3

m = 4
n = 7

0.025

0.050 m = 6
n = 0

m = 6
n = 3

m = 6
n = 7

0.025

0.050 m = 8
n = 0

m = 8
n = 3

m = 8
n = 7

0.25 0.50 0.75

s0

0.025

0.050 m = 10
n = 0

0.25 0.50 0.75

s0

m = 10
n = 3

0.25 0.50 0.75

s0

m = 10
n = 7

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

m
ou

t
m

in

FIG. 9. Differences between simulated (min) and measured
(mout) poloidal mode numbers for different radial locations
and widths of the modes. All coils in the poloidal array have
been used. In white, the points where both mode numbers
coincide.

ideal candidate to complement the analysis.
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FIG. 10. Same as figure 9 for high-m modes.

To map these operational limits, a series of scans in
both poloidal and toroidal mode number, perturbation
width, and radial location have been carried out. The
pattern of core modes losing phase information is common,
as we can see in figure 9, where the difference between



7

the simulated mode number (min) and the measured
mode number (mout) is represented. In this figure, we
can also see that the performance for low-m modes is
slightly worse than for higher-m modes, presenting phase
information loss for modes further out from the core and
more off-by-one errors. The poloidal array (figure 1, green)
does not cover the full 360 degrees because the plasma
column is very close to the vacuum chamber in the zone
of highest indentation of the magnetic surfaces, and it is
this lack of coverage that reduces its accuracy for low-m
modes. When studying higher-m modes, as in figure 10,
the performance remains reasonably good for very high
mode numbers, even above the nyquist mode number

mnyq ≃ 1
2

360 · 25
270 ≃ 16 . (9)

This is due to the ability of the Lomb periodogram to
take advantage of the slightly uneven spacing of the coils
in boozer coordinates38. For narrower modes, however,
the phase information loss appears for more outer modes
beginning at m ∼ 14. High n mode numbers have been
used in figure 10 because the simultaneous detection of
high mode numbers in both the poloidal and toroidal
direction should be the most challenging situation for
the diagnostic, and so that a meaningful comparison of
the performance after the addition of the helical array
in section IV A 3 can be carried out. We will see later
that this is not the case, and high mode numbers can be
resolved remarkably well.

2. Wave polarization

Now we turn to study the polarization of the detected
perturbation. Wave polarization is a property of the wave
that specifies the spatial orientation of the electric and
magnetic field as the wave evolves in time. It carries
information on the amplitude of the different components
of the wave and the phase shifts between them in a given
basis of polarization vectors39. The locus of the δB vector
during one wave period is known as the polarization ellipse
and lies in a plane whose orientation in space depends
precisely on the polarization properties of the wave. Inside
the plasma, the transverse polarization of shear Alfvén
waves makes the perturbed magnetic field perpendicular
to the equilibrium field; but this does not hold outside,
where the field perturbation detected at a given spatial
position is given by an integral over the whole plasma
volume. Even though the poloidal array only measures δḂ
along a predetermined direction, the synthetic diagnostic
provides the full 3D signal, opening up the possibility of
an optimization study on the best possible orientation of
a set of single axis coils for mode identification. Finding
the right polarization base to guarantee an optimal result
is an essential part of the analysis.

As a first approach, and considering the geometry of
the poloidal array, we restrict ourselves to the projection
of the general 3D polarization ellipse on the RZ plane,
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FIG. 11. Ratio of squared azimuthal |δBζ | to radial-axial
|δBRZ| amplitudes detected by the poloidal coils for n = 0
modes with different poloidal mode numbers.
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FIG. 12. 2D projection δBRZ(t) of the general δB(t) polariza-
tion ellipses for an m = 2, n = 0 mode. The perpendicular
vectors to each coil winding plane (P, blue arrows) and the
vectors indicating the major (black arrows) and minor (red
arrows) axis of the polarization ellipses at each location are
shown.

trying to find out if there is an optimal orientation for the
coils, always keeping P in the RZ plane. In figure 11 we
show the ratio between the amplitude of the oscillating
field in the azimuthal direction (|δBζ |) to that in the RZ
plane (|δBRZ|). A very low value of this ratio indicates
that the oscillating field lies mostly in the RZ plane, so we
can expect a better performance of the diagnostic in such
cases. This ratio depends on both the mode numbers and
the radial position of the modes, and there are instances
where it is not small. Figure 12 shows the (normalized)
projection of the δBRZ(t) polarization ellipse over the RZ
plane with their major and minor axes and the vectors P,
that determine the coil orientations, for an m = 2, n = 0
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mode. Note the changes in angle between P and the
major axis of the ellipse, that become more pronounced
on the rightmost coils.
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FIG. 13. Same as figure 9 but using only the innermost coils
(R < 1.3 m) in the poloidal array.

It might seem, after inspection of the result shown
in figure 12, that mode identification accuracy could be
improved by performing the periodogram analysis on
the components of the field perturbation in the local
polarization basis defined by the major and minor axes
of the projected ellipses. That is, rotating P so that it
aligns with the major/minor axis of the ellipse at each
coil. However, this method has been tested and it has
proved to not be effective, and projecting over the design
orientation given by P (blue arrows in figure 12) yields
much better results. Furthermore, as the polarization
of the measured signal is mode-dependent, one cannot
design an uni-axial coil array that performs well for any
mode, and the experimental use of the aforementioned
procedure is not feasible without having tri-axial sensors.

Going back to figure 12, we see that the coils where
the angle between P and the major axis of the ellipse
changes more rapidly, when moving from coil to coil, are
the ones that are closest to the plasma. Figure 13 shows
the results of the mode analysis with the rightmost five
coils removed on each side, hoping for a decrease in the
distortion of the mode structure and an improvement of
the detection accuracy. We observe that the detection
accuracy does not improve, and off-by-one errors appear
more frequently. This could be caused by a lack of angular
coverage of the plasma column, but that would mainly
affect the detection of low-m modes (m ≤ 3), which does
not seem to be the case. Alternatively, the issue may
lie in the coils furthest from the plasma, as the part of
the plasma that contributes to the Biot-Savart integral

with significant intensity increases with coil distance (as
the contribution of a volume element is proportional to
1/r2). On the other hand, the detection limits (the radial
position and mode width where the mode identification
is not possible) do not change significantly.

Finding a suitable polarization basis is essential for
the helical array, as having tri-axial coils forces us to
choose an orientation along which to project the temporal
derivative of the magnetic field vector in order to conduct
the analysis. The design orientations of the coils shown in
2 are a good starting point, as they project the signal into,
roughly, its radial, toroidal, and poloidal components;
yielding acceptable results.

However, we can do better40 by taking into account
the magnetic configuration. We can take the direction of
the magnetic field at the closest point on the LCFS for
each coil, that for typical low-pressure, low-current TJ-II
plasmas is very close to the (normalized) dual φ basis
vector41:

b̂ ≃ ∇φ

∥∇φ∥
= êφ ; (10)

the normal to the LCFS, that corresponds with the nor-
malized dual s basis vector:

n̂ ≡ ∇s

∥∇s∥
= ês ; (11)

and their binormal, that turns out to be the normalized
tangent θ basis vector41:

b̂ × n̂ ≃ êθ . (12)
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FIG. 14. Relative magnitude of δḂ projected on the normal-
ized basis {êφ, êθ, ês} calculated at the closest point on the
LCFS for the helical array.

As shown in figure 14, and as expected due to the nature
of the simulated perturbation, the magnitude of the signal
along êφ is consistently much lower, making {êθ, ês} a
good polarization base for mode number analysis. This
is also consistent with the conclusions of the previous
section for which P, which is mainly directed along êθ,
proved to be the best choice.
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FIG. 15. 3D polarization ellipses of the field perturbation
at the coil positions (black) and normalized basis vectors ês

(blue), êθ (green), êφ (red) for a m = 2, n = 0 mode.

Figure 15 shows the (normalized) three-dimensional
perturbation of a m = 2, n = 0 mode along with the
normalized basis vectors for a section of the helical array.
The polarization ellipses are represented in the figure. As
seen most clearly in the lower coils, these are very well
aligned with the {êθ, ês} basis vectors, although it is also
clear that the projection over êφ is not zero.

3. Helical array

In figure 16, the Lomb periodograms of the êθ projection
of the signal for three modes with different poloidal mode
number m are shown, only for the coils in the helical
array. Following the discussion in section III, we may find
the value of l as a function of the input mode numbers
min, nin and we can get the equation for the stripe of
aliased modes:

mal = nal

Nfp
+ l = nal

Nfp
+ minNfp − nin

Nfp
. (13)

Turning back to figure 16, we see that as the poloidal
mode number increases the stripe of possible modes moves
up as expected. From this figure, it is noteworthy that the
n,m pair with the highest intensity returned by the peri-
odogram does not in general coincide with the input mode

10 0 10

n

10

0

10

m

m=2

10 0 10

n

m=4

10 0 10

n

m=6 0.0

0.5

PLS [a.u.]

FIG. 16. Lomb periodograms for three different modes (m = 2,
m = 4, and m = 6) calculated only with the êθ projection of
the signal, using only the coils in the helical array.

numbers nin,min. This shows that, for such an arrange-
ment, the poloidal array is essential for the identification
of both the poloidal and the toroidal mode numbers. The
employed polarization basis has demonstrated superior
performance compared to all other studied configurations.
As explained in section III, the detected mode number is
found multiplying the poloidal and helical periodograms
and finding the maximum. This allows us to identify both
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FIG. 17. Differences between input (min, nin) and output
(mout, nout) poloidal (a) and toroidal (b) mode numbers for
the scan on radial maximum and width of a single mode. For
the mode analysis, both the poloidal and helical (projecting
over êθ) arrays have been used. In white, the points where
both mode numbers coincide.
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FIG. 18. Same as figure 17 for high mode numbers Differences
between input (min, nin) and output (mout, nout) poloidal (a)
and toroidal (b) mode numbers.

poloidal (m) and toroidal (n) mode numbers.
Figure 17 shows the difference between the simulated

and identified mode numbers using both the helical and
poloidal arrays for the low-m, low-n case. Qualitatively,
the behaviour remains similar to the case with only the
poloidal array, which suggests that the latter is limiting
the performance of the former. For low-m, low-n modes
the mode identification performance deteriorates because
the arrays do not close in on themselves and only cover
part of the device. Due to the link between toroidal

and poloidal angles of the helical array, discussed above,
the identification errors in toroidal mode number usually
occur in steps of four, meaning that for a mode nr the
most frequently identified modes will satisfy nid = nr +4k,
where k ∈ Z. Figure 18 shows the same result for the
high-m, high-n cases.

B. Coupled modes simulations

Generally, Alfvén eigenmodes are destabilized in gaps
in the Alfvén continuum that emerge from periodicities in
the Alfvén velocity produced in turn by periodicities of the
magnetic field structure. While, generally, perturbations
in the plasma equilibrium are strongly damped if their
frequencies lie on the continuum, such damping does not
happen (or is much weaker) if their frequency falls in a
gap. Such gaps can originate either from zeros in the
radial variation of the continuum frequency (∂ω/∂r = 0)
or from frequency crossings of counter-propagating waves1.
Similarly to what happens in tokamaks, where modes of
the same n and different m can evolve jointly at the same
frequency within the TAE gap, the existence of helicity
gaps (HAE) in stellarators allows for complex radially
extended and weakly damped structures characterized by
modes with different values of n and m. For instance,
in the case of an HAEµν gap created by the appropriate
components in the Fourier expansions of the magnetic field
and the metric coefficients, modes with n1 and m1 can
couple with modes with n2 = n1 +νNfp and m2 = m1 +µ.
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FIG. 19. Shear alfvén continua calculated with STELLGAP
(n = 1 family only), with relevant gap modes highlighted.

We have used the code STELLGAP42 to find these gaps in
the continuum for a experimentally relevant equilibrium
(calculated with VMEC) and then simulated the synthetic
signal that a combination of both modes would produce.
In figure 19, the Alfvén continuum for the n = 1 mode
family is represented. The relevant gap occurs at s ∼ 0.8,
and is caused by the coupling of a m1 = 7, n1 = −11 and
a m2 = 9, n2 = −15 mode. The modes differ in both
m and n, and the difference in values (m2 − m1 = 2)
and (n2 − n1 = 4 = 1Nfp), allow us to classify it as a
HAE21. Once the relevant modes have been identified,
our interest lies in the performance of the diagnostic and
in its ability to properly resolve the two modes. Although
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FIG. 20. Same as figure 6 but now calculated for a superposi-
tion of modes consistent with figure 19, with mode numbers
m1 = 7, n1 = −11 and m2 = 9, n2 = −15.

linear stability simulations26 show that generally one of
the modes is dominant, we have taken here the same
amplitude for each of the coupled modes.

To investigate the mode resolving power of the diag-
nostic, we have performed a scan in radial separation of
the modes, keeping the gaussian profiles used so far, and
also introducing an arbitrary phase difference between

both modes. The potential and current perturbations
created by such combination of modes are shown in figure
20. There, the potential shows nine maxima and minima,
and also a m = 2 modulation in the amplitude of the
perturbations, in accordance with the difference between
the poloidal mode numbers of the modes.

For this scan, we introduce a quantity ∆ that measures
the separation between the radial maximum of the modes,
so that, if s0 = 0.8, one mode will be centered around
s1 = s0 − ∆ while the other will be centered around
s2 = s0 + ∆. Performing a scan over this quantity, and
analising the results with the Lomb periodogram, we get
figure 21. There, we see that the outermost mode is the
only one that is identified, and that the periodogram
intensity, that is an indication of the confidence in the
identification, decreases when the modes overlap the most.
Still, for ∆ = 0, the identified mode is the m = 7, n = −11
(although a considerably fainter maximum is also present
for the m = 9, n = −15 mode as well). The analysis
shows that the diagnostic cannot resolve an HAE21 gap
mode into its coupled modes, and that for modes with very
close maxima, the component with lowest m (therefore
higher signal as was shown in fig. 34) will appear with
higher intensity in the analysis. Whether or not this
conclusion applies for TAEs (same n) or for modes with
lower mode numbers is left for future analysis that can
also benefit from experimental input.
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FIG. 21. Lomb periodograms calculated for the HAE21 gap mode. Several cases with different radial separation between maxima
of the two coupled modes are analyzed.

V. EXPERIMENTAL RESULTS

To illustrate the usefulness of the synthetic diagnostic
when analyzing real experimental data, we take an exam-
ple from the TJ-II database. The chosen shot belongs
to a series of experiments aiming at characterizing the
influence of Electron Cyclotron Current Drive (ECCD)
on the Alfvén spectrum of NBI-heated plasmas26,43. The
plasma was started with second harmonic ECRH, using
two 53.2 GHz gyrotrons, with one of the ECRH beams
configured to provide co-ECCD at lower power, helping
also with density control. At t = 1125 ms, co-NBI heating
is introduced, and one of the gyrotrons is switched off

shortly after.
The spectrogram of the magnetic fluctuations detected

with one of the Mirnov coils is shown in figure 22-a).
Below, the heating scheme (fig. 22-b), the line-integrated
density (fig. 22-c) and the plasma current (fig. 22-d) of
the discharge are pictured. The spectrogram shows that,
a few milliseconds after turning on the neutral beam, a
mode with f1 ∼ 320 kHz, probably TAE or HAE appears.
This mode presents a slight chirping character, mainly
during the final phase of the discharge, where another
chirping mode with frequency f2 ∼ 290 kHz appears, at
the same time than a low-frequency non-Alfvénic mode.

The changes in the MHD spectrum can be explained by
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(d) A red rectangle (top) illustrates the time-frequency range
used to make figure 23.

changes in the rotational transform due to the stabiliza-
tion of the NBI-driven part of the plasma current. This
has been discussed elsewhere44 and the physics interpre-
tation as well as a precise mode identification analysis lies
outside of the scope of this paper.
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FIG. 23. DMUSIC spectrogram of selected range.

This shot has been selected because the mode frequency
changes minimally during its lifetime, thanks to a very
good density control. This is helpful when conducting
the analysis, as the Lomb periodogram is only valid for
a constant mode frequency. In modes with relatively
slow frequency changes, however, this limitation can be
overcome by a piecewise analysis. In any case, a constant
frequency is clearer for the illustrative purposes of this
section. Figure 23 shows a spectrogram of a suitable time
interval of the discharge, calculated with the DMUSIC

algorithm32, where the narrow, constant-frequency nature
of the mode can be appreciated.
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FIG. 24. Lomb periodograms of the f1 ∼ 320 kHz mode, taken
at three distinct times (rows). The left column shows the
periodogram calculated using only the poloidal array signals.
The middle column presents the same calculation but with
the helical array. The rightmost column shows the product of
the previous two.

The results of the analysis in three distinct intervals
of the discharge of the f1 ∼ 320 kHz mode are shown in
figure 24. The results are very reproducible, although they
lack the clarity of the results obtained using synthetic
signals and an unambiguous identification of the dominant
mode number is difficult, as the maximum in the product
of periodograms (shown in the rightmost column) changes
between m = 3, n = 7 in the first two rows and m =
1, n = −1 in the last. This uncertainty can be attributed
to the conditions of a real experiment where some of the
sensors of the poloidal array, damaged by ECRH stray
radiation, were not in operation.

A time-resolved mode number measurement can be car-
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FIG. 25. Zoomed in spectrogram and identified mode num-
bers for the f1 ∼ 315 kHz mode.
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ried out by repeating this process for a series of suitable
time intervals. In figure 25 the measured mode numbers
obtained in this way are plotted over the zoomed-in spec-
trogram. We observe that for t < 1165 the mode numbers
are most commonly n/m = 7/3, while for t > 1165 the
pair of mode numbers n/m = −1/1 are measured. To
understand this result, or at least, to know to what extent
we can take it as good, we used a combination of HIBP
measurements and results provided by the synthetic di-
agnostic. Note that while the density remains constant
along the entire length of the shot, the current does not.
The combined effect of the Neutral Beam Current Drive
(NBCD) and ECCD, that both induce positive current,
results in an increase of the rotational transform which
is here the main driver of changes in the spectrum. The
radial profiles of the perturbed electrostatic potential,
measured with one of the heavy ion beam probes are
shown in figure 26 for t < 1162 (a, top) and t > 1162 (b,
bottom). They exhibit a strong ballooning character typ-
ical of gap mode and, most importantly, the maximum
of the profile appears to move inward for the second part
of the shot. This is seen more clearly on the low field
side (ρ > 0) since the mode amplitude is larger there.
Taking into account the synthetic diagnostic results re-
garding mode number errors when mode radial location
shifts inward (17), the −1/1 mode number measurement
is very likely not accurate, corresponding with the uniden-
tifiable core-localised modes that were discussed in the
previous section. This underscores the synthetic diag-
nostic’s ability to effectively discern trustworthy mode
number measurements from those that are not. However,
this is not the only possible explanation. Alternatetively,
changes in rotational transform could also explain why
the destabilized modes are different, in addition to having
different radial positions. To rule out this possibility, a
more comprehensive set of simulations, out of the scope
of the paper, is needed to precisely explain the behavior
of this eigenmode.

The above example illustrates how the synthetic diag-
nostic can help in the interpretation of the results but not
simulate the measurement itself since it shows that, in
the case of gap modes, the various coupled modes cannot
be resolved to begin with. Therefore, in the above case,
there is insufficient experimental information available to
model the measurement of the coils.

The simulations and analysis conducted up until now
have always been performed considering the best-case
scenario: an exact positioning of the coils, no instrumen-
tal effects on the signal, no electromagnetic noise from
the bulk plasma, no eddy currents in the nearby vessel
nor in the metallic tubes housing the coils, etc. When
considering experimental data, however, these sources of
error must be taken into account. As a first approach
to understand the impact that all these sources of error
have on the experimental results, we can explore the effect
that numerical noise added to the synthetic signals has on
the mode analysis results. We take, for this excercise, a
pair of mode numbers compatible with the ones detected
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FIG. 26. Electrostatic perturbed potential profiles measured
with HIBP, for t < 1162 ms (a) and t > 1162 ms (b). Vertical
dashed lines mark the mean position of the mode during each
time interval. ρ < 0 corresponds to the high field side of the
plasma, and ρ > 0 to the low field side.

experimentally. In figure 27, three periodograms made
with synthetic data over the experimentally available coils
of the poloidal array are shown. The first one, calculated
with no noise, serves as a benchmark. Comparing with
i.e. figure 8, we can already see a slight broadening of
the band, that is caused by the decrease in the number
of available signals.
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FIG. 27. Periodograms of a synthetic m = 1, n = 1 mode,
using the poloidal array only. Left, with the noiseless signal.
Center, with added gaussian noise. Right, with phase noise.

For the second one, gaussian noise has been added to
the signals, according to

yn
ij = yij + ϵij (14)

where ϵij is a random sample from a normal distribution
with standard deviation scaled to, in this case, a 15% of
the signal amplitude. The effects of this random noise
are barely noticeable. We can think of the periodogram
as a least-squares fit, and so intuitively this kind of noise
should "cancel out" for a long enough time interval.

The third periodogram is the most interesting. There,
a small random phase offset δj is added to the signal of
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each coil, via:

yij = Re
{
yc

ije
iδj
}
. (15)

Here, yc
ij is the complex output of the synthetic diagnostic.

This random phase offset models both any uncertainties
in the spatial position of the coils, that would change
their associated Boozer angles; the effects of eddy coils
in the vaccuum vessel and nearby plasma-facing compo-
nents, and the data acquisition system could have on the
digitized signal. These have been observed and corrected
in other devices45 but a similar work has not been done
yet in TJ-II. This phase noise significantly degrades the
results of the periodogram, but if we assume it is either
small (not necessarily the case, see ref. 45 again) or similar
for all coils (more likely, as the surrounding environment
and data acquisition pipeline are comparable), the mode
number can still be identified.

VI. CONCLUSIONS AND FUTURE WORK

We have outlined the development of a synthetic di-
agnostic to model the effect of Alfvén-like perturbations
on the measurement of ideal Mirnov coil arrays. The
fundamental objective was to study the capability of both
the diagnostics and the analysis techniques used for mode
number determination. In this way, we have not only nar-
rowed down the optimal operating ranges of the poloidal
and helical arrays of coils installed in the device, but
also addressed different ways of analyzing the signals, in
particular in terms of the optimal polarization basis.

Besides the expected bad performance for core lozalized
modes, synthetic analysis shows a recurring appearance
of off-by-one errors in the mode number determination.
This needs to be taken into account when comparing
mode number measurements to theoretical predictions.
Most of the modelling has been carried out for modes
with single m and n, as we can expect from GAEs for
instance or for gap modes (TAEs or HAEs) with some of
its components clearly dominating over the others. The
case in which we have considered an HAE21 gap mode
with similar coupled modes amplitudes shows that the
diagnostic cannot resolve between both coupled modes
and that only one of its components is detected depending,
on this case, on the separation between maxima.

Although we have carried out extensive simulations, in
terms of mode numbers and mode location mostly, many
other parameters have remained unexplored and we can
use this tool to complement the analysis of experimental
data. For instance, including more complicated profiles,
as the ones measured with HIBP or SXR, or the ones
calculated by simulations with MHD codes, is straight-
forward. Moreover, we have only used in this work the
standard magnetic configuration with no toroidal current.
It is easy to switch to other configurations, taking into
account also possible changes in iota that may affect the
shear Alfvén spectrum, by recalculating the equilibrium
and remapping the coils in Boozer coordinates.

One of the advantages of the tri-axial sensors of the he-
lical arrays is that they allow us to study the polarization
of the mode. The relationship between mode polarization
and polarization of the measured radiation at the sensors
position is not straightforward and the reconstruction of
the mode polarization from the measurements needs prior
knowledge of the measured mode numbers and a good
measurement of the radial profile of the mode potential43

or, failing that, a synthetic database including several
combinations of the former. This will be addressed in the
near future using the experimental data presented in43.

Finally, solving the wave equation by Fourier methods
and including the response of an homogeneous plasma
through its cold dielectric tensor, we have analyzed the
plasma response for modes with n = 0 and arbitrary mode
number m. The model is limited in several important
aspects, all of them discussed in appendix A 2, but it
shows that measured mode numbers may differ from the
real ones. Combining this result with the one obtained
with the vacuum case, which is basically a Biot-Savart
integral, shows that deviations of the order of ∆m = ±2
or larger, even for modes not located in the plasma core,
can be expected between measurements and simulations.
Furthermore, this needs to be considered when determin-
ing the toroidal mode number, which depends in turn on
a good charaterization of the poloidal one, as an error of
δm± 1 leads to errors of δn± 4.

Beyond all possible hardware-related considerations or
impact of surrounding structures on the measurements
(non-ideal coils), it is essential to take all the previous
issues into account whenever model validation against
experimental results is attempted. We have taken an ex-
perimental case, in which part of the coils of the poloidal
array were not working, to demonstrate the use of syn-
thetic diagnostic both for mode number determination
including noise modelling and polarization measurements.

The code for this synthetic diagnostic, that can be
easily used to conduct similar analysis for other devices,
is publicly available in the following GitHub repository:
https://github.com/pponsv/synth_mirnov.
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Appendix A: Physical model

The starting equations are Maxwell’s equations for a
general strongly dispersive non-isotropic medium:

∇ × E + ∂B
∂t

= 0 (A1)

∇ × B = µ0Jext + 1
c2
∂E
∂t

+ µ0J(E) , (A2)

where we have separated the external current imposed on
the system, i.e. equilibrium current and a perturbation
to this equilibrium current (Jext = Jext,0 + δJext), from
the current J(E) flowing in the plasma in response to
the perturbation. The last two terms on the right of
A2 correspond to the displacement current in ordinary
dielectrics. In a plasma, all charge carriers are free and the
distinction between polarization and conduction currents
disappears46, which allows us to write Maxwell equation
A2 as shown. In the present context, the equilibrium
current (Jext,0) stands for all static currents flowing in
the plasma and in the device coils and will not be included
in the analysis.

1. Vaccum electromagnetics

In the low frequency quasi-static limit, and disregarding
for the moment the plasma response, A2 becomes

∇ × B = µ0Jext (A3)

This equation, combined with A1, still allow us to study
low frequency standing waves as the ones described by
the MHD approximation, in which displacement current
plays a negligible role. Shear Alfvén waves fall into this
category and together with momentum balance equation
and Ohm’s law for the MHD fluid, equation A3 is taken as
the starting point to address the MHD stability problem.
There is a large body of work devoted to MHD stability
analysis in tokamak and stellarator configurations (for
ideal MHD see47 and references therein). For our present
purposes we will be content to note that the typical
structure of the current perturbations, which is formally
given by A3,

δJext = 1
µ0

∇ × δB (A4)

= 1
µ0

∇ × ∇ × δA (A5)

can be easily cast into a useful expression using prior
knowledge of the spatial structure of the perturbed electric

potential. For shear Alfvén waves in the ideal MHD limit
(δE∥ = 0), it can be shown that48,49

∂

∂t
δA∥ = −∇∥δϕ. (A6)

where δA∥ is the parallel component of the perturbed
vector potential δA and δϕ is the perturbation to the
electric potential. Moreover, since shear Alfvén waves
can be reasonably described in the compression-less limit
(δB∥ = 0) we can take δA⊥ = 0 and write

δJext = 1
µ0

∇ × ∇ × δA∥b0. (A7)

where b0 ≡ B0/B0 and B0 is the equilibrium magnetic
field. It can be shown that equation A3 is the differ-
ential form of the Biot-Savart Law39 and thus, in the
low frequency limit, the magnetic field created by the
perturbation at any point in space, can be calculated as

δB(r, t) = µ0

4π

∫
V

d3r′ δJext(r′, t) × R
R3 (A8)

where R ≡ r − r′. Note that, in expression A8, δB(r, t)
response to δJext(r′, t) is instantaneous since the quasi-
static limit is assumed. The solution of A2 in vacuum (i.e.
dropping the plasma response term µ0J(E)) is given by
the general expression for time-varying current densities
in a volume introduced by Jefimenko50:

δB(r, t) = µ0

4π

∫
V

d3r′

(
[δJ] × R
R3 +

∂[δJ]
∂t × R
cR2

)
(A9)

where the square brackets denote evaluation at r′ and
retarded times t′ = t−R/c. Griffiths and Heald51 showed
that if we expand the retarded current around t in both
the first and second terms of equation A9, the terms on
the first derivative cancel out, and we are left with:

δB(r, t) ≃ µ0

4π

∫
V

d3r′
(
δJ − 1

2
R2

c2
∂2δJ
∂t2

)
× R
R3 (A10)

If the currents associated to the perturbation oscillate as
J = J0e

iωt, the Biot-Savart law will be a good approxi-
mation as long as: (

ωR

c

)2
≪ 1 (A11)

which is the case for alfvénic instabilities in current ex-
perimental devices.

Our interest lies in the time derivative of the magnetic
field, which is the physical quantity measured by the
sensors. Thus, taking the time derivative on both sides
of A8 and using A7 and A6, equation A8 becomes

∂

∂t
δB = − 1

4π

∫
V

d3r′
(
∇ × ∇ × ∇∥δϕ

)
× R

R3 . (A12)
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This integration can be performed numerically and can
be quite time-consuming when a very fine mesh is taken
to limit numerical errors. For a given set of modes with
spatial periodicity defined by its mode numbers m and
n and a given constant frequency ω, we can express the
perturbed potential as a Fourier series on the magnetic
angles ϑ and φ (here taken to be Boozer angles):

δϕω =
∑
m,n

δϕω
mn(s)eiχe−iωt (A13)

where χ = (mϑ + nφ) is the spatial phase. The time

dependence can be extracted from the integral in A12, so
we end up with a sum of complex integrals of the spatial
part of the Fourier series:

∂

∂t
δB(r, t) =

∑
m,n

Iω
mn(r)e−iωt (A14)

where Iω
mn(r) is the Biot-Savart integral of each mode:

Iω
mn(r) ≡ − 1

4π

∫
V

d3r′
{

∇ × ∇ × ∇∥
(
δϕω

mn(s)eiχ
)}

× R
R3 (A15)

and the integral has to be taken over the plasma volume.
For convenience (no magnetic coordinates are defined
outside the plasma volume) the components of the cur-
rent vector inside the braces, which are first calculated
in magnetic coordinates, are transformed to Cartesian
coordinates and d3r′ = dsdϑdφ

√
g, being √

g the Jaco-
bian of the coordinate transformation. The advantage of
directly taking the electrical potential of a given mode
with frequency ω is that it allows the data measured by
heavy ion beam probes (HIBP) to be used directly in the
simulation. On the other hand, MHD stability codes such
as FAR3d or CKA provide directly either δϕ or δA∥.

2. Homogeneous plasma response for n=0 modes

All the results presented in the main body of the paper
have been obtained using a Biot-Savart integral in vacuum,
without taking into account the plasma response, which
is not included in the model described above since we
have neglected the displacement currents. To evaluate
the effect of the plasma on the radiated fields we start
from the wave equation for E, obtained by taking the curl
of A1 and using A2,

∇ × ∇ × E + 1
c2
∂2E
∂t2

+ µ0
∂J(E)
∂t

= −µ0
∂Jext

∂t
(A16)

The constitutive relation J(E) in a plasma is much more
complicated that in ordinary dielectrics since the current
induced by E at any point in space and time depends on
the previous history of the electric field in the surrounding
space, that is

J(r, t) =
∫ t

−∞
dt′
∫

d3r′σ(r − r′, t− t′) · E(r′, t′) (A17)

This expression, which is valid only for a homogeneous
plasma since the conductivity kernel σ is only a function of
the space time distances and not of the specific locations,

leads to a tractable model developed in many textbooks
on plasma waves (see for instance46,52,53). By Fourier-
Laplace transforming A16 in space and time respectively,
it can be shown that the perturbed amplitude δEk,ω obeys
the following equation

k × k × δEk,ω + ω2

c2 ϵk,ω · δEk,ω = −iωµ0δJk,ω (A18)

where

ϵk,ω = I + iσk,ω

ϵ0ω
(A19)

is the plasma dielectric tensor and σk,ω the conductivity
tensor. The amplitudes δJk,ω are the Fourier-Laplace
transform of the perturbed current source given by A7.
For low frequency waves in the range of hundreds of
kilohertz, the cold plasma dielectric tensor is diagonal46

and its components can be written as

ϵxx ≃ ω2

c2 −
ω2

pe

c2 (A20)

ϵyy ≃ ω2

c2 + ω2

v2
A

(A21)

ϵzz = ϵyy (A22)

where vA = B0/
√
µ0mini is the Alfven velocity (disre-

garding electron mass density) and ω2
pe = e2ne/ϵ0me is

the squared electron plasma frequency. To facilitate the
integration with the overall TJ-II reference system, we
haven taken B0 = B0x̂ instead of the usual Stix choice53

that takes the static field B0 along z. Therefore, compo-
nents ϵyy and ϵzz account for the behaviour perpendicular
to the field while ϵxx does it for the parallel part. For
waves in the 100 − 400 kHz range excited in low den-
sity strongly magnetized plasmas with B0 ∼ 1 T and
ne ∼ 1019, we have ω2/c2 ∼ 10−6, ω2/v2

A ∼ 10−2 and
ω2

pe/c
2 ∼ 105. Using the Einstein summation convention,

equation A18 takes the form

ΛijδEj
k,ω = −iωµ0δJ

i
k,ω (A23)
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where we have defined the dispersion tensor Λ(k, ω) as

Λij = kikj − k2δij + ω2

c2 ϵ
ij . (A24)

Provided Λ(k, ω) is an invertible matrix, the solution of
A23 can be obtained as

δEi
k,ω = −iωµ0G

ijδJj
k,ω (A25)

being G = Λ−1 the inverse of Λ(k, ω). Taking the Fourier-
Laplace transform of A1 and using A25 we obtain the
perturbed magnetic field in Fourier space,

δBk,w = k × δEk,w

ω
. (A26)

Finally, taking the inverse Fourier transform of A26, the
time evolution of the field in real space is recovered

δB(r, t) =
[∫

δBk,w e
ik·rd3k

]
e−iωt (A27)

By evaluating the field at the positions of the coils we
can calculate the synthetic signal and account for the
effect that the response of a homogeneous plasma of a

FIG. 28. On top, the full n = 0, m = 3 toroidally extended
perturbation, with s = 0.5 and σ = 0.03, is shown. Bottom
left shows the "straight" plasma column section. The same
perturbation, radially localized around the detection plane
of the poloidal array of Mirnov coils is shown on the bottom
right.

given density immersed in a constant magnetic field would
have on an arbitrary distribution of currents. Since the
typical current distributions we are dealing with in this
paper are far from being the ones that could be created
in a homogeneous plasma, we will restrict ourselves to
an ideal case that nevertheless maintains the essential
characteristics of the problem. In order to obtain a mean-
ingful estimate of the plasma response while minimizing
the impact of approximating the response of the real
non-homogeneous plasma to that of a constant density
one with magnetic field directed along the main direction
of the real 3D field, we assume a highly localized mode
current distribution centered toroidally at the toroidal
plane where the poloidal array of Mirnov coils is located.

Both the extended and toroidally localized potential
distributions are shown in figure 28. This approximation
is valid as long as we restrict ourselves to n = 0 modes.
Only in this case the synthetic signals generated by the
localized current distribution are a good approximation
to the ones generated by a toroidally extended realistic
distribution of currents. This is illustrated in figure 29,
where the corresponding synthetic signals are compared.
Only slight differences appear and the m = 3 structure is
well preserved in the case of the localized perturbation.

FIG. 29. Synthetic signals generated by the toroidally ex-
tended (a) and localized (b) n = 0, m = 3 perturbation that
is shown in figure 28.

To estimate the effect of the plasma response on the
determination of the poloidal mode number, the localized
distribution of currents, initially defined in the nodes of
the boozer coordinates grid, is interpolated in a cartesian
grid. For convenience, the grid and the current source
are then rotated so that the xcg direction of the cartesian
grid is perpendicular to the plane of the poloidal array,
which lies now in the plane formed by vectors ycg, zcg of
the grid. The 3D Fourier transform of the current source
in this grid, δJext(r), is computed numerically using a
multidimensional FFT algorithm and used in equation
A25. Since we want to highlight the effect of the plasma
response, the field is only evaluated at those sensors of the
poloidal array whose spacelike distribution most closely
matches the shape of the plasma (see white dots in figures
31 and 32).

We first perform a sanity check without plasma re-
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FIG. 30. Comparison between the results obtained using the
Biot-Savart integral (black lines) and solving the wave equation
by Fourier methods (red lines) without plasma response.

sponse to ensure that the magnetic field calculated at
the coil locations using the Biot-Savart integral over the
cartesian grid and the solution A27 based on Fourier de-
composition methods yield similar results both in phase
and wave amplitude. Figure 30 shows the normalized
synthetic signals obtained with both methods and the
wave amplitudes measured by each coil. Also, figure 31
shows the real part of the components of the perturbed
magnetic field calculated using the Fourier method, for
n = 0,m = 3 and n = 0,m = 9 modes. The magnetic
field perturbation that arises in response to the mode
currents shows a variation of three orders of magnitude
between the inner part of the plasma (milliTeslas) and
the part where the coils are located (microTeslas) so we
have chosen to represent the signed logarithm of the nor-
malized values (−sign(δbi) ∗ log(|δbi|)). This choice of
representation emphasizes the structure of the magnetic
field perturbation outside the plasma, which is our region
of interest.

As discussed in the appendix, solving the equation in

FIG. 31. Normalized components of the perturbed magnetic
field in the central plane of the simulation grid xcg = 0 for
m = 3 (left) and m = 9 (right). White circles indicate the
location of the poloidal coils. By construction, the coils are
sentitive only to δBz and δBy.

Fourier space allows us to describe the plasma response
through the dispersion tensor of each plane wave compo-
nent. By taking a constant density and a constant static
field B0 along xcg in all the space domain we can take into
account, approximately, the fast mobility of plasma elec-
trons along the direction of the field and the subsequent
shielding that they produce. Figure 32 shows the result of
solving equation A16 considering now the contribution of
the plasma response to the dispersion tensor given in A24.
A homogeneous plasma with ne = 1019 m−3, immersed
in a B0 = 1 T field, is taken to explore this effect.

Evolving in time the field perturbation, for each of
the cases represented in figures 31 and 32, allows us
to calculate the synthetic signals and apply the Lomb
periodogram analysis. Figure 33 shows the the results of
these analysis. As expected from the result anticipated in
figure 30, the mode structure without plasma response is
well diagnosed by the set of coils for all the mode numbers
considered. On the contrary, the plasma response clearly
modifies the field structure and consequently the mode
number detected by the coils differs from the input ones,
the differences ∆m ≡ mout −min reaching values up to
∆m = ±2. This can be visually observed in figures 31 and
32 where it is shown that the structure of maxima and
minima of δB is modified by the response of the plasma, in
particular for those components of the magnetic field that
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have an impact on the coils measurement (δBz and δBy).
Note that the component of the perturbed field along the
direction of the static homogeneous field (δBx), which is
not detected by the coils, is precisely the component less
modified by the plasma response since mode currents flow
mainly in the xcg direction and thus barely contribute to
changes in δBx.

FIG. 32. Same result as in figure 31 but including now the
response of a homogeneous plasma with ne = 1019m−3 and
B0 = 1 T.

The approximations made in the plasma response model
(i.e. modes with n=0 and toroidally localized current
source), do not allow us to estimate with certainty the
changes that the plasma response induces in the measured
mode number. Indeed, the detected mode numbers show
differences with respect to the initial ones. However, this
can only serve as an indication that the plasma has a
clear effect on mode detection, but we cannot provide a
clear quantification of this since the price of assuming an
homogeneous plasma is that the electric field associated
with the mode produces currents in the whole volume and
not only in the part where the plasma is actually present.
This can only be addressed with a full-wave code that
solves this problem in real space.

Appendix B: Phase delay term for the 3D Lomb periodogram

The original Lomb periodogram includes a phase delay
term in the form of a time shift δt that makes the peri-
odogram independent of time shifts. This time shift is
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FIG. 33. Lomb periodograms obtained with (right) and with-
out plasma response (left) for modes with n = 0 and m = 3, 6
and 9.

introduced in29 as a way of cancelling the term:

CS =
∑

i

cosωti sinωti (B1)

where i is the sample index. Changing the model to:

yi + ϵi = a cosω(ti − δt) + b sinω(ti − δt) (B2)

and solving:∑
i

cosω(ti + δt) sinω(ti + δt) = 0 (B3)

We get an expression for the time shift, that depends on
the frequency:

tan 2ωδt =
∑

i sin 2ωti∑
i cos 2ωti

(B4)

For the three-dimensional case, the justification for
setting CS = 0 remains the same. To achieve that, we
discard the time shift idea and instead introduce a phase
shift, τ , that depends on both the mode numbers and the
angular frequency. Changing the model accordingly to:

yi + ϵi = a cos(αij + τ) + b sin(αij + τ) (B5)

where αij is αij ≡ mθj + nφj − ωti, and solving again
CS = 0, we get equation 3, repeated below:

tan 2τ =
∑

ij sin 2αij∑
ij cos 2αij

(B6)

This has the added advantage that the periodogram be-
comes invariant to both time shifts and angular shifts.
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Appendix C: Wave field attenuation

We inquire now about the effects of coil distance over
the measured signal. For that, a set of signals with differ-
ent mode numbers have been simulated for a hypothetical
linear array of coils located at φ = 0, z = 0 and distributed
with increasing radial distance R. The amplitude of the
perturbed field at the i-th coil position is

Ai ≡
√〈∣∣δḂi

∣∣2〉
t
, (C1)

where ⟨·⟩t denotes a time average. In the multipolar
approximation39, this signal follows an inverse-power law,
decaying as 1/rm+1, so an attempt has been made to fit
the field amplitudes to the function

A(r) = A0(m)
(rLCFS + δr)m+1 , (C2)

where A0(m) is a mode-dependent initial amplitude,
rLCFS is the distance between the coil and the LCFS,
and δr is a free parameter. Figure 34 shows the results
of the fit of this function to the simulated perturbation
amplitudes for a set of n = 0 modes. For the fit, while A0
is m-dependant and thus is fitted separately for each value
of m, δr is fitted simultaneously to all signals, ensuring
it remains constant. As the multi-polar approximation
is valid only when the measuring point is reasonably far
from the plasma, the first coils have been omitted from
the fit. The goodness of the fit for these few first coils
improves with increasing mode number, but for m = 1
notable deviations can be observed. The obtained value
of δr is consistent with a multipole located approximately
over the central field conductor of the device, instead of
being over the magnetic axis as expected. This is proba-
bly due to the shape of the plasma column, that differs
notably from a cylinder, so some deviation from the ideal
case is to be expected. As a diagnostic, an arrangement
like this would be of little use, as the contributions from
the toroidal and poloidal modes would be mixed and very
difficult to decouple, and would require a space between
the LCFS and the first wall that in TJ-II is not available.

Appendix D: Performance

As the time evolution of the mode can be decoupled
from the Biot-Savart integral over the plasma, the code is
very performant. For a ns × nθ × nφ = 100 × 150 × 1000
grid, the integration of a single mode takes around 5
seconds per coil on an 8-core desktop computer. The code
is mainly written in Fortran, making use of the FFTW3
library54 for the calculation of fast Fourier transforms and
is parallelized using OpenMP; it also has a Python API for
ease of use.
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along with fit to 1/rm+1.
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