

1 **Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications**

2 Aleta Duque, Paloma Manzanares, Mercedes Ballesteros

3 Biofuels Unit, Energy Department-CIEMAT, Avda. Complutense, 40, 28040-Madrid, Spain

4 *Corresponding author: Aleta Duque. Phone: 00 34 91 3466054. E-mail: aleta.duque@ciemat.es

5 **Abstract**

6 Pretreatment of lignocellulosic biomass is an essential step to obtain sugars from such
7 biomasses, aimed at breaking the recalcitrant structure of lignocellulose and facilitate the access
8 of enzymatic hydrolytic agents to carbohydrates. Among the variety of pretreatment
9 technologies that have been investigated in the past years, extrusion is a promising thermo-
10 mechanical pretreatment. It is a continuous process, highly versatile, having good mixing and
11 heat transfer capabilities and being able to operate at high solids loadings. However, its
12 energetic and economic feasibility needs still to be evaluated before it can be an actual
13 alternative to conventional biomass pretreatments.

14 With the aim to provide a further insight into extrusion pretreatment, this work reviews its
15 fundamentals and the influence of the most relevant operation variables (screw profile and
16 speed, residence time, temperature, liquid to solid ratio and downstream operations) on
17 extrusion performance, analyzed according to the existing bibliography. To complete this
18 overview, the effects of extrusion on lignocellulosic biomass structure, composition and
19 enzymatic digestibility are studied, with a focus on the performance of catalyzed extrusion.

20 **Keywords:** lignocellulosic biomass, pretreatment, extrusion, operation variables, particle size,
21 enzymatic digestibility

22

23 **Abbreviations:** EH – enzymatic hydrolysis; L/D – length to diameter ratio; L/S – liquid to solid
24 ratio inside the extruder; LCB – lignocellulosic biorefineries; LB – lignocellulosic biomass;
25 SEM – Scanning electron microscopy; SSA – Specific surface area

26 **Introduction**

27 Lignocellulosic biorefineries (LCB) success will be based on maximizing the value of complex
28 biomass materials by extracting and valorizing all components while minimizing the processing
29 needs.¹ LCB relies on an efficient separation or fractionation process (pretreatment) that results
30 in the separation of main components (cellulose, hemicellulose and lignin), to be processed into
31 biofuels and biochemicals. Carbohydrate fraction is mostly used for the production of
32 fermentable carbohydrates by enzymatic conversion, resulting in a stream of fermentable sugars
33 that can be sent directly to the production of biofuels, bioproducts and biochemicals. Lignin
34 represents a valuable source of aromatic chemicals or can be used as a fuel in the lignocellulosic
35 biorefinery.

36 Extensive literature on pretreatment technologies to fractionate lignocellulosic biomass (LB)
37 into its main constituents has been published in the last years.²⁻⁴ Commercial methods are based
38 on the use of high pressure and temperature, with or without chemical agents. Extrusion,
39 however, stands out as a technology that can effectively fractionate lignocellulosic biomass at
40 mild temperature and lower chemicals, preventing the formation of inhibitory by-products
41 occurring at more severe conditions.⁵ Extrusion is a relatively novel pretreatment, in which the
42 material is submitted to mixing, heating and shearing, resulting in physical and chemical
43 modifications.⁶ It is a continuous process characterized for its ability to provide high shear,
44 rapid heat transfer, and efficient and fast mixing.⁷ Furthermore, extrusion is able to work at high
45 solid concentrations and it is a highly versatile pretreatment that can be used alone, or combined
46 with both chemicals (reactive extrusion) and other pretreatment methods. It can be run at
47 moderate temperature and pH conditions, which reduce sugars degradation and avoids the
48 generation of toxics.⁵

49 As a consequence of these favorable features, an increasing number of research studies have
50 been published, dealing with the effectiveness of extrusion to produce fermentable sugars from
51 a wide range of lignocellulosic biomasses. The results vary depending on the particular
52 conditions of the pretreatment and the biomass used, but in all cases there is an improvement of

53 the sugar production yield from extruded materials (hereinafter, extrudates) compared to the raw
54 material.

55 A look at the existing bibliography about LB extrusion shows that agricultural wastes and
56 herbaceous biomasses such as corn stover,⁸⁻¹¹ are feedstocks mostly used for this pretreatment.
57 These kind of herbaceous materials is usually preferred because they are softer and easier to
58 extrude; however, extrusion of woody biomasses such as poplar,¹² hardwood,¹³ Douglas fir and
59 eucalyptus,^{14,15} or pine wood chips,¹⁶ have also resulted, under proper conditions, in substrates
60 with enhanced enzymatic digestibility.

61 Although some research has been carried out about extrusion as sole pretreatment for
62 lignocellulosic biomass,^{8-11,17-20} there is a clear trend towards using extrusion in combination
63 with other kinds of pretreatments. In fact, the efficiency of extrusion pretreatment and,
64 therefore, its effect on the enzymatic digestibility, seems to be limited when no chemical agents
65 are used.²¹ This topic will be developed later on this paper under paragraph 4.

66 On the other hand, the important prospective shown by extrusion as LB pretreatment, has led to
67 a number of processes having been patented for the treatment of lignocellulosic substrates, as
68 can be seen in Table 1. First patents were issued in the late 80' with the use of alkaline
69 extrusion,²² or extrusion in combination with other pretreatments such as steam-explosion²³ or
70 acid hydrolysis.²⁴ From that time on, other process configurations involving extrusion have been
71 patented, more intensively in the last 10 years.²⁵⁻³²

72 ----- (Insert Table 1) -----

73 All patents shown in the Table 1 claim advantages of the disclosed processes (all of them
74 comprehending extrusion) compared to the reference pretreatments; reduced costs,²⁴⁻²⁶
75 time^{22,27,28} and heat consumption,^{22,29} and production of substrates with increased hydrolysis
76 efficiency^{25,27,30,31} and less degradation of hemicelluloses.^{24,33}

77 Coinciding with the increasing attention drawn by extrusion pretreatment, some reviews have
78 recently appeared³³⁻³⁵ and the present work aims at contributing to a more comprehensive study

79 of extrusion pretreatment by covering all aspects of the technology. Thus, this paper aims at
80 providing an insight on the fundamentals and operation of extrusion, analyzing the particular
81 effect of each operation variable on the extrusion performance. In addition, the effects of this
82 pretreatment on the biomass are analyzed based on results from abundant research effort carried
83 out during the last years on numerous lignocellulosic substrates at different extrusion
84 conditions.

85

86 **1. Extrusion process**

87 Extrusion is a technology that was first used for metal conformation, but soon expanded to
88 many other applications in several fields such as ceramics, rubber, food processing, chemical,
89 polymer, composites and energy industries. Extrusion is a thermo-mechanical process that is
90 based on the action of one or two screws that spin into a tight barrel, which is equipped with
91 temperature control (Figure 1). This action produces high shearing forces between the raw
92 material, the screw and the barrel that lead to locally temperature and pressure rise along the
93 extruder.

94

95 -----(Insert Figure 1, 1.5 column)-----

96

97 The main distinction among extrusion machines is made between single-screw and twin-screw
98 extruders. Single-screw extruders are made of one single solid piece, while twin-screw are
99 comprised of small pieces called screw elements that are assembled in the shafts. In twin-screw
100 extruders there are three main types of screw elements that can be used: kneading blocks,
101 reverse screws and conveying screws (Figure 2). Additionally, twin-screw extruders can be
102 classified as counter-rotating and co-rotating. The first development of a single screw extrusion
103 machine dates back to the second half of the 19th century. Co-rotating twin-screw extruders

104 started to be used in the 1940's and 50's,³⁶ leading to the licensing of the technology in 1957.³⁷
105 From this point, extruder design kept on evolving, incorporating new features such as the
106 modular technology or the modelling of processes, that allowed to broaden the functionalities of
107 the equipment to, for instance, evaporation, or reaction (from 1970's).³⁶

108

109 ----- (Insert Figure 2, single column) -----

110 ----- (Insert Figure 3, single column) -----

111

112 As it can be seen in Figures 2 and 3, these screw elements have different forms, which produce
113 different effects on the biomass; transport, mixing, shearing and combinations of the three that
114 are responsible for the disintegration of the LB, the good flowability of the material and the
115 complete mixing that characterize extrusion pretreatment. The arrangement of the screw
116 elements is called the screw profile (or screw configuration) and it defines the position of each
117 element, its characteristics in terms of pitch, stagger angle, and length, and how the different
118 elements are spaced.³⁸ The screw profile is a very important factor in extrusion processing (its
119 influence will be analyzed later in section 3.1), and affects significantly the transport of the
120 material in twin-screw extruders.

121 The different types of extrusion machines differ in the way of mixing and in the flow patterns
122 developed inside the barrels. Single-screw extruders produce mainly a distributive mixing in
123 which the blending agent spreads through the lignocellulose matrix, obtaining a good spatial
124 distribution. Moreover, in single-screw extruders, the forces that lead the conveyance of the
125 material are exclusively frictional or viscous and the screw is made up of one piece. In contrast,
126 full intermeshing twin-screw extruders produce both distributive and dispersive mixing, which
127 involves the reduction in size of solid particles, meaning that there are changes on the physical
128 properties of the material.³⁹ In co-rotating twin-screw extruders, the shearing and plasticizing

129 effect is axial (the maximum velocity being achieved at the intermeshing zone), while in
130 counter-rotating equipment, the effect is radial (highest velocity achieved at the screw tips).^{40,41}
131 There are references in the literature about studies that use single-screw extruders^{7,17,42,43} and
132 also counter-rotating twin-screw extruders for biomass pretreatment.⁴⁴ However, the counter-
133 rotating twin-screw extruders are traditionally used for extrusion of polymers due to the higher
134 pressure developed, since are considered more suitable for mixing and chemical reaction
135 operations,⁴¹ having also the advantage of being self-cleaning and leaving no dead zones
136 between the screws.⁴⁵ The most common equipment for biomass pretreatment is the full-
137 intermeshing co-rotating twin-screw extruder. The use of co-rotating twin-screw extruders has
138 several advantages such as better heat and mass transfer capabilities, good control of residence
139 time distribution and mixing.²¹ Moreover, full-intermeshing co-rotating twin-screw extruders
140 are able to operate at smoother conditions, while producing high shearing forces along the
141 process. They are able to form dynamic plugs inside the barrels, which increase pressure, due to
142 the combination of the different types of screw elements. The formation of such dynamic plugs
143 is influenced by the flux properties of the particular biomass and the potential use of catalysts or
144 viscosity modifying agents.

145 *1.1. Energy considerations*

146 The main energy source for extrusion is electricity. Concerning the energy consumption of
147 extruders, they need two types of energy: thermal energy to reach and keep the operation
148 temperature, and mechanical energy of the motor to rotate the screws.
149 Thermal heating is a big consumer of energy in LB extrusion processing and thus, it is crucial to
150 make extrusion competitive with thermochemical processes by optimizing process temperature.
151 In recent years, some authors have explored the application of LB extrusion pretreatments at
152 low temperatures (<100°C) with promising results,^{21,46-49} which means less thermal energy
153 consumed.

154 In relation to mechanical energy, a key parameter to understand extrusion is the torque. It can be
155 defined as the energy required by the motor to rotate the screws, and it is closely related to
156 process variables such as the screw speed, fill and viscosity of the material inside the extruder.⁴²
157 The torque is inversely proportional to the screw speed, meaning that the mechanical energy is
158 lower at higher screw speeds. As every continuous process, a certain time is required in
159 extrusion before a continuous regime is established. Torque values tend to peak quickly and
160 fluctuate in an erratic way during the first moments of operation.⁵⁰ This can be attributed to the
161 intermittent formation of discrete fiber plugs in the zones with functional screw elements
162 (kneading blocks and reverse flux elements), until the steady-state is achieved.

163 The relationship between temperature (thermal energy) and torque is negative; higher
164 temperatures lead to lower torque requirements, due to the thermal softening of biomass and
165 decrease of viscosity.⁴² The moisture level of the feeding (or liquid to solid ratio in the extruder)
166 has also a great influence on torque. It is nearly a universal trend that the torque increases as the
167 moisture decreases.⁵¹

168 Although the torque is a parameter adequate to measure the mechanical energy of an extruder,
169 torque values vary greatly depending on the size of the equipment, the type of biomass and the
170 extrusion conditions. For this reason, to facilitate the comparison among the different
171 pretreatments, a new parameter that considers the throughput of the process is used: the specific
172 mechanical energy factor (SME). The SME measures the mechanical energy consumption in the
173 extrusion treatment by estimating the mechanical energy required to produce a unit weight of
174 pretreated biomass in a particular extrusion machine. It can be calculated through the following
175 expression:⁵²

$$176 \quad \text{SME (Wh/kg)} = 3,6 \times \frac{\left(\frac{\tau(\%) - \tau_0(\%)}{100} \right) \times \frac{S_S(\text{Hz})}{S_{\text{rated}}(\text{Hz})} \times P_{\text{rated}}(\text{W})}{Q(\text{kg/h})}$$

177

178 Where τ is the operating torque, τ_0 is the no load torque, S_s is the operating screw speed, S_{rated}
179 the maximum screw speed, P_{rated} is the rated motor power, and Q is the total mass flow.

180 From the expression above, it can be inferred that achieving a high throughput of pretreated
181 material is crucial to keep the energy consumption of the extruder at low values.
182 To summarize, extrusion pretreatment offers the possibility of reducing its energy consumption
183 by working at low temperatures, which means less thermal energy consumed, and by setting
184 process conditions that lead to low values of torque and SME, to minimize the mechanical
185 energy spent.

186 *1.2. Rheological considerations*

187 Extrusion pretreatment is capable to operate at high-solids loadings. Since extruders are
188 equipped with specialized mixing sections that permit a good material and energy transfer, it is
189 possible to obtain the desired solids concentration at the output, which will determine the liquid
190 and solid flows inside the extruder and the screw profile and energy consumption. This
191 potentially offers many advantages including increased sugar concentrations and decreased
192 production and capital cost, since extrusion allows overcoming the typical mixing and
193 transferring phenomena problems at high solid concentrations.

194 As a continuous process, it is essential to achieve a proper flow of the material inside the
195 extruder. Rheological behavior of lignocellulosic biomass is highly dependent on the type of
196 feedstock and composition, due to the nature of the materials treated and the conveying
197 mechanism inside the extruder. If the system is not correctly designed and operated, blockages,
198 lack of homogeneity in the product and flow interruptions can occur.

199 According to Senturk-Ozer et al.,¹³ extrusion pretreatment of high aqueous biomass suspensions
200 suffer from a lack of flowability that leads to low pretreatment rates, low biomass/liquid flow
201 ratios and, in some cases, high temperature peaks. These authors proposed to add a gelation
202 agent to improve the elasticity of the biomass suspension; however, this could also reduce the

203 effective shear stress transmitted to the material. In reactive extrusion, the catalyst itself may act
204 as a flux modifier, as is the case of alkaline extrusion.

205 In summary, it is important to highlight the key ability of extrusion to operate at high-solids
206 loadings ($\geq 15\%$), unlike many other pretreatments that show important limitations in this sense.
207 However, to achieve a good flow inside the extruder, it is necessary to count on the presence of
208 a fluid (water, chemical catalysts, or a specific gelation agent) that aids to the processing of LB.
209 The fluid type will depend on the characteristics of the process.

210

211 **2. Variables affecting the extrusion**

212 Many variables affect the extrusion performance such as the screw profile, the screw speed and
213 the temperature of extrusion.³⁴ Other important parameters are the torque,^{42,50} the liquid to solid
214 ratio inside the extruder,^{17,53,54} the global pretreatment configuration⁷ and the possible use of a
215 catalyst. Most of these variables are inter-related, and usually more than one factor is involved,
216 so the actual contribution of each variable to the total effect is not easy to distinguish.

217 An analysis of the main variables influencing the performance of extrusion is shown below,
218 based on the references in the scientific literature.

219 *2.1. Screw profile, screw speed and residence time*

220 Screw profile is set by the combination of the different screw elements described in point 2
221 (Figure 2) and it is one of the most important factors during extrusion processing. The screw
222 profile not only influences the residence time distribution and the mechanical forces developed
223 inside the extruder, but it is also a factor to take into account for setting other operation
224 variables such as the L/S ratio and the feedstock particle size. However, as there is a very high
225 potential number of elements combinations, usually optimization of operation variables is
226 performed using a fixed screw profile. In this regard, Shah and Gupta⁴¹ point out that three-
227 dimensional flow simulation software is a valuable tool to design twin-screw extruder's profile.
228 It is known that the basic single screw or the forward conveying elements in twin-screw

229 extruders are not enough to achieve a good mixing effect, and other types of elements need to be
230 included in the screw profile.⁴⁵ Senturk-Ozer et al.¹³ extruded a mixture of hardwoods in a
231 configuration with three mixing zones that combined right- and left-handed fully-flighted screw
232 elements and kneading disks. The second mixing zone, containing kneading disks staggered in
233 the forward, neutral and reverse directions, was the toughest. They found that the effects on the
234 biomass were greater within the second mixing zone, precisely at the reverse kneading block,
235 due to the higher pressure and stresses developed by this kind of elements. Thus, the presence of
236 reverse elements is very important to the fibrillation of lignocellulosic biomass.

237 Supporting this idea, Choi et al.⁵⁵ compared different screw profiles in a dilute sulfuric acid
238 extrusion pretreatment of rape straw. It was shown that the configuration that alternates mixing
239 and reverse elements along the extruder was the more effective in concentrating the cellulose
240 and also in increasing enzymatic digestibility of the pretreated rape straw.

241 Furthermore, Zheng et al.⁴⁶ studied extrusion followed by NaOH treatment of sweet corn
242 corncobs and the influence of replacing a conveying element by a kneading or reverse element
243 on various features of the pretreated substrates. The authors concluded that extrusion treatment
244 with functional screw elements affected lignin, so it was easier to remove it with a subsequent
245 chemical treatment.

246 Recently, Kuster Moro et al.⁵⁶ found that the insertion of a reverse element into the screw
247 configuration increased the residence time in the extruder up to 2.5 times and it greatly
248 enhanced the effects of the pretreatment in sugarcane bagasse and straw in terms of enzymatic
249 digestibility and crystallinity reduction. The position and space of reverse elements were also
250 demonstrated to have a great influence on the filtration performed inside an extrusion machine
251 and the sugar recovery in the liquid fraction.⁵⁷

252 Thus, it can be concluded that the use of functional screw elements in a screw profile is essential
253 to achieve a good fiber destructuration and to produce chemical changes in the pretreated
254 biomass. In Table 2 a compilation of conditions, analyzed parameters, and main results of the
255 above mentioned research work is shown to summarize the main findings in relation to the
256 effect of screw profile on extrusion of different biomasses.

257 In which concerns the screw speed, a direct consequence of varying it is the change of the
258 residence time of the substrate inside the extruder. As a general rule, at fixed input flows, the
259 mean residence time decreases with increasing screw speeds. Most of the studies about
260 extrusion pretreatment use relative low screw speed for the experimentation (≤ 2.5 Hz), seeking
261 to increase the short residence time in this kind of equipment, as it can be seen in Table 2. In
262 extruders used at research level, the residence time varied within a wide range, from 1 min to 10
263 min.^{12,17,47,54}

264 Authors such as Karunanithy and Muthukumarappan⁷, Zhang et al.⁹ or Yoo et al.⁵¹ have
265 reported that the increase of the screw speed has a positive effect on the enzymatic digestibility
266 of extrudates up to a certain point that, when overcome, results in lower enzymatic hydrolysis
267 (EH) yields. Optimum screw speed of 1.33 Hz for corn stover⁹ and 5.8 Hz for soybean hulls⁵¹
268 extruded in a twin-screw extruder, and 1.66 Hz for switchgrass pretreated in a single-screw
269 extruder have been reported.⁷ In fact, the effect of screw speed on fiber deconstruction is
270 determined by two combined effects. One is the variation of the residence time (shorter as the
271 screw speed increases) and the other is the influence on the mechanical energy exerted on the
272 material (the torque is higher at lower speeds).³⁴ It is not clear in the literature the reason of the
273 decrease in enzymatic hydrolysis at high screw speeds. Zhang et al.⁹ attributed the decrease of
274 the yields to extremely reduced residence time at screw speeds over 1.33 Hz, while Karunanithy
275 and Muthukumarappan⁷ claimed that it is due to the lignin behavior. Nevertheless, it has been
276 also reported in the literature that the influence of screw speed on the efficiency of the
277 pretreatment, measured as the sugar yield after EH, depends on other variables such as the
278 specific feedstock,⁷ the barrel temperature,⁵² and/or the use or not of a catalyst.^{9,58} Another
279 factor that conditions both the screw speed and the residence time is motor power and extruder
280 size and the geometry of the machine, i.e. length/diameter ratio (L/D) and. L/D ratio is an
281 indication of the treatment capacity of the extruder, and, at the same screw speed, a higher L/D
282 value will result in a longer residence time. Because of all these interactions, it is difficult to
283 distinguish the singular behavior of each variable on the performance of the pretreatment.

284 ----- (Insert Table 2) -----

285

286 *2.2. Temperature*

287 Temperature is an essential variable of extrusion pretreatment and values can typically fluctuate
288 between 40 and 200°C. It has usually a positive impact on the enzymatic digestibility of the
289 extrudates,¹⁶ and sometimes can even overcome the magnitude of the effect of screw speed as
290 found by Karunanity and Muthukumarappan in switchgrass.¹⁷ However, for some biomasses
291 and operation conditions, a temperature limit exists, from which the barrel temperature
292 negatively affects the sugar yield.^{7,47,59} This limitation could also be related to the
293 recondensation of lignin at high temperatures. Under certain conditions (140°C temperature,
294 11.1 and 16.6 % solids load, 0.25 Hz screw speed, use of an ionic liquid as a catalyst and two
295 extrusion passes), it was observed that high temperature can even cause partial charring of the
296 biomass.⁵⁹

297 In general, barrel temperature promotes the plasticizing of the substrates⁵⁴ and decreases the
298 viscosity inside the extruder, which affects the flowability of the suspension and reduces the
299 residence time inside the extruder. However, Yoo et al.⁵¹ observed that some lignocellulosic
300 materials do not melt even at high temperatures, which causes poor flow inside the extruder.
301 Thus, these differences prove the significance that the type of LB has on the effect produced by
302 temperature on extrusion.

303 The temperature of the extrusion is also influenced by the use or not of a catalyst. Generally, in
304 non-catalyzed extrusion the temperatures are higher,^{8,9,11,16} compared to catalyzed extrusion.

305 Acid extrusion^{12,53,54} is usually carried out at higher temperatures than alkaline extrusion.^{18,47,48}
306 Table 3 summarizes the feedstocks, conditions, analyzed parameters and results of some of the
307 case studies referenced in this paragraph. As it can be seen, the temperature has a general
308 positive effect on the release of sugars from LB, but above a certain point (that depends on the
309 type of LB and the catalyst employed), the temperature causes a negative impact on the

310 enzymatic digestibility of the extrudates. On the other hand, it can be stated that because the
311 temperature factor is closely related to the energy demand of the extruder, the use of lower
312 temperatures would be favorable from the energy point of view. Another reason to limit the
313 temperature of extrusion pretreatment is to avoid the excessive degradation of lignin and
314 hemicellulose-derived sugars, especially at low pH conditions.

315 ----- (Insert Table 3) -----

316

317 *2.3. Liquid to solid ratio (L/S)*

318 The liquid to solid ratio inside the extruder (L/S) is calculated as the total amount of liquid
319 added to the process, considering also the contribution of the moisture of the raw material,
320 divided by the biomass flow in dry weight basis. In the cases where no additional liquid is
321 introduced in the extrusion trial, this concept refers to moisture. The L/S parameter is essential
322 to achieve a proper flow inside the extruder and always a minimum amount of liquid (or
323 moisture) must be introduced to avoid excessive wearing of the equipment. Moreover, it
324 promotes the softening of cellulose and allows the shearing forces to break the microfibrils
325 bound. For every process configuration, there is a maximum L/S allowable in the extruder,
326 which depends on screw profile, temperature, or flow properties of the suspension. Overcoming
327 this limit would result in bad performance of the equipment or excessive dilution of the final
328 products.⁶⁰

329 In non-catalyzed extrusion, the feedstock moisture influences the thermal softening of the
330 material and the rate of shear development.⁷ In such processes, low moisture means higher
331 friction forces and thus, greater effect on the biomass, as confirmed by Senturk-Ozer et al. on
332 hardwood.¹³ The inverse relationship between moisture and torque was also proved by Yoo et
333 al.⁵¹ in soybean hulls at moisture contents between 40 and 50%. On the other hand, an excess of
334 moisture may form thin slurry, which reduces the effectiveness of the pretreatment, as proved
335 by Lin et al.⁶¹ in experiments with wet ball milling of corn stover.

336 In reactive extrusion processes, it is more difficult to differentiate the actual influence of the L/S
337 ratio, since it is linked to the amount of catalyst added. In these cases, higher L/S ratios usually
338 lead to a higher effectiveness of the combined extrusion plus catalyst pretreatment.^{5,62,59} Thus,
339 L/S values tend to be higher in reactive extrusion pretreatments compared to only extrusion
340 processes, as it can be seen in Table 4, which summarizes the experimental conditions and
341 findings of the research works above referenced.

342 In conclusion, L/S ratio in extrusion is delimited by a minimum and maximum value that
343 ensures the proper flow and treatment of the LB. These limits vary for each process depending
344 on the characteristics of the feedstock, the extruder device and the other operation conditions.
345 Within the range of allowable L/S ratios, lower values will be preferred, since they lead to
346 higher shearing stresses, taking into account also the influence of the amount of catalyst, if that
347 is the case.

348 -----(Insert Table 4)-----

349

350 *2.4. Downstream operations*

351 In reactive extrusion, the catalysts and chemicals (NaOH, acids, ionic liquids, organic solvents)
352 used can affect the pH, and can also affect downstream operations. In fact, a common concern
353 in reactive extrusion is the cost of the catalyst and the amount of water used to remove it. In this
354 regard, Cha et al.⁶³ reported the use of a screw-type separator placed after a twin-screw
355 extruder to wash and separate the black liquor from the solids, and so allow for the recycling of
356 the catalyst. They achieved almost 70% saving in NaOH after recycling twice the black liquor
357 although, on the other hand, it resulted in lower pretreatment efficiencies.

358 Usually, the residual catalyst that is left in the substrate after the pretreatment must be
359 somehow removed, and/or the pH must be adjusted before submitting the extrudate to EH. A
360 common practice among the different studies found in the scientific literature is to wash the
361 extrudate with distillate water after the extrusion. This step is fully integrated into the

362 experimental procedures and, although washing step is relevant for the enzymatic hydrolysis
363 step, only few researchers have investigated its impact on the enzymatic digestibility.
364 For instance, Lamsal et al.,⁵² extruded wheat bran and soybean hulls in different ways: only with
365 water; previously impregnating the biomass with a mixture of sodium hydroxide, urea and
366 thiourea; or applying a post-treatment with CaCl₂. They washed the pretreated substrates and
367 compared their enzymatic digestibility to that of the unwashed extudates. The washed materials
368 showed higher reducing sugars yield in all cases, regardless if they have been submitted to
369 additional chemical treatment or not. The authors hypothesized that washing would remove the
370 possible chemical residues and enzyme inhibitors produced by extrusion.
371 Furthermore, Zhang et al.⁵⁸ compared the enzymatic digestibility of extruded corn stover
372 previously soaked in different alkali concentrations solutions, with and without washing after
373 extrusion. They found that washing was somehow negative for low alkali concentrations (1 and
374 3%), but it improved greatly the glucose and xylose yields at 5 and 14% NaOH. Another result
375 was that the sugars yield of unwashed samples did not vary significantly with the increasing
376 alkali concentrations, while washing after extrusion allowed to attain higher yields (from
377 5%NaOH) and to see clear differences among the alkali concentrations proved.
378 On the other hand, if the catalyst concentration is low enough to make the pH of the resulting
379 extrudate compatible with enzymes requirements, Karunanithy and Muthukumarappan¹⁸ defend
380 that it is unnecessary to wash the extrudates, considering also that during the washing step a
381 certain solid and sugar loss can take place (6-7% in their case), which is an unwanted
382 consequence. In spite of this, the advantages of washing on the enzymatic digestibility of
383 extrudates have been sufficiently proved to incorporate this operation to the process.

384 ----- (Insert Figure 4, 1.5 column) -----

385 In an step ahead in the integration of downstream operations in extrusion, Duque et al.⁵ have
386 successfully proven the possibility of performing the pretreatment and every conditioning
387 operation (neutralizing, washing) in the same equipment (Figure 4), producing therefore a
388 substrate suitable for its direct incubation with enzymes or microorganisms for sugar

389 production. This high level of integration, together with the wide range of different process
390 configurations that can be designed based on extrusion, adds an evident value to this technology
391 as a LB pretreatment method.

392 In summary, concerning the downstream operations, washing is necessary in many extrusion
393 processes. Some solutions have been proposed concerning the integration of this operation in
394 the same machine and the possible re-use of the catalyst.

395 **3. Effects of extrusion pretreatment on biomass**

396 In general, since extrusion is essentially a mechanical pretreatment, its action on the biomass
397 can be assimilated to that kind of treatments. Thus, studies performing extrusion report on a
398 reduction of the particle size distribution, increase of the specific surface area (SSA), changes in
399 the crystallinity, and visible changes in the biomass structure, which can also be confirmed by
400 Scanning Electron Microscopy (SEM) images. When extrusion is combined with other
401 pretreatments or chemicals, similar effects may be observed, although it is sometimes difficult
402 to distinguish the actual contribution of extrusion to the global effect.

403 Chen et al.⁶⁴ identified devolatilization of cellulose fibers of rice straw as the unique feature of
404 extrusion that distinguishes this process from chemical, biological, and even other mechanical
405 treatments such as milling, thermal and hydrothermal pretreatments. They claim that the
406 extrusion mechanism is not due to changes in the chemical compositions and structures of the
407 LB, but to significant physical modifications (including particle size distribution, water holding
408 capacity, specific porosity and SSA) and devolatilization of fibers.

409 To characterize the extension of the changes on the biomass caused by extrusion, it can be
410 useful to consider the classification of the mechanical effects on biomass as Class I and Class II
411 biomass refining reported by Leu and Zhu.⁶⁵ Class I refining is more superficial, as it increases
412 the fiber external surface by cutting, breaking, separating the fiber bundles and mildly
413 fibrillating the surface, while Class II refining causes total cell wall disruption, reducing the size
414 of fibers to micro or nanoscale, breaking the cross-linked micro-fibrils up, and thus, inducing

415 the internal fibrillation of the material. In extrusion pretreatment, the extent of such physical
416 effects depend on the type of biomass, if the biomass is previously pretreated or not, and the
417 equipment used.¹⁰

418 An extended analysis of the principal effects reported for pretreatments involving extrusion of
419 lignocellulosic biomass, based on the existing bibliography is given below.

420 *3.1. Particle size reduction and increase of the surface area*

421 The particle size reduction is one of the main effects of extrusion pretreatment, and it is due, in a
422 major part, to the shearing forces exerted in the biomass fibers by the rotating screws. Process
423 parameters such as the barrel temperature and the liquid to solid ratio inside the extruder (L/S)
424 influence the extent of size reduction, as proved by Um et al.⁶⁶, working on rape straw
425 pretreated with hot water inside a twin-screw extruder. At higher temperature and lower L/S
426 ratio, greater particle size reduction and finer skewness of the particle size distribution are
427 found. This relationship between low moisture and size reduction was also demonstrated by
428 Chen et al.⁶⁴ on rice straw at moistures ranging from 10 to 80%. Furthermore, screw
429 configuration used in the extrusion process has been reported to be related to the extent of the
430 particle size reduction, especially when using kneading disks arranged in reverse or forward
431 direction resulting in high stress on the fibers (Table 2).

432 Also in relation to particle size reduction in extrusion, it is important to consider the influence of
433 the use of catalysts (reactive extrusion). For instance, Chen et al.⁵³ used rice straw with a
434 particle size ≤ 1 mm and found particles size between 0.4 and 0.5 mm only with extrusion
435 pretreatment. When they used a combination of extrusion and aqueous extraction, the authors
436 achieved a smaller mean particle size, between 0.09 and 0.3 mm. This fact illustrates the
437 positive effect of combining extrusion with other pretreatments on the particle size of the
438 pretreated substrate. The observation was corroborated by Um et al.,⁶⁶ who obtained a further
439 reduction of the particle size when they added an acid or alkaline catalyst to the extrusion,
440 instead of hot water.

441 Likewise, Duque et al.⁶⁷ found a different particle size reduction when they submitted barley
442 straw (5 mm) to NaOH-extrusion and, afterwards, to extrusion with enzymes. As it is shown in
443 Figure 5, after the first extrusion with alkali, the proportion of particles between 3.14 and 0.52
444 mm increased from 28 to 54%, and the mean particle size was also slightly reduced (from 2.5 to
445 2.2 mm). The effect of second extrusion pass with enzymes was greater. The particles above
446 3.14 mm almost disappeared, and the proportion of particles under 0.52 mm increased up to
447 37%. A new fraction of particles under 0.063 mm was found and the mean particle size
448 dramatically decreased to 0.6 mm.

449

450 ----- (Insert Figure 5, one column) -----

451

452 In general, the available surface area is closely related to the particle size mentioned above and
453 to the volume of the pores generated on the substrates by the effect of the pretreatment. The
454 increase of the surface area can be due to physical changes in the fiber as a consequence of the
455 mechanical effects (reduction of particle size, fibrillation, increase of pore size), or by chemical
456 action on the lignocellulose components. In the last case, either the hemicelluloses or the lignin
457 that wrap the cellulose fibers are affected or removed to clear the path for the enzymes to the
458 cellulose.

459 Extrusion has been reported to cause an increase in the surface area and fibrillation of the
460 biomass.^{9,14,15,17,53} In biomass feedstocks such as giant reed and wheat straw, Yan et al.⁴⁹
461 described an increase of the surface area, measured by dye absorption, 16 times higher than
462 untreated material for giant reed, and 3.3 times higher for wheat straw, using a screw press to
463 pretreat them. The authors attribute the larger surface are to the shear and pressure forces
464 exerted during extrusion that cause cellulose structure disruption and thus increased accessible
465 surface area. Concerning the fibrillation effect, evidence is provided by Lee et al.,¹⁵ who
466 observed that most of the fibers had been fibrillated to a sub-micron scale (< 5 μ m) and some of
467 them had diameters less than 100 nm, when woody biomass previously pretreated by hot-
468 compressed water was submitted to extrusion.

469 Images taken by SEM of reed straw submitted to screw press pretreatment showed higher
470 disintegration of particles, and fiber bundles compressed, twisted, and partly separated from the
471 initial connected structure, compared to the same biomass treated with a cutting mill.⁴⁹ Liu et
472 al.⁶⁸ observed similar mechanical effects (defibration, delamination, and increase of the
473 porosity) on alkali-extruded corn stover, effects that were more pronounced as the NaOH
474 loading increased. From their observations, these authors classified the structural changes as
475 mainly Class I size reduction, with a small proportion of Class II.

476 As in other effects above discussed, the addition of a catalyst during extrusion may influence
477 the variations found in surface area and pore size. It has been reported that in acid or hot-water
478 catalyzed extrusion, where the main effect is the partial hydrolysis of the hemicellulose chains,
479 an increase in the number and size of pores occurs, making it easier for the enzymes to attack
480 them.^{12,15,54,69} Likewise, an extrusion catalyzed by alkali, based on the modification and removal
481 of lignin, results in a similar effect as reported by several authors.^{9,48,52,68,70,71}
482 From the discussion above, it can be stated that extrusion is a pretreatment that results in an
483 increase of the surface area and effective fibrillation of lignocellulosic biomass, thanks to the
484 mechanical forces developed inside the machine and the use of catalysts, in the case of reactive
485 extrusion.

486

487 *3.2. Biomass composition*

488 In absence of a filtration step embedded into the process configuration, extrusion is essentially a
489 dry to dry process, which means that there are no material losses and composition of the
490 biomass does not vary.^{21,56,72,73} This fact could be an advantage, since the pretreated substrate
491 would contain all the carbohydrates initially present in the raw biomass, and so the virtual
492 amount available for sugar production will be the maximum. On the other hand, in reactive
493 extrusion, the catalyst is usually able to solubilise part of the biomass, resulting in composition
494 changes in the extrudates. The values vary according to the severity of the pretreatment and the
495 catalyst used. Alkaline pretreatments lead to solubilisation of hemicelluloses and partial

496 delignification, depending on the concentration of the catalyst.⁴⁷ On the other hand, acids
497 solubilise mainly the hemicelluloses, and affect the cellulose in harsh conditions.¹² Accordingly,
498 several authors have reported delignification and hemicellulose losses,^{21,48,68,70,74} and increased
499 concentration of cellulose in extrudates, compared to raw material.^{46,47,54,75}

500 Besides changes in biomass components ratio, some studies also indicate that extrusion could
501 substantially affect the lignin fraction of biomass, especially when high temperatures and/or
502 shearing forces are exerted on the biomass.^{9,16} According to Zheng et al.,⁴⁶ lignin can be highly
503 affected by the heat, compression and shear in the extruder, causing lignin condensation or
504 pseudolignin complex formation, so influencing the enzymatic digestibility. Although the
505 temperature used in this work to extrudate corncobs is only 75°C, the authors hypothesize that
506 the presence of a reverse screw in the profile generates high shear forces that lead to local high
507 temperatures resulting in lignin relocalization.

508 The changes in the physicochemical characteristics of main components as those in lignin above
509 reported, as well as variations in composition due to components removal during extrusion
510 significantly influence the accessibility of the enzymes to the carbohydrates, which is discussed
511 in more detail in the next paragraph.

512 *3.3. Enzymatic digestibility*

513 From the results of extrusion process applied to different lignocellulosic biomasses, it can be
514 stated that, in general, extrusion leads to an increase of the enzymatic digestibility of the
515 extrudate in comparison to raw material. Data from literature regarding enzymatic digestibility
516 after extrusion are difficult to compare since the expressions by which yields are calculated can
517 be different, depending on the basis it is calculated (raw material, extrudate, weight of one of
518 the components). Thus, only values comparing extruded and raw biomass digestibility are given
519 in this review.

520 Extrusion has demonstrated to favorably compare to conventional acid and alkaline
521 pretreatments in terms of hydrolysis efficiency. An example can be found in the work by Yoo et
522 al.,⁵¹ who compared the saccharification yield of raw extruded soybean hulls with the material

523 extruded and pretreated with acid and alkali. According to their results, extrusion was as
524 effective as alkaline pretreatment and superior to acid pretreatment, leading to 132%
525 improvement in the saccharification yield over the raw material. In a later study by the same
526 authors, Yoo et al.²⁰ optimized the moisture of the feedstock and the screw speed of the
527 extrusion process and obtained up to 155% increase in glucose yield of extruded soybean hulls
528 as compared to the control. The enhancement of the enzymatic digestibility by extrusion is
529 achieved by a combination of all the effects previously described; particle size reduction,
530 increase of the superficial area, the number of pores, and changes in biomass composition
531 Supporting this view, Karunanithy and Muthukumarappan⁸ found glucose, xylose and combined
532 sugar yields 2.0, 1.7 and 2.0 times higher in extruded corn stover in comparison to untreated
533 biomass and attributed the increase to the disturbance of the cell wall produced by the friction
534 inside the extruder. Zhang et al.⁹ declared sugars yields 2.2, 6.6 and 2.6 times higher for
535 glucose, xylose and combined sugars, respectively, from extruded corn stover, and associated
536 these improvements to a greater surface area.

537 Moreover, when a catalyst is added in the extrusion, combined effects are introduced and so,
538 trying to distinguish the actual contribution of each effect to the enzymatic digestibility can
539 become challenging. Um et al.⁶⁶ analyzed the weight of each of element (physical and chemical)
540 by studying the enzymatic digestibility of rape straw, raw and pretreated by extrusion, with hot
541 water, NaOH or H₂SO₄. They measured the increase in the cellulose conversion and quantified
542 the individual contributions of the separate factors. Particle size reduction had the main impact
543 on enzymatic digestibility, which was approximately double the value from untreated rape
544 straw. Next, the chemical effect was especially important in the process with sulfuric acid.
545 Finally, the reduction of the crystallinity had only a small impact. Overall, the enzymatic
546 digestibility was improved between 2 and 3 times over the untreated biomass. Duque et al.⁴⁷
547 have reported significant effect of alkali addition on barley straw enzymatic digestibility. The
548 authors observed that the amount of catalyst added significantly affected the enzymatic
549 digestibility of extrudates, obtaining glucan and xylan saccharification efficiencies 5 and 9 times
550 over that of the raw biomass, respectively. For wheat straw the enzymatic digestibility of glucan

551 increased 13 times and 11 times that of xylan, working in similar conditions.⁷⁶ During alkaline
552 extrusion, the extrusion action would be enhanced by the chemical agent, which is able to
553 partially solubilise hemicellulose and lignin, as well as produce a swelling of the biomass fibers,
554 so promoting substrate digestibility.

555 An interesting view is to consider the existence of a synergism in the mechanical and chemical
556 actions occurring during reactive extrusion. This idea was already contemplated in 1987 by
557 Hemling et al.,⁷⁷ who claimed a synergistic effect between chemical and mechanical forces by
558 using an extruder to treat wheat straw previously impregnated with alkaline hydrogen peroxide.
559 Much later Razumovski et al.⁷⁸ studied the joint action of catalysts as NaOH, succinic acid or
560 CoSO₄ and extrusion on birch wood and compared with the material submitted to pretreatments
561 separately. The authors demonstrated that the combined action of additives and mechanical
562 forces lead to synergic effects shown by an increase of water-soluble fractions and appearance
563 of low-molecular weight oligosaccharides that could not be observed by pretreating birch wood
564 separately by extrusion or by chemical catalysts. Advantages such as reduced working
565 temperature (relative to thermohydrolysis) and prevention of side products are claimed in
566 relation to synergistic effect in reactive extrusion.

567 On the other hand, the combination of different pretreatments with extrusion performed in a
568 consecutive way has been shown to result in an improvement of the enzymatic digestibility,
569 compared to each pretreatment alone. For example, Lee et al.¹⁵ found that extrusion increased
570 the glucose yield by enzymatic saccharification after a hot-compressed water (autohydrolysis)
571 pretreatment of softwood and hardwood. This effect was especially significant in the case of
572 Douglas fir, in which only mechanical kneading with water had been previously found to
573 produce a limited improvement on the enzymatic digestibility of the substrate.⁴⁴ It was proven
574 that the partial removing of hemicellulose and lignin due to the autohydrolysis treatment
575 allowed a finer fibrillation of the biomass during extrusion and enhanced its enzymatic
576 digestibility. Furthermore, mechanical refining through twin-screw extrusion (among other
577 methods) has proved its potential as post-treatment for improving the enzymatic digestibility of
578 corn stover pretreated by acid steam explosion at low severity conditions, getting closer or even

579 reaching the values of enzymatic digestibility obtained at more severe pretreatment conditions.¹⁰
580 The enhancement is believed to be due to Class II refining of the biomass. When extrusion was
581 followed by a secondary pretreatment such as ozonation, Karunanithy et al.⁷⁹ found that it
582 allowed to greatly decrease the ozone consumption and ozonation time compared to ozone
583 pretreatment alone, since the previous extrusion had already opened up the LB structure. The
584 enzymatic digestibility was increased around 1.6-fold by the combination of pretreatments
585 compared to extrusion alone. In a paper by the same authors⁸⁰, the combination of extrusion plus
586 microwave pretreatment was not as effective, but they achieved anyway an increased enzymatic
587 digestibility of about 1.2-fold over the extruded only LB.

588 Extrusion has been proven, thus, to be an effective pretreatment to enhance the enzymatic
589 digestibility of LB, resulting in higher enzymatic hydrolysis yields than those of the raw
590 materials, effect that increases when talking about reactive extrusion. Moreover, extrusion has
591 been demonstrated to perform well in combination with other pretreatments, allowing achieving
592 highly digestible substrates even when the severity of the secondary pretreatment is decreased.
593 Although the mechanisms that cause this positive effect of extrusion in enzymatic digestibility
594 are not completely clear, from the discussion above it can be concluded that physical changes
595 such as disruption of fibers (fibrillation), particle size reduction, and increase of SSA are behind
596 the increased enzymes accessibility. In the case of reactive extrusion, catalyst addition can
597 provoke partial removing of hemicellulose and lignin, so facilitating the action of enzymes.
598 Particularly for alkaline extrusion, the authors⁴⁷ have already reported that alkaline agent
599 enhances the action of extrusion by degradation of ester bonds and cleavage of glycosidic
600 linkages in the cell wall matrix, as well as it causes the swelling of the fibers.

601 *3.4. Production of sugar degradation and other toxic compounds*

602 One of the relevant advantages of extrusion pretreatment over other technologies is that it can
603 be carried out at moderate operation conditions of temperature and pressure, which prevents the
604 formation of potential fermentation inhibitors.⁷⁰ These toxic compounds include degradation

605 and oxidation products of lignin and oligomeric sugars, due to severe pH and temperature
606 conditions in other conventional hydrothermal conditions.⁸¹

607 Negro et al.⁸² could detect neither furfural nor HMF in filtrates from alkaline extrusion of olive
608 tree pruning at 70, 90 and 110°C. The same applies to the extrusion of switchgrass and prairie
609 cord grass,⁸³ pine wood chips¹⁶ and alkali-impregnated big bluestem,¹⁸ at temperatures between
610 50 and 180°C. Furfural and HMF were found at hardly detectable levels (under 0.05 g/l of
611 furfural and under 0.023 g/l of HMF) after extrusion of soybean hulls at 80°C.²⁰ On the other
612 hand, slightly higher concentrations of these degradation compounds were detected in
613 experiments carried out with acid and extrusion, as reported by Chen et al.,⁵³ who found less
614 than 1 g/l furfural after extruding rice straw with dilute sulfuric acid.

615 In contrast, the concentrations of acetic acid in extruded materials, produced by the hydrolysis
616 of acetyl groups of hemicelluloses, tend to be greater, especially in alkaline extrusion. In
617 different studies with extruded biomasses, Karunanithy and Muthukumarappan found acetic
618 acid concentrations between 0.02 and 0.132 g/l.^{8,83} Working with dilute sulfuric acid as catalyst,
619 Chen et al.⁵³ detected acetic acid in a concentration about 3.7-5.9 g/l after acid extrusion of rice
620 straw. Furthermore, in experiments with NaOH-extrusion and barley straw, the concentration of
621 acetic acid in filtrate was around 4 g/l, meaning a deacetylation about 95% based on the content
622 of acetyl groups of raw barley straw.⁵

623 The combination of extrusion with other pretreatments has been shown to have a positive effect
624 on inhibitors production. For instance, steam explosion combined with extrusion⁸⁴ could be
625 carried out at lower temperature and acid concentration than conventional steam explosion, and
626 the amount of fermentation inhibitors were therefore lower. The amount of formic acid, acetic
627 acid, furfural and HMF was greatly reduced when a combination of pretreatments was applied,
628 compared to just acid-catalyzed steam explosion.

629 This low production of inhibitory compounds is one of the key advantages of extrusion
630 pretreatment, since it avoids the necessity of costly detoxification post-treatments and facilitates
631 the conversion of the pretreated substrates by biological agents.

632 **4. Process configurations**

633 Although in the discussion carried out throughout this work, several examples of combination
634 of pretreatments with extrusion have been described, this section aims to summarize the
635 different configurations of extrusion with other technologies and give some particular examples.

636 Such combination of extrusion and other treatment methods can be made in several ways:

637 i. Sequence of treatments, by applying a pretreatment to raw biomass before extrusion, or
638 submitting the extrudate to a post-treatment. The other treatment can be a hydrothermal,
639 physical or chemical one.

640 ii. Reactive extrusion, by introducing a chemical or biological catalyst inside the extruder.

641 iii. Combination of technologies in one reactor by specially modified extrusion machines to
642 combine various pretreatments.

643 Examples of cases of study, chosen from the recent literature to illustrate the above mentioned
644 process configurations involving extrusion pretreatment, are presented in Table 5.

645

646 -----(Insert Table 5)-----

647

648 The process configuration can refer to a multiple pretreatment step, in which extrusion is only
649 one step of the existing operations. In this research line, Cha et al.²¹ integrated an extrusion
650 equipment in a bigger pretreatment system for *Miscanthus sacchariflorus*, in which extrusion is
651 used as first step followed by chemical soaking in NaOH in a continuous stirred tank and further
652 incubation in a single screw reactor. The advantages of this system are shorter incubation time,
653 higher biomass loading, higher sugar yield and relatively low temperature reaction. The initial
654 extrusion step is believed to prepare the substrate for a more efficiently pretreatment afterwards.

655 Extrusion has been also successfully coupled to steam-explosion by Chen et al.⁸⁴ and this
656 combined process has been even object of patent.³² In these kinds of processes, the main

657 advantages that the extrusion reactor provides are the continuous operation, and the high
658 pressures and shearing forces developed inside the machine.

659 The examples presented in Table 5 show the large variety of process configuration that can be
660 applied to extrusion and the main proven effects on biomass composition, physical
661 characteristics and enzymatic digestibility of pretreated LB. Our aim here is to give a glimpse
662 on what can be the future of the technology applied to the pretreatment of LB.

663

664 **5. Conclusions**

665 In this paper, a comprehensive view about the extrusion technology applied to the pretreatment
666 of lignocellulosic biomass is presented. Co-rotating twin-screw extruders seem to be the more
667 adequate equipment type to pretreat lignocellulosic biomass and they have good perspectives to
668 continue developing new biomass deconstruction pretreatments, or to be integrated within a
669 multiple pretreatment process. Functional screw elements (kneading blocks and reverse
670 elements) need to be included in the screw profile to take fully advantage of the mixing and
671 fiber destructuration capabilities of this type of extruders.

672 The extrusion operation depends on several variables, many of which are inter-related, so it is
673 not easy to determine the individual influence of each one. Due to this complexity, usually some
674 of the variables are fixed, according to values obtained from previous experimentation or by
675 setting operative limits, while the others vary to optimize the operation of the equipment. As a
676 general rule, low energy extrusion processes can be achieved by keeping a low working
677 temperature and using a relatively low screw speed.

678 In addition, to achieve a proper flow of the material, it is essential to attain a certain L/S ratio
679 inside the extruder by adding water, a chemical catalyst or any agent that aids to the
680 fluidification of the biomass suspension. This L/S ratio has to be optimized for each process, but
681 it must be kept as low as possible in order to favor the development of high shearing forces
682 inside the equipment.

683 The need for washing the extrudates after the pretreatment and the way in which it is performed
684 has to be evaluated depending on each particular case. Anyway, minimizing the amount of
685 washing water and catalyst used is a priority that will result in a more cost-effective and
686 environmentally sustainable pretreatment.

687 On the one hand, as a mechanical treatment, extrusion causes physical changes such as particle
688 size reduction, fibrillation and increase of the surface area in the LB substrates through the
689 application of high shearing forces. Also, when reactive extrusion is used, chemical effects on
690 LB components occur, like hemicellulose and/or lignin solubilisation. As a result of the
691 combined mechanical and chemical effects, LB structure and components are altered and the
692 susceptibility of the extrudate to the enzymatic attack is significantly enhanced in comparison to
693 raw material. Furthermore, a particular feature of extrusion is the low production of inhibitory
694 compounds, which is a key advantage in the ethanol production process by enzymatic
695 hydrolysis and fermentation.

696 The overview presented in this paper is considered only a first approach to the extrusion
697 operation that reflects some of the possibilities of this technology for the pretreatment of
698 lignocellulosic biomass. The effective mixing that extruders are able to provide, even at high
699 solids content, and the possibility to work at relatively low temperatures are two important
700 advantages of this pretreatment. Moreover, the results reported in the scientific literature in
701 terms of structural changes on the LB and improvement of the enzymatic digestibility are
702 encouraging enough to support the interest arisen by extrusion pretreatment. The high versatility
703 of extrusion is one of the strengths of this technology whose future could be either its
704 application alone as a complete pretreatment or as an intermediate step in a larger process.
705 However, there are still a number of issues that need to be addressed before determining its
706 actual potential, including the energy consumption and economic impact of extrusion.

707

708 **Acknowledgements**

709 The authors wish to thank the European Commission (7th FP, Project BABETHANOL
710 reference 227498) and Community of Madrid (Consejería de Educación, Project RESTOENE-2,
711 reference 2013/MAE-2882) for financial support.

712 **References**

713 1. Ghosh D, Dasgupta D, Agrawal D, Kaul S, Adhikari DK, Kurmi AK, Arya PK, Bangwal D
714 and Negi MS, Fuels and chemicals from lignocellulosic biomass: an integrated biorefinery
715 approach. *Energy Fuels* **29**: 3149-3157 (2015).

716 2. Alvira P, Tomás-Pejó E, Ballesteros M and Negro MJ, Pretreatment technologies for an
717 efficient bioethanol production process based on enzymatic hydrolysis: A review. *Bioresour
718 Technol* **101**: 4851-4861 (2010).

719 3. Galbe M and Zacchi G, Pretreatment: the key to efficient utilization of lignocellulosic
720 materials. *Biomass Bioenergy* **46**: 70-78 (2012).

721 4. Ravindram R and Jaiswal AK, A comprehensive review on pre-treatment strategy for
722 lignocellulosic food industry waste: Challenges and opportunities. *Bioresour Technol* **199**: 92-
723 102 (2016). DOI: 10.1016/j.biortech.2015.07.106

724 5. Duque A, Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Sáez F and Ballesteros M, Study
725 of process configuration and catalyst concentration in integrated alkaline extrusion of barley
726 straw for bioethanol production. *Fuel* **134**: 448-454 (2014).

727 6. Zhan X, Wang D, Bean SR, Mo X, Sun XS and Boyle D, Ethanol production from
728 supercritical fluid extrusion cooked sorghum. *Ind Crops Prod* **23**: 304-310 (2006).

729 7. Karunanithy C and Muthukumarappan K, Effect of extruder parameters and moisture content
730 of switchgrass, prairie cord grass on sugar recovery from enzymatic hydrolysis. *Appl Biochem
731 Biotechnol* **162**: 1785-1803 (2010).

732 8. Karunanithy C and Muthukumarappan K, Influence of extruder temperature and screw speed
733 on pretreatment of corn stover while varying enzymes and their ratios. *Appl Biochem Biotechnol*
734 **162**: 264-279 (2010).

735 9. Zhang S, Xu Y and Hanna MA, Pretreatment of corn stover with twin-screw extrusion
736 followed by enzymatic saccharification. *Appl Biochem Biotechnol* **166**: 458-469 (2012).

737 10. Chen X, Kuhn E, Wang W, Park S, Flanagan K, Trass O, Tenlep L, Tao L and Tucker M,
738 Comparison of different mechanical refining technologies on the enzymatic digestibility of low
739 severity acid pretreated corn stover. *Bioresour Technol* **147**: 401-408 (2013).

740 11. Lin M and Ryu GH, Effects of thermomechanical extrusion and particle size reduction on
741 bioconversion rate of corn fiber for ethanol production. *Cereal Chem* **91**: 366-373 (2014).

742 12. Kim TH, Choi CH and Oh KK, Bioconversion of sawdust into ethanol using dilute sulfuric
743 acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous
744 saccharification and fermentation. *Bioresour Technol* **130**: 306-313 (2013).

745 13. Senturk-Ozer S, Gevgilili H and Kalyon DM, Biomass pretreatment strategies via control of
746 rheological behavior of biomass suspensions and reactive twin screw extrusion processing.
747 *Bioresour Technol* **102**: 9068-9075 (2011).

748 14. Lee SH, Teramoto Y and Endo T, Enzymatic saccharification of woody biomass
749 micro/nanofibrillated by continuous extrusion process I - Effect of additives with cellulose
750 affinity. *Bioresour Technol* **100**: 275-279 (2009).

751 15. Lee SH, Inoue S, Teramoto Y and Endo T, Enzymatic saccharification of woody biomass
752 micro/nanofibrillated by continuous extrusion process II: Effect of hot-compressed water
753 treatment. *Bioresour Technol* **101**: 9645-9649 (2010).

754 16. Karunanithy C, Muthukumarappan K and Gibbons WR, Extrusion pretreatment of pine
755 wood chips. *Appl Biochem Biotechnol* **167**: 81-99 (2012).

756 17. Karunanithy C and Muthukumarappan K, Optimization of switchgrass and extruder
757 parameters for enzymatic hydrolysis using response surface methodology. *Ind Crops Prod* **33**:
758 188-199 (2011).

759 18. Karunanithy C and Muthukumarappan K, Optimization of alkali, big bluestem particle size,
760 and extruder parameters for maximum enzymatic sugar recovery using response surface
761 methodology. *BioResour* **6**: 762-790 (2011).

762 19. Karunanithy C and Muthukumarappan K, Optimization of alkali soaking and extrusion
763 pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis.
764 *Biochem Eng J* **54**: 71-82 (2011).

765 20. Yoo J, Alavi S, Vadlani P and Behnke KC, Soybean hulls pretreated using thermo-
766 mechanical extrusion - Hydrolysis efficiency, fermentation inhibitors, and ethanol yield. *Appl
767 Biochem Biotechnol* **166**: 576-589 (2012).

768 21. Cha YL, Yang J, Park Y, An GH, Ahn JW, Moon YH, Yoon YM, Yu GD and Choi IH,
769 Continuous alkaline pretreatment of *Miscanthus sacchariflorus* using a bench-scale single screw
770 reactor. *Bioresour Technol* **181**: 338-344 (2015).

771 22. Inoi T, Akabane T, Kurokawa Y and Matsouka , Process for pretreating biomasses in
772 advance of their enzymatic treatment. US Patent US4642287 (1987).

773 23. Delong EA, Method of rendering lignin separable from cellulose and hemicellulose in
774 lignocellulosic material and the product so produced. Canada Patent CA1217765 (1987).

775 24. Huber GR, Wenger LG, Hauck BW, Rokey GJ, Schmelzle LE, Hartter TR, inventors;
776 Wenger Manufacturing Inc., assignee. Extrusion method and apparatus for acid treatment of
777 cellulosic materials. US Patent US4728367. 1 March 1988.

778 25. Litzen D, Dixon D, Gilcrease P and Winter R, Pretreatment of biomass for ethanol
779 production. US Patent US2006141584 (2006).

780 26. Mingzai L, Natural fabric hydrolysis reactor. Canada Patent CN101418353 (2009).

781 27. Steiner M, Steiner W, Dreier U and Beckers R, An improved process for providing ethanol
782 from plant material. European Patent EP2226387 (2010).

783 28. Vilarem G, Rigal L, Vandenbossche V, Brault J, Hernández-Luna M, Manzanares P,
784 Ballesteros M and Duque A, Method of enzymatic treatment of a solid lignocellulosic material.
785 US Patent US 2015299751 (2015).

786 29. Stirl A, Gerath H and Knitter C, Method for hybrid decomposition of biomass containing
787 lignocelluloses. European Patent EP1978086 (2008).

788 30. Barbier J, Bataille F, Briand A and Soum S, Method for producing intermediate material
789 intended for ethanol production, and resulting intermediate material. Worldwide Patent
790 WO2010063980 (2010).

791 31. Dale BE and Weaver JK, Process and apparatus for treating cellulosic materials. Worldwide
792 Patent WO 9956555 (1999).

793 32. Dottori FA, Cooper RA and Benech RO, Two-stage continuous pre-treatment of
794 lignocellulosic biomass. Canada Patent CA2842781 (2013).

795 33. Lin Z, Liu L, Li R and Shi J, Screw extrusion pretreatments to enhance the hydrolysis of
796 lignocellulosic biomass. *J Microb Biochem Technol* (2012). DOI: 10.4172/1948-5948.S12-002.

797 34. Karunanithy C and Muthukumarappan K, Thermo-mechanical pretreatment of feedstocks, in
798 *Green biomass pretreatment for biofuels production*, ed by Tingyue G. Springer-Verlag, Berlin
799 Heidelberg, pp 31-65 (2013). DOI: 10.1007/978-94-007-6052-3_2

800 35. Zheng J and Rehmann L, Extrusion pretreatment of lignocellulosic biomass: A review. *Int J
801 Mol Sci* **15**: 18976-18984 (2014).

802 36. Kholgrüber K and Wiedeman W, Co-rotating twin-screw extruders: fundamentals,
803 technology and applications, Carl Hanser Verlag, Munich, pp 59-89 (2008).

804 37. Erdmenger R, Mixing and kneading machine. US Patent 2814472 (A) (1957).

805 38. Vandenbossche V, Brault J, Vilarem G, Hernández-Meléndez O, Vivaldo-Lima E,
806 Hernández-Luna M, Barzana E, Duque A, Manzanares P, Ballesteros M, Mata J, Castellón E
807 and Rigal L, A new lignocellulosic biomass deconstruction process combining thermo-mechano
808 chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder. *Ind Crops
809 Prod* **55**: 258-266 (2014).

810 39. Kalyon DM and Malik M, An integral approach for numerical analysis of coupled flow and
811 heat transfer in co-rotating twin screw extruders. *Int Polym Process* **22**: 293-302 (2007).

812 40. Raquez JM, Narayan R, Dubois P, Recent advances in reactive extrusion processing of
813 biodegradable polymer-based compositions. *Macromol Mater Eng* **293**: 447–470 (2008).

814 41. Shah A and Gupta M, Comparison of the flow in co-rotating and counter-rotating twin-
815 screw extruders. *Society of Plastics Engineers Annual Technical (ANTEC) Papers* **50**: 443-447
816 (2004).

817 42. Karunanithy C and Muthukumarappan K, A comparative study on torque requirement
818 during extrusion pretreatment of different feedstocks. *BioEnergy Res* **5**: 263-276 (2012).

819 43. Brudecki G, Cybulska I and Rosentrater K, Integration of extrusion and clean fractionation
820 processes as a pre-treatment technology for prairie cordgrass. *Bioresour Technol* **135**: 672-682
821 (2013).

822 44. Lee SH, Teramoto Y and Endo T, Enhancement of enzymatic accessibility by fibrillation of
823 woody biomass using batch-type kneader with twin-screw elements. *Bioresour Technol* **101**:
824 769-774 (2010).

825 45. Lawal A and Kalyon DM, Mechanism of mixing in single and twin-screw extruders. *Polym
826 Eng Sci* **35**: 1325-1338 (1995).

827 46. Zheng J, Choo K and Rehmann L. The effects of screw elements on enzymatic digestibility
828 of corncobs after pretreatment in a twin-screw extruder. *Biomass Bioenergy* **74**: 224-232 (2015).

829 47. Duque A, Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Sáez. F and Ballesteros M,
830 Optimization of integrated alkaline-extrusion pretreatment of barley straw for sugar production
831 by enzymatic hydrolysis. *Process Biochem* **48**: 775-781 (2013).

832 48. Han M, Kang KE, Kim Y and Choi GW, High efficiency bioethanol production from barley
833 straw using a continuous pretreatment reactor. *Process Biochem* **48**: 488-495 (2013).

834 49. Yan Q, Miazek K, Grande PM, Domínguez De María P, Leitner W and Modigell M,
835 Mechanical pretreatment in a screw press affecting chemical pulping of lignocellulosic biomass.
836 *Energy Fuels* **28**: 6981-6987 (2014).

837 50. Scott CT, Samaniuk JR and Klingerberg DJ, Rheology and extrusion of high-solids biomass.
838 *Tappi J* **10**: 47-53 (2011).

839 51. Yoo J, Alavi S, Vadlani P and Amanor-Boadu V, Thermo-mechanical extrusion
840 pretreatment for conversion of soybean hulls to fermentable sugars. *Bioresour Technol* **102**:
841 7583-7590 (2011).

842 52. Lamsal B, Yoo J, Brijwani K and Alavi S, Extrusion as a thermo-mechanical pre-treatment
843 for lignocellulosic ethanol. *Biomass Bioenergy* **34**: 1703-1710 (2010).

844 53. Chen WH, Xu YY, Hwang WS and Wang JB, Pretreatment of rice straw using an
845 extrusion/extraction process at bench-scale for producing cellulosic ethanol. *Bioresour Technol*
846 **102**: 10451-10458 (2011).

847 54. Choi CH, Um BH, Kim YS and Oh KK, Improved enzyme efficiency of rapeseed straw
848 through the two-stage fractionation process using sodium hydroxide and sulfuric acid. *Appl
849 Energy* **102**: 640-646 (2013).

850 55. Choi CH and Oh KK, Application of a continuous twin screw-driven process for dilute acid
851 pretreatment of rape straw. *Bioresour Technol* **110**: 349-354 (2012).

852 56. Kuster Moro M, Sposina Sobral Teixeira R, Sant'Ana da Silva A, Duarte Fujimoto M,
853 Albuquerque Melo P, Resende Secchia A, Pinto da Silva Bon E, Continuous pretreatment of
854 sugarcane biomass using a twin-screwextruder. *Ind Crop Products* **97**: 509-517 (2017).

855 57. Zheng J, Choo K and Rehmann L, Xylose removal from lignocellulosic biomass via a twin-
856 screw extruder: The effects of screw configurations and operating conditions. *Biomass*
857 *Bioenergy* **88**: 10-16 (2016).

858 58. Zhang S, Keshwani DR, Xu Y and Hanna MA. Alkali combined extrusion pretreatment of
859 corn stover to enhance enzyme saccharification. *Ind Crops Prod* **37**: 352-357 (2012).

860 59. Da Silva AS, Teixeira RSS, Endo T, Bon EPS and Lee SH, Continuous pretreatment of
861 sugarcane bagasse at high loading in an ionic liquid using a twin-screw extruder. *Green Chem*
862 **15**: 1991-2001 (2013).

863 60. Kadam KL, Chin CY and Brown LW, Continuous biomass fractionation process for
864 producing ethanol and low-molecular-weight lignin. *Environ Prog Sustainable Energy* **28**: 89-
865 99 (2009).

866 61. Lin Z, Huang H, Zhang H, Yan L and Chen J, Ball milling pretreatment of corn stover for
867 enhancing the efficiency of enzymatic hydrolysis. *Appl Biochem Biotechnol* **162**: 1872-1880
868 (2010).

869 62. Choi CH, Uma BH and Oh KK, The influence of screw configuration on the pretreatment
870 performance of a continuous twin screw-driven reactor (CTSR). *Bioresour Technol* **132**: 49-56
871 (2013).

872 63. Cha Y, Yang J, Seo S, An G, Moon Y, You G, Lee J, Ahn J and Lee K, Alkaline twin-screw
873 extrusion pretreatment of *Miscanthus* with recycled black liquor at the pilot scale. *Fuel* **164**:
874 322-328 (2016). DOI: 10.1016/j.fuel.2015.10.006

875 64. Chen X, Zhang Y, Gu Y, Liu Z, Shen Z, Chu H and Zhou X, Enhancing methane production
876 from rice straw by extrusion pretreatment. *Appl Energy* **122**: 34-41 (2014).

877 65. Leu SY and Zhu JY, Substrate-related factors affecting enzymatic saccharification of
878 lignocelluloses: Our recent understanding. *Bioenergy Res* **6**: 405-415 (2013).

879 66. Um BH, Choi CH and Oh KK, Chemicals effect on the enzymatic digestibility of rape straw
880 over the thermo-mechanical pretreatment using a continuous twin screw-driven reactor (CTSR).
881 *Bioresour Technol* **130**: 38-44 (2013).

882 67. Duque A, Manzanares P, Ballesteros I, Negro MJ, Oliva JM, González A and Ballesteros M,
883 Sugar production from barley straw biomass pretreated by combined alkali and enzymatic
884 extrusion. *Bioresour Technol* **158**: 262-268 (2014).

885 68. Liu C, Van Der Heide E, Wang H, Li B, Yu G and Mu X, Alkaline twin-screw extrusion
886 pretreatment for fermentable sugar production. *Biotechnol Biofuels* **6**: 97-108 (2013).

887 69. Choi CH, Kim JS and Oh KK, Evaluation the efficacy of extrusion pretreatment via
888 enzymatic digestibility and simultaneous saccharification & fermentation with rapeseed straw.
889 *Biomass Bioenergy* **54**: 211-218 (2013).

890 70. De Vrije T, De Haas G, Tan GB, Keijsers ERP and Claassen PAM. Pretreatment of
891 *Miscanthus* for hydrogen production by *Thermotoga elfii*. *Int J Hydrg Energy* **27**: 1381-1390
892 (2002).

893 71. Kang KE, Han M, Moon SK, Kang HW, Kim Y, Cha YL and Choi GW, Optimization of
894 alkali-extrusion pretreatment with twin-screw for bioethanol production from *Miscanthus*. *Fuel*
895 **109**: 520-526 (2013).

896 72. Hjorth M, Gränitz K, Adamsen APS and Møller HB, Extrusion as a pretreatment to increase
897 biogas production. *Bioresour Technol* **102**: 4989-4994 (2011).

898 73. Karunanithy C and Muthukumarappan K, Effect of extruder parameters and moisture
899 content of switchgrass, prairie cord grass on sugar recovery from enzymatic hydrolysis. *Appl*
900 *Biochem Biotechnol* **162**: 1785-1803 (2010).

901 74. Carr ME and Doane WM, Modification of wheat straw in a high-shear mixer. *Biotechnol*
902 *Bioeng* **26**: 1252-1257 (1984).

903 75. Choi WI, Oh KK, Park JY and Lee JS, Continuous sodium hydroxide-catalyzed
904 pretreatment of empty fruit bunches (EFB) by continuous twin-screw-driven reactor (CTSR). *J*
905 *Chem Technol Biotechnol* **89**: 260-296 (2014). DOI: 10.1002/jctb.4119

906 76. Coimbra M, Duque A, Saéz F, Manzanares P, Garcia-Cruz C and Ballesteros M, Sugar
907 production from wheat straw biomass by alkaline extrusion and enzymatic hydrolysis. *Renew*
908 *Energy* **86**: 1060-1068 (2016).

909 77. Helmling O, Arnold G, Rzehak H, Fahey GC, Berger LL and Merchen RR, Improving the
910 nutritive value of lignocellulosics: the synergistic effects between alkaline hydrogen peroxide
911 and extrusion treatments. *Biotechnol Bioeng* **33**: 237-241 (1989).

912 78. Razumovskii SD, Podmaster'ev VV and Zelenetskii AN, Mechanochemical methods of
913 activating processes of biomass pretreatment. *Catalysis in Industry* **3**: 23-27 (2011).

914 79. Karunanithy C, Muthukumarappan K and Gibbons WR, Sequential extrusion-ozone
915 pretreatment of switchgrass and big bluestem. *Appl Biochem Biotechnol* **172**: 3656-3669 (2014).

916 80. Karunanithy C, Muthukumarappan K and Gibbons WR, Sequential extrusion-microwave
917 pretreatment of switchgrass and big bluestem. *Bioresour Technol* **153**: 393-398 (2014).

918 81. Oliva JM, Sáez F, Ballesteros I, Negro MJ, Manzanares P and Ballesteros M, Effect of
919 lignocellulosic degradation compounds from steam explosion pretreatment on ethanol
920 fermentation by thermotolerant yeast *Kluyveromyces marxianus*. *Appl Biochem Biotechnol* **105-**
921 **108**: 141-153 (2003).

922 82. Negro MJ, Duque A, Manzanares P, Sáez F, Oliva JM, Ballesteros I and Ballesteros M,
923 Alkaline twin-screw extrusion fractionation of olive-tree pruning biomass. *Ind Crops Prod* **74**:
924 336–341 (2015).

925 83. Karunanithy C and Muthukumarappan K, Effect of extruder parameters and moisture
926 content of switchgrass, prairie cord grass on sugar recovery from enzymatic hydrolysis. *Appl
927 Biochem Biotechnol* **162**: 1785-1803 (2010).

928 84. Chen J, Zhang W, Zhang H, Zhang Q and Huang H, Screw extrude steam explosion: A
929 promising pretreatment of corn stover to enhance enzymatic hydrolysis. *Bioresour Technol* **161**:
930 230-235 (2014).

931 Table 1. Summary of patented pretreatment strategies comprising extrusion process, description of the process and main findings

Type of process	Description of the invention	Findings of the patent	Patent number	Publication date	Ref.
Extrusion	Twin screw extrusion of lignocellulosic biomass (preferred wood chips or sawdust) by prior to enzymatic hydrolysis to produce ethanol.	Significant increase in sugar recovery from such biomass.	US2006141584	2006-06-29	[25]
	Natural fiber hydrolytic reactor to treat plant cellulose and hemicellulose mixed with starch or raw materials to prepare a sugar solution.	No further additive needed. Environmental-friendly process, simple control and reduced manufacturing cost.	CN101418353	2009-04-29	[26]
Reactive extrusion	Extrusion of lignocellulosic material at 60-180°C with 200-450% water plus 0.5-4% strong acid or base for ethanol production.	Fibrillation of the material. 8 fold increase of the enzymatic hydrolysis yield.	WO2010063980	2010-06-10	[30]
Alkaline extrusion	Twin-screw extrusion of lignocellulosic biomass in a with an alkaline solution (NaOH and/or Na ₂ S) 3 to 30% weight at 60- 230°C, prior to enzymatic hydrolysis.	Good contact biomass/alkaline solution, continuous pretreatment, short time, low heat required.	US4642287	1987-02-10	[22]
Acid hydrolysis and extrusion	Extruder device composed of two chambers separated by a pressure sensitive die. In the extrusion zone, materials are pretreated at high pressure and temperature, and then pass into a reaction zone where they are mixed with an acidic solution at lower pressure and temperature.	Improved low cost energy efficient extrusion device, unique die construction that avoids surging and blowing of the fibrous materials, minimum acid degradation of the extruder components.	US4728367	1988-03-01	[24]

Steam explosion and extrusion	Pretreatment process of lignocellulosic biomass with multiple applications (ruminant feed, conversion to sugars and alcohols, lignin extraction) consisting in a treatment with steam at high pressure to raise temperature (185-240°C) in a short time, followed by the release of the pressure by extrusion through a die.	Severe mechanical destructuration of lignocellulosic materials, minimization of hemicellulose degradation, enhanced enzymatic digestibility.	CA1217765	1987-02-10	[23]
	Pretreatment of lignocellulosic biomass in two steps with intermediate filtration. In which step two is carried out in a similar steam explosion-extrusion reactor as in the example above.	Improvement of the process referred above. Sequential hydrolysis of the material that allows removing hemicelluloses and possible inhibitors after the first pretreatment stage.	CA2842781	2013-01-31	[32]
Ammonia fiber explosion and extrusion	Extrusion process of cellulosic material with ammonia to expand the fiber to use it for animal feed or nutrient source for fermentation.	Increased enzymatic and ruminant digestibility, reduction in apparent lignin, high rate of digestion.	WO9956555	1999-11-11	[31]
Extrusion and microwave treatment	Extrusion process on wet lignocellulosic biomass for producing biogas or bioethanol, consisting in a single or twin-screw machine coupled to a microwave process at high temperature (150-250°C) and pressure where thermal and possibly chemical hydrolysis (if catalyst is added) takes place, followed by anaerobic fermentation.	For biogas production, the dry fermentation process time is reduced to 10-20 days and biomass utilization increases up to 65-80% dry weight basis. For bioethanol, sugar yields increase to 75-85% of polysaccharides in the dry biomass, inhibitory products furfural and HMF remain in low concentrations and final ethanol yields increase.	EP1978086	2008-10-08	[29]
Vacuum extrusion	Pretreatment to produce bioethanol or other	Increase in at least 19% ethanol	EP2226387	2010-09-08	[27]

	valuable products from biomass, consisting in a vacuum extrusion (-3 kPa or more).	production compared to material not subjected to vacuum extrusion.			
Bioextrusion	Mechano-chemical treatment for the production of sugars from lignocellulosic biomass (to ethanol production) comprising consecutive steps of introduction of an alkaline extrusion, neutralization, filtration, and addition of enzyme solution into the extruder.	Reduced treatment time, low or no production of inhibitors for the enzymatic hydrolysis and fermentation, method easy to implement in pre-existing industrial installations.	US2015299751	2015-10-22	[28]

932

933 Table 2. Summary of feedstocks, extrusion conditions, analyzed parameters and main results from selected cases of study that investigate the screw profile,
 934 screw speed and residence time.

Variable	Feedstock	Extrusion conditions	Analyzed parameters	Results	Ref.
Screw profile	Hardwood	0.83 Hz; 70-120°C; L/S = 1.1-2.7 Catalyst: White/black liquor Screw profile composed of three mixing zones with different severity	• Collecting of samples from the different mixing zones along the screw and analysis by SEM	• Visible destructuration and separation of the cellulosic fiber bundles after the most severe mixing zone (including reverse elements)	[13]
	Sweet corn cobs	1.67 Hz; 75°C; Moisture 40% 3 screw profiles changing one element (conveying, by kneading or reverse) Subsequent NaOH treatment	• Carbohydrate analysis • Particle size measurements • Crystallinity • SEM • Sugars released by EH	• Increased lignin removal (after NaOH treatment) with functional elements profiles • Pores blockage with reverse element (due to lignin re-distribution) • Enhanced enzymatic digestibility, increases after NaOH treatment in profiles with kneading and reverse elements	[46]
	Rape straw	0.5-1 Hz, 160-175°C L/S =13.4 Catalyst: H_2SO_4 0.013-0.067 g/g biomass 3 screw profiles	• Carbohydrate analysis • Sugars released by EH	• No differences in biomass composition among profiles • Increased sugars release with increasing severity of the profiles	[55]
	Sugarcane bagasse (B) and straw (S)	2.5 Hz (B)-1.4 Hz (B); 150°C (B)-85°C (S) Catalyst: 0.75 (B)-0.53 (S) weight glycerol/biomass 3 extrusion passes 2 screw profiles (with/without	• Residence time • Crystallinity • Glucose released by EH	• Increased residence time from 1-4 min to 5-10 min with reverse element • No changes in crystallinity for (B)/Reduction of CrI for (S) with reverse	[56]

		reverse)		• Increased glucose EH yield 1.4-fold with reverse compared without	
	Steam-exploded corn cobs	1.67 Hz; 100°C; L/S =0.73 (H ₂ O/biomass) 6 min residence time 8 screw profiles	• Pressure profile • Liquid/solid separation • Xylose recovery in filtrate	• Increasing pressure, flow of filtrate and xylose recovery as the number of reverse elements increases	[57]
Screw speed and residence time	Switchgrass Prairie cord grass	0.83-2.5 Hz; 50-150°C; Moisture 15-45%	• Sugars released by EH	• <u>Switchgrass</u> : increasing glucose released with increasing screw speed up to 1.66 Hz, then decrease; other sugars release increase as screw speed increase • <u>Prairie cord grass</u> : increasing sugars released as screw speed decreases	[7]
	Corn stover	0.67-2.33 Hz; 50-140°C; Moisture 22.5-27.5%	• Glucose released by EH	• Increasing glucose released with increasing screw speed up to 1.33 Hz, then decrease	[9]
	Soybean hulls	4.7-7 Hz; 80°C; Moisture 40%	• Glucose released by EH	• Increasing SME with increasing screw speed • Increasing glucose yields as screw speed increases up to 350 rpm, then decrease	[51]
	Wheat bran	3.7-7 Hz; 110-150°C	• Reducing sugars after EH	• Effect of screw speed depending on temperature. Same yield by low screw speed (high residence time) and mild temperature, or high screw speed (low residence time) and high temperature.	[52]
	Corn stover	0.66-1.67 Hz; 50-140°C Previous soaking in NaOH (0.004-0.04	• Glucose released by EH	• Compared to the prominent effects of alkali concentration,	[58]

		g/g biomass)		screw speed was non-significant • Behavior different from extrusion only with water in ref. 9 above	
--	--	--------------	--	---	--

935

936

Table 3. Summary of feedstocks, extrusion conditions, analyzed parameters and main results from selected cases of study that investigate temperature.

Variable	Feedstock	Extrusion conditions	Analyzed parameters	Results	Ref.
Temperature	Switchgrass Prairie cord grass	0.83-2.5 Hz; 50-150°C Moisture 15-45%	• Sugars released by EH	• <u>Switchgrass</u> : sugars released increased up to 100°C, then decrease • <u>Prairie cord grass</u> : sugars release decrease from 100°C	[7]
	Pine wood chips	1.67-3.3 Hz, 100-180°C Moisture 25-45%	• Sugars released by EH	• Increasing sugars released as temperature increases	[16]
	Switchgrass	0.33-2 Hz, 45-225°C Particle size 2-10 mm Moisture 10-50%	• Sugars released by EH	• Increasing sugars released as temperature increases • Temperature was the most prominent effect on xylose release, over screw speed	[17]
	Barley straw	2.5 Hz, 50-100°C Catalyst: NaOH 0.025-0.75 g/g dry biomass	• Sugars released by EH	• Increasing glucose released with increasing temperatures up to 75°C, then slight decrease • Increasing xylose released as temperature increases	[47]
	Sugarcane bagasse	0.2 Hz, 140-180°C L/S = 2-8 1 to 3 passes Catalyst: 1-ethyl-3-methylimidazolium acetate	• Sugars released by EH • SEM	• Glucose released did not increase from 140 to 160°C and decreased above that point • Xylose released increased with temperature up to 160°C, then decreased • Greater structure disruption and fibrillation (<100 nm fiber diameter) up to 160°C • At 180°C, collapsed structure	[59]

				and partial charring	
--	--	--	--	----------------------	--

938

939

940 Table 4. Summary of feedstocks, extrusion conditions, analyzed parameters and main results from selected cases of study that investigate L/S.

941

Variable	Feedstock	Extrusion conditions	Analyzed parameters	Results	Ref.
L/S	Switchgrass Prairie cord grass	0.83-2.5 Hz; 50-150°C; Moisture 15-45%	• Sugars released by EH	• Sugars release decrease as moisture increases for both LB	[7]
	Hardwood	0.83 Hz, 70-120°C Moisture 44-60% Catalyst: NaOH, CMC	• SEM	• Increasing torque and pressure as moisture decreases • Reduction of the fibers diameter as moisture decreases	[13]
	Barley straw	2.5 Hz, 50-100°C L/S= 0.25-0.75 Catalyst: NaOH 0.025-0.75 g/g dry biomass	• Sugars released by EH	• Higher L/S means higher catalyst addition (concentration of the catalyst solution constant) • Sugars released increase with increasing L/S	[47]
	Soybean hulls	7 Hz, 80°C Moisture 45-50% 0-5% starch addition	• Glucose released by EH	• Torque increases with low moisture • Glucose yield increases at low moisture	[51]
	Rape straw	0.33 Hz, 150-170°C L/S= 9-13 Catalyst: H ₂ SO ₄ (31-48% w/w biomass)	• Carbohydrates composition	• More liquid and more acidity result in higher cellulose content and lower hemicellulose content in the solid fraction of extrudates	[62]
	Sugarcane	0.2 Hz, 140-180°C	• Sugars released by EH	• Sugars released decrease as	[59]

	bagasse	L/S = 2-8 1 to 3 passes Catalyst: 1-ethyl-3-methylimidazolium acetate		biomass loading increases	
--	---------	--	--	---------------------------	--

942

943

Table 5. Examples of different case pretreatment configurations using extrusion process found in recent literature and its effects on the LB.

Configuration	Pretreatment	Biomass	Operation conditions	Proven positive effect on*	Ref.
Only extrusion	Single-screw extruder	Pine wood chips	2.5 Hz, 180°C, 25% moisture	CH, NTCR	[16]
	Twin-screw extruder	Corn fiber	5 Hz, 140°C, 30% moisture Die 3 mm	CH, PSR	[11]
	Autohydrolysis + extrusion	Douglas fir Eucalyptus	0.83-2 Hz, room temperature Previous autohydrolysis at 140-180°C, 30'	CH, FB	[15]
	Impregnation with glycerol + extrusion	Sugarcane bagasse and straw	0.5 Hz, 50°C 0.53-0.75 weight glycerol/biomass	CH	[56]
	Impregnation with ionic liquids + extrusion	Sugarcane bagasse	0.25 Hz, 140°C 25% wt ionic liquid (1-ethyl-3-methylimidazolium acetate)	CH, SSA	[59]
Sequence of treatments	Extrusion + ozonation	Switchgrass Big bluestern	<u>Extrusion:</u> 2.6 Hz, 176°C/180°C, 20% moisture 8 mm particle size <u>Ozonation:</u> 25% moisture, 2.5 min 37/365 mg ozone/h	CH, NTCR	[79]
			<u>Extrusion:</u> 2.6 Hz, 176°C/180°C, 20% moisture 8 mm particle size <u>Microwave:</u> 25% moisture, 2.5 min 450W	CH, NTCR	[80]
	Extrusion + organic solvent	Prairie cord grass	<u>Extrusion:</u> 1.1 Hz, 90°C, 20% moisture 8 mm particle size <u>Organic solvent:</u> 39 min, 129°C	CH, XS, LR	[43]

			0.7% catalyst (H_2SO_4) 28% methyl isobutyl ketone		
Reactive extrusion	NaOH	Barley straw	2.5 Hz, 68°C 0.06 g NaOH/g dry biomass Neutralization with H_3PO_4 and filtration inside the extruder	CH, NTCR	[47]
	H_2SO_4	Rapeseed straw	1 Hz, 165°C 0.27 g H_2SO_4 /d dry biomass	CH	[55]
	Hydrolytic enzymes	Barley straw	2.5 Hz, 68- 50°C 0.06 g NaOH/g dry biomass Neutralization with H_3PO_4 , filtration and addition of enzymes inside the extruder 10 mg protein/g dry extrudate	CH, PSR, NTCR	[67]
Combination of technologies in one reactor	Steam explosion & extrusion	Corn stover	150°C, 2 min	CH, XS, LR	[84]
	Alkaline extended pretreatment	<i>Miscanthus</i>	140°C, 22% moisture 3 mm particle size 0.16 g NaOH/g dry biomass	CH, LR	[21]
	Hemicelluloses extraction	Steam exploded corn cobs	1.25-1.67 Hz, 65-100°C 0-0.7 g water/g biomass	XS	[57]

945

946 * CH – carbohydrate hydrolysis; PSR – particle size reduction; FB – fibrillation; SSA – specific surface area; NTCR – no toxic compounds release; XS –

947 xylose solubilisation; LR – lignin removal

948

949 Figure 1. Simplified diagram of a twin-screw extruder. A) Motor; B) Hopper; C) Thermal-
950 regulated barrels; D) Screws; E) Pumps for the addition of catalysts.

951

952 Figure 2. Illustration of the three different types of screw elements in a twin-screw extruder. A)
953 Conveying screw; B) Kneading block; C) Reverse screw.

954

955 Figure 3. Example of screw profile assembled in a co-rotating twin-screw extruder Evolud
956 EV25 (Clextral®).

957

958 Figure 4. Filtered configuration (F) for the extrusion of barley straw in the twin-screw extruder.
959 Inputs, outputs, screw profile and reaction and neutralization zones are shown. T: transport
960 effect, M: mixing effect; S: shearing effect.

961 "Reprinted from Fuel, 134, Duque A, Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Sáez F
962 and Ballesteros M, Study of process configuration and catalyst concentration in integrated
963 alkaline extrusion of barley straw for bioethanol production, 448-454, Copyright (2014), with
964 permission from Elsevier."

965

966 Figure 5. Particle size distribution (% relative amount) of raw barley straw, extrudate and
967 bioextrudate materials.

968 "Reprinted from Bioresource Technology, 158, Duque A, Manzanares P, Ballesteros I, Negro
969 MJ, Oliva JM, González A and Ballesteros M, Sugar production from barley straw biomass
970 pretreated by combined alkali and enzymatic extrusion, 262-268., Copyright (2014), with
971 permission from Elsevier."