

| Type of process                      | Description of the invention                                                                                                                                                                                                                                                         | Findings of the patent                                                                                                                                                                      | Patent number | Publication date | Ref. |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|------|
| <b>Extrusion</b>                     | Twin screw extrusion of lignocellulosic biomass (preferred wood chips or sawdust) by prior to enzymatic hydrolysis to produce ethanol.                                                                                                                                               | Significant increase in sugar recovery from such biomass.                                                                                                                                   | US2006141584  | 2006-06-29       | [25] |
|                                      | Natural fiber hydrolytic reactor to treat plant cellulose and hemicellulose mixed with starch or raw materials to prepare a sugar solution.                                                                                                                                          | No further additive needed. Environmental-friendly process, simple control and reduced manufacturing cost.                                                                                  | CN101418353   | 2009-04-29       | [26] |
| <b>Reactive extrusion</b>            | Extrusion of lignocellulosic material at 60-180°C with 200-450% water plus 0.5-4% strong acid or base for ethanol production.                                                                                                                                                        | Fibrillation of the material. 8 fold increase of the enzymatic hydrolysis yield.                                                                                                            | WO2010063980  | 2010-06-10       | [30] |
| <b>Alkaline extrusion</b>            | Twin-screw extrusion of lignocellulosic biomass in a with an alkaline solution (NaOH and/or Na <sub>2</sub> S) 3 to 30% weight at 60- 230°C, prior to enzymatic hydrolysis.                                                                                                          | Good contact biomass/alkaline solution, continuous pretreatment, short time, low heat required.                                                                                             | US4642287     | 1987-02-10       | [22] |
| <b>Acid hydrolysis and extrusion</b> | Extruder device composed of two chambers separated by a pressure sensitive die. In the extrusion zone, materials are pretreated at high pressure and temperature, and then pass into a reaction zone where they are mixed with an acidic solution at lower pressure and temperature. | Improved low cost energy efficient extrusion device, unique die construction that avoids surging and blowing of the fibrous materials, minimum acid degradation of the extruder components. | US4728367     | 1988-03-01       | [24] |

|                                              |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                |           |            |      |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------|
| <b>Steam explosion and extrusion</b>         | Pretreatment process of lignocellulosic biomass with multiple applications (ruminant feed, conversion to sugars and alcohols, lignin extraction) consisting in a treatment with steam at high pressure to raise temperature (185-240°C) in a short time, followed by the release of the pressure by extrusion through a die.         | Severe mechanical destructuration of lignocellulosic materials, minimization of hemicellulose degradation, enhanced enzymatic digestibility.                                                                                                                                                                                                   | CA1217765 | 1987-02-10 | [23] |
|                                              | Pretreatment of lignocellulosic biomass in two steps with intermediate filtration. In which step two is carried out in a similar steam explosion-extrusion reactor as in the example above.                                                                                                                                          | Improvement of the process referred above. Sequential hydrolysis of the material that allows removing hemicelluloses and possible inhibitors after the first pretreatment stage.                                                                                                                                                               | CA2842781 | 2013-01-31 | [32] |
| <b>Ammonia fiber explosion and extrusion</b> | Extrusion process of cellulosic material with ammonia to expand the fiber to use it for animal feed or nutrient source for fermentation.                                                                                                                                                                                             | Increased enzymatic and ruminant digestibility, reduction in apparent lignin, high rate of digestion.                                                                                                                                                                                                                                          | WO9956555 | 1999-11-11 | [31] |
| <b>Extrusion and microwave treatment</b>     | Extrusion process on wet lignocellulosic biomass for producing biogas or bioethanol, consisting in a single or twin-screw machine coupled to a microwave process at high temperature (150-250°C) and pressure where thermal and possibly chemical hydrolysis (if catalyst is added) takes place, followed by anaerobic fermentation. | For biogas production, the dry fermentation process time is reduced to 10-20 days and biomass utilization increases up to 65-80% dry weight basis. For bioethanol, sugar yields increase to 75-85% of polysaccharides in the dry biomass, inhibitory products furfural and HMF remain in low concentrations and final ethanol yields increase. | EP1978086 | 2008-10-08 | [29] |
| <b>Vacuum extrusion</b>                      | Pretreatment to produce bioethanol or other                                                                                                                                                                                                                                                                                          | Increase in at least 19% ethanol                                                                                                                                                                                                                                                                                                               | EP2226387 | 2010-09-08 | [27] |

|                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                              |              |            |      |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|------|
|                     | valuable products from biomass, consisting in a vacuum extrusion (-3 kPa or more).                                                                                                                                                                                 | production compared to material not subjected to vacuum extrusion.                                                                                                           |              |            |      |
| <b>Bioextrusion</b> | Mechano-chemical treatment for the production of sugars from lignocellulosic biomass (to ethanol production) comprising consecutive steps of introduction of an alkaline extrusion, neutralization, filtration, and addition of enzyme solution into the extruder. | Reduced treatment time, low or no production of inhibitors for the enzymatic hydrolysis and fermentation, method easy to implement in pre-existing industrial installations. | US2015299751 | 2015-10-22 | [28] |

| Variable      | Feedstock                           | Extrusion conditions                                                                                                                                                     | Analyzed parameters                                                                                            | Results                                                                                                                                                                                                                                                                           | Ref. |
|---------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Screw profile | Hardwood                            | 0.83 Hz; 70-120°C; L/S = 1.1-2.7<br>Catalyst: White/black liquor<br><b>Screw profile composed of three mixing zones with different severity</b>                          | • Collecting of samples from the different mixing zones along the screw and analysis by SEM                    | • Visible destructuration and separation of the cellulosic fiber bundles after the most severe mixing zone (including reverse elements)                                                                                                                                           | [13] |
|               | Sweet corn cobs                     | 1.67 Hz; 75°C; Moisture 40%<br><b>3 screw profiles changing one element (conveying, by kneading or reverse)</b><br>Subsequent NaOH treatment                             | • Carbohydrate analysis<br>• Particle size measurements<br>• Crystallinity<br>• SEM<br>• Sugars released by EH | • Increased lignin removal (after NaOH treatment) with functional elements profiles<br>• Pores blockage with reverse element (due to lignin re-distribution)<br>• Enhanced enzymatic digestibility, increases after NaOH treatment in profiles with kneading and reverse elements | [46] |
|               | Rape straw                          | 0.5-1 Hz, 160-175°C<br>L/S =13.4<br>Catalyst: $H_2SO_4$ 0.013-0.067 g/g biomass<br><b>3 screw profiles</b>                                                               | • Carbohydrate analysis<br>• Sugars released by EH                                                             | • No differences in biomass composition among profiles<br>• Increased sugars release with increasing severity of the profiles                                                                                                                                                     | [55] |
|               | Sugarcane bagasse (B) and straw (S) | 2.5 Hz (B)-1.4 Hz (B); 150°C (B)-85°C (S)<br>Catalyst: 0.75 (B)-0.53 (S) weight glycerol/biomass<br>3 extrusion passes<br><b>2 screw profiles (with/without reverse)</b> | • Residence time<br>• Crystallinity<br>• Glucose released by EH                                                | • Increased residence time from 1-4 min to 5-10 min with reverse element<br>• No changes in crystallinity for (B)/Reduction of CrI for (S) with reverse<br>• Increased glucose EH yield 1.4-fold with reverse compared without                                                    | [56] |
|               | Steam-exploded                      | 1.67 Hz; 100°C; L/S =0.73 (H <sub>2</sub> O/biomass)                                                                                                                     | • Pressure profile<br>• Liquid/solid                                                                           | • Increasing pressure, flow of filtrate and xylose recovery as the                                                                                                                                                                                                                | [57] |

|                                |                                   |                                                                                     |                                             |                                                                                                                                                                                                                                                         |      |
|--------------------------------|-----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                | corn cobs                         | 6 min residence time<br><b>8 screw profiles</b>                                     | separation<br>• Xylose recovery in filtrate | number of reverse elements increases                                                                                                                                                                                                                    |      |
| Screw speed and residence time | Switchgrass<br>Prairie cord grass | <b>0.83-2.5 Hz</b> ; 50-150°C; Moisture 15-45%                                      | • Sugars released by EH                     | • <u>Switchgrass</u> : increasing glucose released with increasing screw speed up to 1.66 Hz, then decrease; other sugars release increase as screw speed increase<br>• <u>Prairie cord grass</u> : increasing sugars released as screw speed decreases | [7]  |
|                                | Corn stover                       | <b>0.67-2.33 Hz</b> ; 50-140°C; Moisture 22.5-27.5%                                 | • Glucose released by EH                    | • Increasing glucose released with increasing screw speed up to 1.33 Hz, then decrease                                                                                                                                                                  | [9]  |
|                                | Soybean hulls                     | <b>4.7-7 Hz</b> ; 80°C; Moisture 40%                                                | • Glucose released by EH                    | • Increasing SME with increasing screw speed<br>• Increasing glucose yields as screw speed increases up to 350 rpm, then decrease                                                                                                                       | [51] |
|                                | Wheat bran                        | <b>3.7-7 Hz</b> ; 110-150°C                                                         | • Reducing sugars after EH                  | • Effect of screw speed depending on temperature. Same yield by low screw speed (high residence time) and mild temperature, or high screw speed (low residence time) and high temperature.                                                              | [52] |
|                                | Corn stover                       | <b>0.66-1.67 Hz</b> ; 50-140°C<br>Previous soaking in NaOH (0.004-0.04 g/g biomass) | • Glucose released by EH                    | • Compared to the prominent effects of alkali concentration, screw speed was non-significant<br>• Behavior different from extrusion only with water in ref. 9 above                                                                                     | [58] |



| Variable    | Feedstock                         | Extrusion conditions                                                                                    | Analyzed parameters              | Results                                                                                                                                                                                                                                                                                                                                                                                 | Ref. |
|-------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Temperature | Switchgrass<br>Prairie cord grass | 0.83-2.5 Hz; <b>50-150°C</b><br>Moisture 15-45%                                                         | • Sugars released by EH          | <ul style="list-style-type: none"> <li>• <u>Switchgrass</u>: sugars released increased up to 100°C, then decrease</li> <li>• <u>Prairie cord grass</u>: sugars release decrease from 100°C</li> </ul>                                                                                                                                                                                   | [7]  |
|             | Pine wood chips                   | 1.67-3.3 Hz, <b>100-180°C</b><br>Moisture 25-45%                                                        | • Sugars released by EH          | <ul style="list-style-type: none"> <li>• Increasing sugars released as temperature increases</li> </ul>                                                                                                                                                                                                                                                                                 | [16] |
|             | Switchgrass                       | 0.33-2 Hz, <b>45-225°C</b><br>Particle size 2-10 mm<br>Moisture 10-50%                                  | • Sugars released by EH          | <ul style="list-style-type: none"> <li>• Increasing sugars released as temperature increases</li> <li>• Temperature was the most prominent effect on xylose release, over screw speed</li> </ul>                                                                                                                                                                                        | [17] |
|             | Barley straw                      | 2.5 Hz, <b>50-100°C</b><br>Catalyst: NaOH 0.025-0.75 g/g dry biomass                                    | • Sugars released by EH          | <ul style="list-style-type: none"> <li>• Increasing glucose released with increasing temperatures up to 75°C, then slight decrease</li> <li>• Increasing xylose released as temperature increases</li> </ul>                                                                                                                                                                            | [47] |
|             | Sugarcane bagasse                 | 0.2 Hz, <b>140-180°C</b><br>L/S = 2-8<br>1 to 3 passes<br>Catalyst: 1-ethyl-3-methylimidazolium acetate | • Sugars released by EH<br>• SEM | <ul style="list-style-type: none"> <li>• Glucose released did not increase from 140 to 160°C and decreased above that point</li> <li>• Xylose released increased with temperature up to 160°C, then decreased</li> <li>• Greater structure disruption and fibrillation (&lt;100 nm fiber diameter) up to 160°C</li> <li>• At 180°C, collapsed structure and partial charring</li> </ul> | [59] |



| Variable | Feedstock                         | Extrusion conditions                                                                                    | Analyzed parameters         | Results                                                                                                                                         | Ref. |
|----------|-----------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| L/S      | Switchgrass<br>Prairie cord grass | 0.83-2.5 Hz; 50-150°C;<br><b>Moisture 15-45%</b>                                                        | • Sugars released by EH     | • Sugars release decrease as moisture increases for both LB                                                                                     | [7]  |
|          | Hardwood                          | 0.83 Hz, 70-120°C<br><b>Moisture 44-60%</b><br>Catalyst: NaOH, CMC                                      | • SEM                       | • Increasing torque and pressure as moisture decreases<br>• Reduction of the fibers diameter as moisture decreases                              | [13] |
|          | Barley straw                      | 2.5 Hz, 50-100°C<br><b>L/S= 0.25-0.75</b><br>Catalyst: NaOH 0.025-0.75 g/g dry biomass                  | • Sugars released by EH     | • Higher L/S means higher catalyst addition (concentration of the catalyst solution constant)<br>• Sugars released increase with increasing L/S | [47] |
|          | Soybean hulls                     | 7 Hz, 80°C<br><b>Moisture 45-50%</b><br>0-5% starch addition                                            | • Glucose released by EH    | • Torque increases with low moisture<br>• Glucose yield increases at low moisture                                                               | [51] |
|          | Rape straw                        | 0.33 Hz, 150-170°C<br><b>L/S= 9-13</b><br>Catalyst: H <sub>2</sub> SO <sub>4</sub> (31-48% w/w biomass) | • Carbohydrates composition | • More liquid and more acidity result in higher cellulose content and lower hemicellulose content in the solid fraction of extrudates           | [62] |
|          | Sugarcane bagasse                 | 0.2 Hz, 140-180°C<br><b>L/S = 2-8</b><br>1 to 3 passes<br>Catalyst: 1-ethyl-3-methylimidazolium acetate | • Sugars released by EH     | • Sugars released decrease as biomass loading increases                                                                                         | [59] |



Table 5. Examples of different case pretreatment configurations using extrusion process found in recent literature and its effects on the LB.

| Configuration          | Pretreatment                                | Biomass                      | Operation conditions                                                                                                                            | Proven positive effect on* | Ref. |
|------------------------|---------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------|
| Only extrusion         | Single-screw extruder                       | Pine wood chips              | 2.5 Hz, 180°C, 25% moisture                                                                                                                     | CH, NTCR                   | [16] |
|                        | Twin-screw extruder                         | Corn fiber                   | 5 Hz, 140°C, 30% moisture<br>Die 3 mm                                                                                                           | CH, PSR                    | [11] |
|                        | Autohydrolysis + extrusion                  | Douglas fir<br>Eucalyptus    | 0.83-2 Hz, room temperature<br>Previous autohydrolysis at 140-180°C, 30'                                                                        | CH, FB                     | [15] |
|                        | Impregnation with glycerol + extrusion      | Sugarcane bagasse and straw  | 0.5 Hz, 50°C<br>0.53-0.75 weight glycerol/biomass                                                                                               | CH                         | [56] |
|                        | Impregnation with ionic liquids + extrusion | Sugarcane bagasse            | 0.25 Hz, 140°C<br>25% wt ionic liquid (1-ethyl-3-methylimidazolium acetate)                                                                     | CH, SSA                    | [59] |
| Sequence of treatments | Extrusion + ozonation                       | Switchgrass<br>Big bluestern | <u>Extrusion:</u><br>2.6 Hz, 176°C/180°C, 20% moisture<br>8 mm particle size<br><u>Ozonation:</u><br>25% moisture, 2.5 min<br>37/365 mg ozone/h | CH, NTCR                   | [78] |
|                        |                                             |                              | <u>Extrusion:</u><br>2.6 Hz, 176°C/180°C, 20% moisture<br>8 mm particle size<br><u>Microwave:</u><br>25% moisture, 2.5 min<br>450W              | CH, NTCR                   | [79] |
|                        | Extrusion + organic solvent                 | Prairie cord grass           | <u>Extrusion:</u><br>1.1 Hz, 90°C, 20% moisture<br>8 mm particle size<br><u>Organic solvent:</u><br>39 min, 129°C                               | CH, XS, LR                 | [43] |

|                                            |                                |                          |                                                                                                                                                                         |               |      |
|--------------------------------------------|--------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
|                                            |                                |                          | 0.7% catalyst ( $H_2SO_4$ )<br>28% methyl isobutyl ketone                                                                                                               |               |      |
| Reactive extrusion                         | NaOH                           | Barley straw             | 2.5 Hz, 68°C<br>0.06 g NaOH/g dry biomass<br>Neutralization with $H_3PO_4$ and filtration inside the extruder                                                           | CH, NTCR      | [47] |
|                                            | $H_2SO_4$                      | Rapeseed straw           | 1 Hz, 165°C<br>0.27 g $H_2SO_4$ /d dry biomass                                                                                                                          | CH            | [55] |
|                                            | Hydrolytic enzymes             | Barley straw             | 2.5 Hz, 68- 50°C<br>0.06 gNaOH/g dry biomass<br>Neutralization with $H_3PO_4$ , filtration and addition of enzymes inside the extruder<br>10 mg protein/g dry extrudate | CH, PSR, NTCR | [84] |
| Combination of technologies in one reactor | Steam explosion & extrusion    | Corn stover              | 150°C, 2 min                                                                                                                                                            | CH, XS, LR    | [83] |
|                                            | Alkaline extended pretreatment | Miscanthus               | 140°C, 22% moisture<br>3 mm particle size<br>0.16 g NaOH/g dry biomass                                                                                                  | CH, LR        | [21] |
|                                            | Hemicelluloses extraction      | Steam exploded corn cobs | 1.25-1.67 Hz, 65-100°C<br>0-0.7 g water/g biomass                                                                                                                       | XS            | [57] |

\*CH – carbohydrate hydrolysis; PSR – particle size reduction; FB – fibrillation; SSA – specific surface area; NTCR – no toxic compounds release; XS – xylose solubilization; LR – lignin removal