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Abstract: Atmospheric aerosols are one of the main factors that contribute to poor air quality. These 

aerosols are mostly concentrated within the atmospheric boundary layer (ABL) and mixing layer (ML). 

The ABL extends from ground level to the lowest level of the troposphere directly affected by surface 

temperature, solar irradiance, the orography and its proximity to coastal areas, causing turbulence in 

a daily cycle. This turbulence controls the vertical mixing of aerosols and pollutants and their disper-

sion in the ML. Therefore, proper characterization of these layers is of crucial importance in numerical 

weather forecasting and climate models; however, their estimation nowadays presents some spatial 

and temporal limitations. In order to deal with these limitations and to assess the influence of different 

meteorological conditions on the temporal evolution of the aforementioned layers, the evolution of 

the ML over Madrid (Spain) has been studied for the year 2020 by means of ceilometer profiles fed 

into the STRATfinder algorithm. This algorithm is able to give reliable estimates of the height of the 

ABL (ABLH) and ML (MLH). The results are compared with the ECMWF-IFS model predictions, 

which is able to compute the MLH under any meteorological condition. Then, the influence of the 

meteorology in the estimation of MLHs was established by classifying data based on the season and 

six different prevalent synoptic meteorological situations defined using ground-level pressure fields, 

as well as by splitting the days into four periods (morning, daytime, evening and nighttime). Our 

results show that both datasets, the STRATfinder values and the ECMWF-IFS model computations, 

are very sensitive to the meteorological conditions that play a main role in the MLH temporal evolu-

tion. For instance, high solar irradiance and ground radiation cause high turbulence and convection 

that lead to a well-developed ML. In cases in which the ML is well developed, both methods show 

similar results, and there are therefore better correlations between them. On the contrary, the results 

presented here show that the presence of high relative humidity and low temperatures hamper the 

growth of the ML, causing different errors in both MLH estimations and poor correlations between 

them. Furthermore, the ECMWF-IFS model has shown a sharp decrease, identified as an artificial be-

havior from 16:00 UTC, because of the influence of low solar zenith angles and the temporal interpo-

lation. The STRATfinder algorithm also shows a sharp decrease just before the sunset because of the 

way the algorithm distinguishes between the ML and the residual layer. Thus, this study concludes 

that the MLH temporal evolution still needs to be characterized using complementary tools, since the 

methods presented here are strongly affected by the meteorological conditions and do not show 

enough reliability to work individually. However, ceilometer measurements offer great potential as a 

correction tool for ABL heights derived from models involved in air pollution dispersion assessments. 
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1. Introduction 

It is well known that aerosols are one of the main factors that contribute to poor air 

quality, constituting a public health risk, and therefore, their characterization is a priority 

[1]. However, this characterization is hampered by the fact that aerosols present a hetero-

geneous distribution in the atmosphere, being mostly concentrated within the atmos-

pheric boundary layer (ABL) [2]. Therefore, the understanding of the ABL processes is a 

key factor in air quality and future climate scenarios, since it has the potential to improve 

the forecasting of pollutants’ dispersion and cloud dynamics [3]. This layer regulates the 

exchange of energy and moisture between the surface and the atmosphere and plays a 

critical role in greenhouse gas concentration budgets, limiting the vertical mixing of air 

pollutants emi�ed near the surface [4,5]. The ABL extends from ground level up to a var-

iable height that usually coincides with the presence of a temperature inversion and also 

depends on the orography, which causes different behaviors in mountainous terrains, ur-

ban or rural flat environments or in proximity to coastal areas [6]. Furthermore, the ABL, 

which is affected by the radiation emi�ed by Earth’s surface and its variability throughout 

the day [7], presents a marked daily cycle in clear-sky situations, starting with the increase 

in the land surface temperature after sunrise, which intensifies convection, causing, in 

turn, the ascension of warm air masses and the downward displacement of colder ones. 

Then, the convective processes and turbulence become weaker because of the gradual re-

duction in solar irradiance during the early evening. It is worth noting the importance of 

the surface albedo, since different surfaces respond differently to solar heating [8]. The 

ABL is composed of different sublayers, such as the residual layer (RL), the nocturnal 

boundary layer (NBL) and the mixing layer (ML) [9,10]. The la�er is formed during the 

first part of the ABL’s cycle and is defined as the lowest atmospheric layer in which aero-

sols and moisture are dispersed via vertical mixing processes generated by the ascending 

air parcels [11–13]. While the NBL and RL are a consequence of the second part of the 

cycle, the weakening of turbulence produces the transition of the ML into a stable strati-

fied boundary layer close to the surface, the NBL, and a remnant of the daytime ML just 

above the NBL, the RL [14]. The limit between the ABL and the free troposphere above, 

which can be defined as the ABL height (ABLH), is marked during the day by a strong 

aerosol gradient caused by vertical turbulent mixing processes. During the nigh�ime or 

in the absence of solar radiation, the strongest aerosol gradient sometimes corresponds to 

the top of the RL or other layers growing within the ABL, hampering the estimation of the 

ABLH and yielding inaccurate results [15]. It is worth noting that during the daytime pe-

riod, when the ML is well developed, the ABLH can be considered equal to the ML height 

(MLH) because the distribution of aerosols is strongly influenced by turbulent mixing [14]. 

A proper representation of these processes’ evolution is required from air quality 

forecast systems in order to accurately estimate pollutant concentrations, normally driven 

by many factors including surface heat flux, weather pa�erns, surface roughness, etc. [16]. 

In most numerical meteorological models included in air quality modelling systems, the 

height of the ABL is usually calculated using the potential temperature profile or Richard-

son number, but uncertainties in meteorological fields can produce more than 50% uncer-

tainty in shallow boundary layers and 20% in deeper boundary layers [17]. Traditionally, 

the spatial and temporal resolution of meteorological models were not able to accurately 

estimate turbulent fluxes within the ABL. Recent advances in computational power have 

improved forecasts, but uncertainties in meteorological fields and different definitions of 

the ABL still affect the numerical predictions of the ABL height and, consequently, the 

concentration of chemical species in cases of a shallow ABL can lead to severe air pollution 

episodes. The present numerical weather models produce a high spatial and temporal 

resolution of ABL heights; however, they still show limitations in accurately simulating 
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the ML creation and daily evolution, and thus, validation is required using observational 

data. 

Nowadays, the ABLH is mostly monitored by means of radiosounding in the frame 

of the World Meteorological Organization Radiosounding Global Network [18]; however, 

these are taken only twice per day (00:00 and 12:00 UTC) and mainly at airports. The anal-

ysis of long time series of MLH data obtained with fixed-hour radiosonde soundings has 

yielded remarkable results, especially in relation to their influence on the levels of atmos-

pheric pollutants. Salvador et al. [19] evaluated the impact of variations in the MLH at 

midday on air pollutant concentrations and health in Madrid during the period of 2011–

2014. The decrease in the MLH was very well correlated to a linear increase in the daily 

number of exceedances of the European Union’s NO2 hourly limit value (200 µg/m3) at 

hotspot urban traffic monitoring stations. A statistically significant relationship between 

the reductions in the MLH with an increase in all-natural-cause daily mortality was also 

found. Nevertheless, reliable ABLH data with a higher temporal resolution would allow 

for more in-depth studies of the processes that drive the temporal changes throughout the 

day. 

Therefore, in order to improve the spatial and temporal coverage of ABLH monitor-

ing, new approaches based on vertically resolved data from optical remote-sensing instru-

ments are currently being studied. These instruments, which are able to operate continu-

ously and in the framework of different networks, aid in capturing the ABL diurnal cycle 

and drive short-term model predictions of aerosol dispersion [20,21]. Among these optical 

remote-sensing instruments, aerosol lidars are a powerful tool to retrieve the ABLH or 

MLH through aerosol vertical profiles [22]. Ceilometers, single-wavelength micro-lidars 

intended for cloud base height detection, are one of the most frequently used lidar systems 

in atmospheric observation. Currently, some ceilometers present an emission wavelength 

centered at 1064 nm, making them highly proficient for the detection of atmospheric aer-

osols. Their main advantages are their high-quality a�enuated backsca�er profiles pro-

vided as a result of recent advances in measurement technology and algorithm develop-

ment [23,24], and their suitability for unmanned/una�ended continuous operation. Fur-

thermore, ceilometers usually operate in two main dense networks as the EUMETNET E-

PROFILE [25] and the ICENET (Iberian Ceilometer Network, [2]). Despite this, two as-

sumptions are needed to use these kind of instruments for estimating the ABLH: (1) aer-

osols emi�ed at the surface are well mixed within the ABL and show a marked gradient 

with the free troposphere [26], and (2) at the top of the ABL, there is an interface of contact 

with the free troposphere where there are fluctuations in aerosol concentrations due to air 

masses moving downwards from the free troposphere and moving upwards from the 

ABL. As a result of these fluctuations, the backsca�ering profiles present a greater variance 

at the interface than in the ABL or the free troposphere [27]. For conditions of low solar 

irradiance that cause stratification, in which ABLHs are lower than the previous day’s 

ABLH, and a diffuse gradient between the ABL and the free troposphere is observed, this 

high variance is useful to detect the MLH in the backsca�ering profiles [14]. 

Based on the assumptions above, by means of these a�enuated backsca�er profiles, 

some advanced methods, named “second-generation” algorithms, are able to compute the 

MLH [3,28]. One of these advanced methods is the STRAT-2D, described by Haeffelin et 

al. [20], which computes the temporal and vertical structure of the ABL in order to ensure 

the temporal consistency of ABLH estimates. It is also worth mentioning the Pathfinder 

algorithm that was developed by de Bruine et al. [29] and uses the graph theory to track 

the diurnal evolution of the layer. Both methods are the basis of STRATfinder, widely 

described by Ko�haus et al. [15], which is able to estimate high-quality products from 

ceilometer signals at different scales and has been shown to provide reliable results when 

compared to thermodynamic layer heights derived from temperature profiles. 

However, ceilometers and aerosol lidars are not exempt from problems, presenting 

two main issues that can directly affect the observation of the MLH. First of all, ceilometers 

present a blind zone in the near range due to the incomplete overlap between the laser 
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beam and the telescope field of view, thus increasing the uncertainties related to the de-

tection of layers developed at low heights [30]. The second issue is related to the signal-

to-noise ratio (SNR), which is strongly influenced, because of its reliance, by the amount 

of atmospheric aerosols or moisture that can swiftly extinguish the emi�ed light and the 

solar irradiance that increases the presence of artifacts in the received signal [31]. These 

problems are exacerbated when the system itself presents inherently low power. There-

fore, in order to solve these issues, including the impossibility to deploy the instrument in 

a particular location of interest, the use of models to compute atmospheric layer heights 

appears as a new approach. Also, it must be taken into account that, presently, the maxi-

mum skill of regional numerical weather prediction models can be realized thanks to a 

spatiotemporal sampling of the lower atmosphere, comparable to the model’s effective 

resolution [32]. 

Thus, the aim of the present work is to provide an assessment of the effect of different 

meteorological conditions on the estimation of the temporal evolution of MLHs during 

the whole of 2020 in Madrid. Section 2 describes the ceilometer instrument that provides 

the profiles for the STRATfinder algorithm, the meteorological model employed for com-

parison (ECMWF-IFS) and the methodology followed. Section 3 summarizes the main re-

sults obtained when the datasets are analyzed by season and also when compared for six 

different synoptic meteorological pa�erns (SMPs) defined by Salvador et al. [33] for the 

Iberian Peninsula. Section 4 concludes the main findings of the work. 

2. Materials and Methods 

2.1. Experimental Site: Madrid 

The city of Madrid and its metropolitan area, located in the center of Spain, have a 

population of nearly 7 million inhabitants, being one of the most populated regions in the 

Iberian Peninsula (Figure 1). 

 

Figure 1. Location of the measurement site in the center of the Iberian Peninsula, southeast of Europe 

(first panel). The second and third panels show an enlargement of the map, in which the exact loca-

tion is marked with the yellow dot. 
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The pollution plume over Madrid is mostly fed by residential heating and traffic 

emissions, while the industrial activity, composed mainly of light factories, does not rep-

resent an important pollution source [34]. Its climate, considered as continental–Mediter-

ranean, presenting hot, dry summers and cold winters, both dominated by clear-sky con-

ditions [35], is governed by the presence of the Azores high-pressure system, leading to 

periods of high stability, poor ventilation and increases in air pollution. 

In the northwest outskirts of the city of Madrid is located the Department of Envi-

ronment of the CIEMAT (40.45 N; 3.72 W; 669 m above sea level), where, since December 

2019, a ceilometer, the Lufft CHM15k-Nimbus [2,30], is deployed, next to the MDR-CIE-

MAT ACTRIS station [36], and, since 2020, the ceilometer has been a part of ICENET. The 

instrument presents an Nd:YAG laser, which emits a 1064 nm wavelength at a repetition 

frequency, according to the manufacturer, ranging between 5 and 7 kHz. The overlap be-

tween the telescope (mounted next to the laser, biaxial configuration) and the laser beam 

is 90% complete between 555 and 855 m above ground level, according to the instrument 

datasheet, but Heese et al. [30] found that the complete overlap is located at 1500 m a.g.l. 

In light of this, the application of a correction function to reduce the incomplete overlap 

is necessary, thus producing a useful signal from 232 m up to 15.36 km a.g.l. The overlap 

function applied to the data in this study is the one calculated and applied by the instru-

ment itself automatically, which has been successfully tested in previous works [2,14]. All 

of these characteristics facilitate the study of atmospheric aerosols and clouds by means 

of the backsca�ered signal. The atmospheric vertical profiles are obtained from the 

backsca�ered signals with a temporal resolution of 15 s and a spatial resolution of 15 m, 

and are finally stored in the database as daily files. All of the available ceilometer pro-

files—a total of 332 days in the year 2020, stored in the Madrid database, covering different 

synoptic meteorological situations, which give rise to different air pollution episodes and 

clean atmospheric conditions—are used in the present research. 

Furthermore, the surface meteorological parameters, temperature and relative hu-

midity, used in this research are obtained from an automated meteorological station (U3-

NRC, Onset HOBO) located next to the MDR-CIEMAT ACTRIS station. Concretely, this 

station measures the temperature and relative humidity at 4 m a.g.l. and records data 

every 10 min, thus obtaining 47,808 sets of 10 min averaged data from the 332 days stored 

in the Madrid database. 

2.2. Ceilometer Profiles and PBLH Estimation Algorithm (STRATfinder) 

MLHs are obtained for a total of 332 days in 2020 by means of the STRATfinder algo-

rithm, fed with the ceilometer CHM15K data. The 28 days lost during 2020 are due to 

some instrument failures that occurred on 28–29 January, 5–14 April, 21–26 May, 10–14 

and 17 September, 29–31 October and 30 November. Since the ceilometer data are filtered 

for low clouds and rain, and only days with more than 13 h are considered to be part of 

the analysis, a total of 201 days remain in the database after filtering. Then, in order to 

estimate MLHs, ceilometer daily files were processed by means of one of the robust algo-

rithms to automatically detect the mixed layer height, the STRATfinder algorithm (GNU 

General Public License v3.0, [15]). Succinctly, STRATfinder is an algorithm specifically de-

signed for the estimation of ABLHs together with MLHs from ceilometer data, thanks to 

the Dijkstra algorithm [37]. STRATfinder estimates the MLH and ABLH forwards in time, 

while an ancillary layer height (XLH) is estimated backwards in time (from midnight to 

noon) to assist the detection of the ABLH during the final hours of the day, when the ML 

begins to decay. Then, the Dijkstra algorithm is applied to track the MLH, ABLH and XLH 

that is merged into a preliminary ABLH to determine, by connecting individual paths, the 

MLH and ABLH for the whole daily file. The temporal resolution of the outputs of STRAT-

finder is one minute, although the results have been averaged to one hour because of com-

putational requirements. The Haar wavelet transform employed within the algorithm al-

lows for the calculation of uncertainty in the retrieved values, based on the comparison of 
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the transient local minima and the final retrieved MLH. By tuning the Haar wavelet trans-

form parameters, it is possible to determine the standard deviations, obtaining ranges in 

the order of tenths of meters (<80 m), depending on the temporal averaging. 

2.3. Meteorological Model ECMWF-IFS 

The ECMWF-IFS is a global meteorological model that resolves the dynamics of the 

atmosphere, including the physical processes affecting surface energy fluxes, weather or 

the evolution of the atmospheric layers, among others. According to the documentation 

(h�ps://confluence.ecmwf.int/display/FUG/2+The+ECMWF+Integrated+Forecasting+Sys-

tem+-+IFS (accessed on 4 September 2023)), the ECMWF-IFS is composed of various cou-

pled modules: an atmospheric model, an ocean wave model (ECWAM), an ocean model 

(NEMO), a land surface model (HTESSEL) and a data analysis system (4D-VAR). The at-

mospheric model can be used in three main configurations, according to the length of the 

forecast: HRES for detailed 10-day forecasts, ensemble (ENS) to study uncertainty in the 

15-day forecasts and extended ENS, and seasonal runs to estimate the probabilities of gen-

eral conditions over longer time scales. In addition to the forecasting resolution, the con-

figuration based on HRES has additional advantages over the ENS configuration, such as 

greater orographic detail, 1 h of temporal resolution, 9 km of horizontal resolution and 

137 vertical levels. For these reasons, HRES is the configuration chosen for the present 

study. It is worthwhile to note that, for operational reasons, the meteorological variables 

were downloaded from the ECMWF MARS archive (access provided by AEMET, the 

Spanish Meteorological Agency), with a temporal resolution of 3 h, and subsequently in-

terpolated to 1 h in order to be consistent with the temporal resolution set for the STRAT-

finder outputs. The ECMWF-IFS is updated periodically to improve the forecasts. With 

relevance to the period of the present study (the year 2020), the model was updated on 30 

June 2020; thus, the version of the model for the first half of the year was Cycle 46r1, while 

in the second half of the year, the version was Cycle 47r1. 

In general, the structure of the ECMWF-IFS is the same in each of the model config-

urations and is based on two main formulations: (1) a diagnostic that describes the static 

relationship between pressure, density, temperature and height, and (2) a prognostic that 

describes the time evolution of the horizontal wind components, the surface pressure, the 

temperature and the water vapor content of the model atmosphere. Furthermore, the 

ECMWF-IFS model presents additional features, which are essential for the present re-

search, to describe processes of radiation, gravity wave drag, vertical turbulence, convec-

tion, clouds and surface interactions. More specifically, in this model, the ML is repre-

sented by two schemes: a turbulence scheme [38] and a moist convection scheme [39]. The 

la�er comprises a mass flux scheme for moist shallow and deep cumulus convection and 

is switched off in cases with stratocumulus-topped boundary layers. The turbulence 

scheme comprises a turbulent eddy diffusion and mass flux scheme, which represents 

clear and stratocumulus-topped boundary layers. This scheme is treated differently in the 

surface layer (defined by the American Meteorological Society as the lowest 10% or so of 

the atmospheric boundary layer) and above. At the surface, where the mechanical gener-

ation of turbulence exceeds buoyant generation, the turbulence fluxes are calculated by 

means of a first order K-diffusion closure based on the Monin–Obukhov similarity theory 

[40]. Above the surface layer, a K-diffusion turbulence closure is used everywhere except 

for the case of unstable (convective) boundary layers, for which an eddy diffusivity mass-

flux framework is applied to represent the non-local boundary layer eddy fluxes [38]. 

In order to estimate the turbulent and convective mixing in the boundary layer, the 

ECMWF-IFS takes the following considerations: in a stratocumulus-topped boundary 

layer, the turbulent mixing is due to surface and cloud top-driven eddies, while in a dry 

boundary layer, the mixing is caused by surface-driven eddies. Thus, the convective 

boundary layer height is determined as the uppermost level where the updraft vertical 

velocity is greater than 0 and the local Richardson number is lower than 50. In the case of 

stable boundary layers, the boundary layer height is diagnosed as the height where the 
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bulk Richardson number becomes superior to 0.25. The ECMWF set these limits for the 

Richardson number following the work of Seidel et al. [41], who identified a non-negative 

height in all cases without being strongly dependent on the radiosounding vertical reso-

lution. Therefore, the MLH is equal to the boundary layer’s height in cloud-clear boundary 

layer and stratocumulus-topped boundary layer cases, where the boundary layer is lo-

cated near the cloud top because more turbulent mixing is required, while for cumulus-

topped boundary layers, the MLH is equal to the cloud base. 

2.4. Methodology for Classification of Days Based on Meteorological Fields 

A classification of the most frequent synoptic meteorological pa�erns (SMPs) that 

happened over the Iberian Peninsula over the period of 2001–2019 has already been per-

formed [33]. With the aim to improve upon the analysis, in this study, the classification 

process has been extended to the year 2020. Each day of this year was thus assigned to a 

specific SMP for the subsequent analysis of the estimation of the ABLH using different 

methods. 

The technique employed for classifying daily datasets of sea level pressure (SLP) at 

12 UTC into similar groups was the non-hierarchical k-means cluster analysis. It com-

prises 6 stages (Salvador et al. [33] and references therein) that assures the physical mean-

ing of the SMP: 

Firstly, the reanalysis global fields of SLP for each day at 12 UTC were downloaded 

from the NCEP/NCAR (NOAA/OAR/ESRL PSD, Broadway Boulder, CO, USA) reanalysis 

dataset open access repository [42]. Then, a selection of k SLP fields was taken to be used 

as initial conditions in the classification procedure, based on results concerning typical 

SMPs occurring in the western Mediterranean basin, which were obtained in previous 

studies. The Euclidean distance from each SLP data field to each k-cluster center was cal-

culated for the value of every grid point and summed. Once every SLP data field was 

grouped into a specific cluster, new cluster centers were calculated as the arithmetic mean 

of all their members, grid point by grid point. This procedure was repeated iteratively 

until each SLP field remained in its cluster. Then, composite maps representing the SMPs 

were obtained by averaging all the SLP fields grouped into each cluster. The final number 

of clusters (k) was selected using variance plots. 

In this study, an additional validation procedure was performed on the resulting 

clusters. A complete dataset of parameters, which characterize the daily meteorological 

situation at the surface level in the central region of the Iberian Peninsula, was analyzed 

for assuring the physical meaning of the SMPs. Measurements of meteorological variables 

performed in an instrumented tower, atmospheric stability parameters from numerical 

models and radiosondes were obtained and analyzed for this purpose. 

As a result, six different and realistic SMPs over the Iberian Peninsula were deter-

mined with this circulation classification methodology. 

2.5. Statistical Analysis 

In order to classify days based on the synoptic pa�ern, a statistical analysis for each 

day was performed, obtaining the mean absolute error (MAE), mean square error (MSE), 

root mean square error (RMSE), mean absolute percentage error (MAPE) and R squared 

(R2) for each days. However, only the MAPE and R2 are shown here because of their very 

intuitive interpretation. These statistics are related to the distance between both heights 

estimated at every point and the evolution of the shape of both MLs throughout the day, 

respectively. Concretely, the MAPE is estimated as the difference between the actual 

(STRATfinder results) and the forecasted (ECMWF-IFS computations) data. For its part, 

the R2 is estimated from the variance of the observed and simulated values and describes 

the temporal relationship between both methods. The total of 201 days (4824 h) available 

in the dataset is distributed as follows: 870 h correspond to spring (MAM: 92—56 cases), 

1636 h to summer (JJA: 92—24 cases), 1077 h to winter (DJF: 91—46 cases) and finally, 1241 
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h correspond to autumn (SON: 91—39 cases), where the season was considered for com-

plete months. 

The MAPE can be interpreted as the inverse of the agreement between the datasets, 

or more specifically, as the average percentage difference between predictions and obser-

vations. Based on our experience, it can be inferred that for this type of study, values be-

low 60% indicate a low but acceptable accuracy of the model, while values lower than 50% 

can be considered as reasonably good accuracy. One of the advantages that presents the 

use of this statistical parameter is its lower sensitivity to outliers than the RMSE. The only 

limitation comes from the normalization when the values are close to zero due to the di-

vision by small values, but the low altitude limit of the ceilometer data (232 m) prevents 

this problem. For its part, the R2 value measures how much of the dependent variable 

variation is explained by the independent variable in the model. Values between 0.75 and 

1 indicate that a significant amount of variance is explained, while values between 0.5 and 

0.75 are considered reasonable, according to our experience. 

The determination of the MLH is more difficult at transition periods of the day, such 

as the morning transition from the sunrise until the time when the nocturnal layer is 

eroded and the mixing layer begins to grow rapidly, or the evening transition after sunset, 

when turbulent mixing weakens. During these periods, there is high uncertainty and in-

accuracy in the results. In order to take this into account, in Section 3.3, each day has been 

divided into four periods with different characteristics during the diurnal course of the 

ML development: nigh�ime, (NT: sunset + 2 h to sunrise), morning (MO: sunrise to sun-

rise +4 h), daytime (DT: sunrise +4 h to sunset −2 h) and evening (EV: sunset −2 h until 

sunset +2 h), following the details of Ko�haus and Grimmond [23] (see Figure 2). Statistics 

were calculated for each one of these periods. 

 

Figure 2. Temporal evolution of the MLH estimated using STRATfinder (red circles) and ECMWF-

IFS model (blue crosses) on 4 July 2020. Vertical dashed lines indicate sunrise and sunset in green 

and red, respectively. Vertical solid lines delimit the four parts of the day (NT, MO, DT, EV). X-axis 

shows the UTC time (24 h notation) and Y-axis shows the height above ground level. 

As a summary of the procedure, Figure 2 shows an example of the temporal evolu-

tion of the MLH obtained using STRATfinder (red circles) and computed with the 

ECMWF-IFS (blue crosses) model on 4 July 2020, both with one hour of temporal resolu-

tion. The purpose of this figure, which takes advantage of a clear sky day with a clear 

evolution of the ML, is to illustrate the way the data will be analyzed and introduce dif-

ferent parameters and statistical variables used in the analysis. In this day, the MAPE 

shows a low value, 16.73, which means that the MLH computed with the model is very 

similar throughout the day to the MLH estimated using STRATfinder. In general, the 

MLH estimates of both methods are very similar, except at the beginning and at the end 
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of the DT, when the model shows deviations that increase the MAPE slightly, as will be 

explained next. The R2 presents a value of about 0.95, meaning that, on this particular day, 

both methods are highly positively correlated. This result also points out that when the 

MLH estimated with STRATfinder changes its tendency, the MLH predicted via the model 

changes in the same way. Thus, in this case, the R2 is only reduced slightly from 1 because 

the predicted MLH starts to decrease at 16:00, while the MLH from STRATfinder contin-

ues to grow until 19:00, followed by a sudden decrease; after that, both methods are well 

correlated again. 

Taking a look into the parts of the day, the MLH obtained via STRATfinder and com-

puted using the ECMWF-IFS during NT begins with a height of about 250 m and contin-

ues to range between minimum values until the start of MO, when, because of the convec-

tion that begins with sunrise at 4:59, the ML grows. Then, between 09:00 and 16:00, during 

the DT period, the ML obtained via STRATfinder and computed with the ECMWF-IFS 

grows quickly by 1891 and 1619 m, respectively, because of the heating of the air by sun-

light. It is worthwhile to note that between 10:00 and 13:00, the ECMWF-IFS overestimates 

the ML (by around 292, 471, 354 and 197 m) in respect of STRATfinder, most likely influ-

enced by a combination of small solar zenith angles and the interpolation to 1 h of tem-

poral resolution. After solar noon, at 13:15, the solar radiation that reaches the atmosphere 

decreases, reducing the convection and, therefore the growth of the ML. This behavior 

becomes clear between 16:00 and 19:00, during EV, when the STRATfinder ML grows by 

only 200 m, from 2606 to 2811 m. However, in the same time period, the MLHs computed 

with the ECMWF-IFS decrease by around 881 m, which confirms the idea of the depend-

ence of this model on the solar zenith angle. In addition, as mentioned before, this de-

crease is also caused by the interpolation from 3 h to 1 h of temporal resolution, leading 

both to an artificial behavior. Finally, at 20:00, both MLH estimates agree again due to a 

rapid sinking of the STRATfinder values, related to the way in which this algorithm com-

putes the MLH during NT; after sunset, the ML is considered extinct, leaving behind the 

residual layer only. Because of this consideration, the STRATfinder values also show a 

sharp artificial decrease. The behavior of the ECMWF-IFS estimates is a relevant feature 

that may be related to a slight dependence of this model on solar radiation and the inter-

polation from three hours to one hour of temporal resolution; thus, this model does not 

show enough flexibility to be adapted to different atmospheric situations over short peri-

ods of time. 

3. Results and Discussion 

3.1. Seasonal Analysis 

In Figure 3, some illustrative examples of the features frequently found during the 

seasonal analysis are presented. Figure 3a corresponds to 27 June, with an exceptionally 

good correlation between the datasets. It is worthwhile to note that the convection became 

evident between 6:00 and 9:00 as vertical lines in the blue area below the ML line, which 

indicates the movement of the air masses. Low clouds appeared on top of the ML when it 

reached its highest development at the end of the day (15:00–19:00 UTC), so those points 

were filtered out. The agreement between the STRATfinder ceilometer-derived results and 

the ECMWF-IFS prediction was be�er during the day (12:00–18:00) than at nigh�ime 

(00:00–06:00). This is generally the case due to the limitation of the ceilometer at low alti-

tudes caused by the effect of the partial overlap, as described above. A lowest limit of 232 

m was applied to the STRATfinder algorithm after the ceilometer signals were partially 

corrected using overlap synthetic estimation [2,30]. This day showed a high R2 value (0.99) 

thanks to the good agreement between both datasets, and the MAPE was 30.06, one of the 

lowest values of this study. Completely different results were obtained for the analysis of 

3 May, shown in Figure 3b. The discrepancy during the nigh�ime hours was larger, and 

the model predicted a faster decay of the MLH after 15:00 UTC than was observed exper-

imentally. In addition, the presence of some spikes in the ceilometer signal (below 500 m 
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between 10:00 and 14:00), possibly due to low clouds, not detected by the automated al-

gorithm included in the instrument, led to STRATfinder switching between different lay-

ers in the high-frequency data, with the result of an erroneous 1 h average value. This gave 

a very low R2 value (0.29) and high MAPE (85.69). Thus, this type of behavior was found 

in 6.01% of the cases. Figure 3c shows the evolution on 15 August, with reasonably good 

agreement until the late afternoon, when the STRATfinder algorithm failed to identify the 

mixing layer and followed the aerosol layer, with values as high as 2.5 km at sunset (19:00 

UTC). This discrepancy reduced the R2 down to 0.45 and increased the MAPE up to 48.15, 

still a reasonable value due to the good agreement between 00:00 and 15:00. This type of 

problem was found in 8.20% of the days and is linked to a homogenous aerosol layer dur-

ing nigh�ime. Figure 3b,d do not show this behavior in spite of the presence of a nocturnal 

aerosol layer; however, the ceilometer signal could identify different aerosol structures, 

favoring the STRATfinder algorithm to obtain the MLH. In the case of Figure 3c, the aer-

osol layer detected during nigh�ime is fairly homogeneous, hindering the estimation of 

the MLH. A similar situation is observed in Figure 3d, corresponding to 20 May. In this 

case, the estimation of the STRATfinder failed in the early morning (00:00–09:00), selecting 

the top of the aerosol layer, in clear discrepancy with the model prediction because the 

aerosol layer was pre�y homogeneous and well mixed with the ML. The reasonably good 

agreement for the rest of the day produced an R2 of 0.69 and an MAPE of 56.65. This situ-

ation was found in 10.93% of the days and is directly related, again, to the presence of a 

homogeneous aerosol layer in the atmosphere during the morning. In these cases, STRAT-

finder is not able to distinguish the MLH from the residual layer due to a lack of large 

differences between those layers in the ceilometer signal. The cases shown in Figure 3a,c 

have a noticeable aerosol layer at 1500 and 2000 m, respectively, in the early morning; 

however, in these cases, STRATfinder was able to distinguish between the ML and the 

aerosol layer thanks to a slight decoupling of both layers. Then, it is worthwhile to note 

that the use of one single algorithm to estimate the MLH is still risky, and the correct 

identification of the source of the issues is mandatory. 

  
(a) (b) 
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(c) (d) 

Figure 3. Time–height representation of the attenuated backscattering at 1064nm for four different days: 

27 June 2020 (a), 3 May (b), 15 August (c) and 20 May (d). The dashed lines indicate sunrise (yellow) and 

sunset (red). White crosses and red circles represent the ECMWF-IFS and STRATfinder estimates, respec-

tively. 

In order to study the reasons for the good and bad agreements between the estimates, 

boxplots for the values of the MAPE and R2 for each season in the year 2020 are plo�ed in 

Figure 4a and Figure 4b, respectively. The best agreement is obtained in summer (JJA), 

with median (± standard deviation) MAPE values equal to 46.92 ± 16.73 and an R2 of about 

0.84 ± 0.43. The worst results are obtained for autumn (SON, MAPE: 64.61 ± 28.88, R2: 0.59 

± 0.32) and winter (DJF, MAPE: 64.36 ± 14.62, R2: 0.50 ± 0.34). Thus, if the MAPE is consid-

ered as an indicator of the distance, in height, between both ECMWF-IFS and STRATfinder 

values, Figure 4a suggests that there is a statistically significant difference between the 

discrepancy in MLH estimations during cold seasons and warm seasons. However, a Wil-

coxon test shows that the difference between spring and winter is not statistically signifi-

cant (p = 0.06). This result is related to Figure 4b, which suggests that the correlations in 

the summer months are significantly higher than those in the spring months. The higher 

correlation for the summer months coincides with the low relative humidity measured at 

the meteorological station (35.21 ± 9.96%), with regard to the values of spring (62.83 ± 

15.48%), autumn (63.57 ± 19.85%) and winter (75.60 ± 16.64). This result confirms that the 

similar temporal evolution or shape of both MLH estimates is a consequence of the mete-

orological conditions, namely high temperatures and solar radiation levels and low rela-

tive humidity values. 
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(a) (b) 

Figure 4. Boxplot of the statistical scores, namely MAPE (a) and R2 (b), obtained for the whole of 

2020, separated by season. The bo�om and the top edges of the boxes represent the 25th and 75th 

percentiles, respectively; the central mark indicates the median and the whiskers extend to the most 

extreme data points not considered as outliers. The outliers are marked as blue circles, and blue 

crosses stand for the mean value. 

3.2. Influence of Synoptic Meteorological Pa�erns on the MLH 

A brief description of the SMPs is provided as follows: SMP-1 is characterized by the 

presence of high pressures over the Iberian Peninsula, leading to high atmospheric stabil-

ity and a blockage of the entrance of air masses from marine or continental regions out-

side. It represents 4% of all days in the period of 2001–2019 and 8% of the days in 2020, 

mainly in winter, and explains 7.7% of the total cluster variance. SMP-2 is characterized 

by an anticyclone centered on the Azores Islands and a low-pressure center situated be-

tween the United Kingdom and the Scandinavian countries. The pressure gradient is low 

over Western Europe. The location of the main pressure center suggests the predominant 

occurrence of smooth air flows entering from the Atlantic Ocean (NW) into the Iberian 

Peninsula. It occurred on 32% of all days of the period 2001–2019 and 31% of the days in 

2020, mainly in the summer season, and explains 22.50% of the total cluster variance. SMP-

3 presents a strong pressure gradient between the Azores Islands’ high-pressure center, 

which is displaced southwards from its usual position and the low-pressure center that is 

shifted to the west of the United Kingdom. It generates western air mass flows with high 

wind speeds over the Iberian Peninsula. This SMP occurred on 15% of all days of the pe-

riod 2001–2019 and 14% of the days in 2020, mainly in the autumn and spring seasons, 

explaining 19.30% of the total cluster variance. SMP-4 is characterized by two high-pres-

sure systems, one over Eastern Europe and the other over the Azores Islands, and a low-

pressure center located to the west of Iceland. It generated moderate western and north-

western air mass flows over the Iberian Peninsula and occurred on 16% of the days of the 

period 2001–2019 and 13% of the days in 2020, mainly in autumn and spring. SMP-4 ex-

plains 19.40% of the total cluster variance. SMP-5 is characterized by the presence of high 

pressures displaced to the northwest of the Iberian Peninsula, blocking the entry of north-

ern air mass flows but allowing the advection of air masses from continental Europe and 

the Mediterranean Sea over the Iberian Peninsula. This SMP occurred on 21% of all days 

during the period of 2001–2019 and 20% of the days in 2020, mainly in spring and summer, 

explaining 18.00% of the total cluster variance. Finally, SMP-6 has high pressures extend-

ing along the western and central Mediterranean basin and can trigger the transport of 

African dust towards regions of the Iberian Peninsula and the Balearic Islands. It repre-

sents 12% of all days of the period 2001–2019, and 14% of the days in 2020, mainly in 

winter, and also, this SMP explains 13.20% of the total cluster variance. Each of these SMPs 

are shown in Figure 5. 
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Figure 5. Synoptic weather maps representing each SMP. Colored areas represent atmospheric pres-

sure measured in hPa. Cool colors are used to represent low pressures, while warm colors symbolize 

higher pressures. The X-axis represents longitude while the Y-axis represents latitude, both meas-

ured in degrees. North Atlantic, Europe and North Africa are depicted on the maps. 

Since the SMP classification was performed at a daily time resolution, it is assumed 

here that the 24 h of a day are represented by the same SMP. Finally, two main remarks are 

needed about the SMPs: (1) SMP-1 and SMP-6 are the only clusters that are not present in 

every season—concretely, they are not present in summer—and (2) the clusters are distrib-

uted differently between the seasons; see Table 1. Furthermore, the statistical scores obtained 

for 2020, separated by SMP, are shown in Figure 6. In summary, the largest number of good 

agreements is obtained for SMP-2, and the worst agreements are obtained for SMP-1 and 

SMP-6. 

Table 1. Distribution of the analyzed hours by SMP and season. 

 All SMP-1 SMP-2 SMP-3 SMP-4 SMP-5 SMP-6 

Winter 1077 387 92 209 92 35 262 

Spring 870 22 427 98 67 208 48 

Summer 1636 0 1101 91 93 351 0 

Autumn 1241 48 150 158 321 282 282 



Remote Sens. 2023, 15, 5583 14 of 22 
 

 

Both SMP-1 and SMP-6 have the lowest mean values of solar irradiance, 93.26 ± 47.11 

and 95.42 ± 59.85 W/m2, respectively, representing 38.23% and 39.12% of the mean solar ir-

radiance measured for SMP-2, the cluster with the highest value of this parameter (243.89 ± 

71.55 W/m2). The lack of solar irradiance clearly restricts the growth of the ML, leading to a 

detection error in STRATfinder. In most cases, the algorithm identifies the residual layer as 

the ML, resulting in bad agreements between STRATfinder and the EMCWF-IFS model. 

This misidentification gives a low median R2 and high median MAPE values. Concretely, 

SMP-1 and SMP-6 show median R2 values of about 0.48 ± 0.46 and 0.51 ± 0.25, and median 

MAPE values of 71.53 ± 10.47 and 63.75 ± 14.64, as shown Figure 6, respectively. Otherwise, 

it is worth noting that, as Molero et al. [14] found, the relative humidity is inversely corre-

lated with the MLH, and they also remarked that values greater than 60% are related to 

poorly developed MLs. Thus, both SMP-1 and SMP-6 present mean values of relative hu-

midity greater than 60%; more specifically, the mean relative humidity values found during 

2020 for both SMPs are about 74.38 ± 17.36% and 74.76 ± 17.13%, respectively, confirming 

the poor relationship between poorly developed MLs and bad agreements between the 

methods. Figure 6a shows the small variation in MAPE values for both SMPs, indicating 

that the poor agreements between both MLH datasets are quite constant over the 81 days 

affected by these two SMPs. However, the values of R2 (Figure 6b) show a different behavior, 

since, because of the high deviation aforementioned and according to a Wilcoxon test, only 

SMP-2 (p = 0.01, p = 1.02 * 10−4) and SMP-3 (p = 0.03, p = 4 * 10−3) are significantly different to 

SMP-1 and SMP-6. This high variation, which disrupts the differences between SMPs, is 

caused by the meteorological conditions that, in turn, cause different shapes of the MLH 

measured via the ceilometer and computed using the model. 

SMP-2 and SMP-5 have the first and second highest mean solar irradiance, 243.89 ± 

71.55 and 189.04 ± 88.33 W/m2, and the lowest mean relative humidity, 44.91 ± 17.83% and 

54.48 ± 18.32%, respectively. This combination of high solar irradiance and low relative 

humidity results in a well-developed ML and clear-sky days, aiding the identification of 

the MLH via STRATfinder from the ceilometer signals and confirming the be�er agree-

ment with the ECMWF-IFS model estimates during warmer seasons. The largest number 

of good agreements is obtained for SMP-2, as shown through the median MAPE (48.91 ± 

44.93) and R2 (0.80 ± 0.31) values. However, SMP-5 has a similar median R2 value (0.73 ± 

0.42) but an 18% larger MAPE (59.19 ± 75.34) with an exceptionally large variability. This 

difference in the MAPE is due to the large amount of autumnal and wintry hours of this 

cluster, resulting in 36.84% of days being partly cloudy, while these days represent just 

16.82% for SMP-2. During cloudy days, the measured mean solar irradiance decreased for 

SMP-5, around 33%, with regard to the mean solar irradiance obtained for the rest of the 

days classified as SMP-5. Thus, as Figure 6 shows, this large proportion of partly cloudy 

days leads to an unexpected result linked with the meteorological conditions. Thereby, 

non-statistically significant differences were expected between SMP-2 and SMP-5 but, on 

the contrary, these non-statistically significant differences were found between SMP-5 and 

SMP-6 in terms of the MAPE and, between SMP-5 and both SMP-1 and SMP-6, in terms 

of the R2. Hence, this behavior of SMP-5 confirms the aforementioned observation that 

solar irradiance is a limiting factor for estimating the MLH using the STRATfinder algo-

rithm, because it can lead the algorithm to experience detection errors. 

SMP-3 is characterized by a high relative humidity (73.30 ± 17.74%) and low solar 

irradiance (108.37 ± 82.55 W/m2), similar to SMP-1 and SMP-6. However, in spite of these 

characteristics, SMP-3 has the second lowest median MAPE (51.39 ± 15.24) and the second 

highest R2 (0.74 ± 0.27). These statistical parameters suggest an agreement between 

STRATfinder and the model that is even be�er than the one found for SMP-5, which is not 

expected according to the atmospheric characteristics of SMP-3. In this way, these results 

can be explained by the fact that, after the data filtering, from a total of 53 days identified 

as SMP-3, only 23 days were not filtered out. Before filtering, spring and summer repre-

sented 26.41% of the hours of this cluster, whereas after filtering, these seasons repre-
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sented 34% of the remaining hours. Furthermore, for the summer data, only 5 h was fil-

tered out. Hence, the influence of warmer days, which show be�er results in terms of their 

MAPE and R2, is larger percentage-wise than before data filtering, thus explaining the 

statistical performance of SMP-3. 

For its part, SMP-4 is mainly autumnal, with 56.02% of its data belonging to this sea-

son. This SMP presents a mean relative humidity of 58.43 ± 19.82% and a mean solar irra-

diance of 159.25 ± 93.12 W/m2. Furthermore, its median values of MAPE and R2 are 61.98 

± 37.71 and 0.63 ± 0.41, respectively. The statistical parameters indicate a good agreement 

between the STRATfinder results and the EMCWF-IFS model, but slightly worsen due to 

the effect of the high relative humidity, close to 60%, which cannot be compensated for by 

solar irradiance as in the case of SMP-5. Therefore, it can be affirmed that the atmospheric 

variables and, as a consequence, the statistical performance of this cluster lies between 

two different groups, formed of SMP-2 on the one hand and SMP-1 and SMP-6 on the 

other. 

Therefore, Figure 6a and the Wilcoxon test identify statistically significant differences 

between SMP-1 and the other five SMPs because of its high mean relative humidity and 

low mean solar radiation values, which leads to high MAPE values with a low variability. 

Figure 6b also shows statistically significant differences between SMP-1 and SMP-6 on the 

one hand and SMP-2 on the other, further demonstrating that this analysis, based on syn-

optic atmospheric situations, shows that the best performance in MLH comparisons are 

always linked to atmospheric scenarios or meteorological conditions that favor well-de-

veloped MLs. 

 
(a) (b) 

Figure 6. Boxplot of the statistical scores, namely MAPE (a) and R2 (b), obtained for the whole of 

2020, separated by SMPs. The bo�om and the top edges of the boxes represent the 25th and 75th 

percentiles, respectively; the central mark indicates the median and the whiskers extend to the most 

extreme data points not considered outliers. The outliers are marked as blue circles and blue crosses 

stand for the mean value. 

3.3. Parts of the Day 

In order to further identify the aforementioned behaviors, each day was divided into 

four parts, following the details of Ko�haus and Grimmond [23], as is shown in Figure 2. 

Since only four hours of data are included in some of the four parts (NT, MO, DT and EV), 

as is the case of MO in Figure 2 where none were filtered out, no day-by-day statistical 

analysis is possible with this approach. Instead, the whole year of STRATfinder data for 

each part has been compared with the equivalent estimations of the model. Table 2 and 
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Table 3 show the data distribution by season and SMP, respectively, with reasonable dis-

tribution for all cases, validating the statistical analysis distributed based on the time of 

day and season. 

Table 2. Distribution of the times in the day analyzed by season. 

 All NT MO DT EV 

Winter 1077 564 160 154 199 

Spring 870 318 151 244 157 

Summer 1636 539 304 566 227 

Autumn 1241 600 196 235 210 

Table 3. Distribution of the times in the day analyzed by SMP. 

 All NT MO DT EV 

SMP-1 457 240 64 70 83 

SMP-2 1770 636 319 558 257 

SMP-3 556 262 81 114 99 

SMP-4 573 240 93 137 103 

SMP-5 876 357 163 222 134 

SMP-6 592 286 91 98 117 

The largest amount of hours analyzed correspond to summer, while, contrary to 

what may be expected, the smallest number correspond to spring instead of winter. This 

oddity is a result of the data filtering, since 60.59% of the spring days were filtered out, 

whereas winter and autumn only lost 50.68% and 43.17% of the days, respectively. Fur-

thermore, it is worthwhile to note that all the seasons present the largest number of avail-

able hours in the NT period, except for summer, to which DT contributes the most. 

The analysis reveals reasonable correlations for DT (0.70) and EV (0.62); however, 

these two periods have high MAPE values (60.67 and 71.06, respectively), which are a 

consequence of the temporal interpolation need of the EMCWF-IFS model data. As Figure 

3b,d show, at 16:00, the ML estimated via the model decreases sharply, while STRATfinder 

still detects an increase in the ML or a very smooth decrease until 18:00 or 19:00. Although 

the model and the algorithm show a similar tendency during both parts of the day, there 

are noticeable differences during the transition of DT to EV that increase the MAPE. 

The annual correlations for NT and MO are very low (0.10 and 0.06, respectively), 

indicating a problem with low values of the MLH that must be considered in future works. 

These parts of the day are therefore discarded from the following analyses. However, 

some analyses can still be drawn. From an initial analysis based on the data shown in 

Table 4, it can be seen that the annual MAPE obtained for NT is around 18.29% and 1.00% 

higher than the MAPEs obtained for DT and EV, respectively. They are even lower in the 

case of MO than those found for DT and EV (14.11% and 33.65%, respectively), indicating 

that both methods do not show excessively different estimated MLH values. During NT, 

it is usual to find a very stable layer, with its upper limit at a low altitude, showing very 

small and rapid variations which, as it is shown in Figure 2 (now Figure 3), the STRAT-

finder algorithm can detect. This algorithm, as indicated in the body of the text, can work 

with a temporal resolution of 1 min, so the averaging performed (1 h) is able to continue 

showing some of these oscillations. However, the ECMWF-IFS model, with an initial tem-

poral resolution of 3 h, shows a very flat estimate of the ML due to interpolation to 1 h, 

thus failing to detect these oscillations and consequently lowering the value of the R2. 
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Table 4. Annual MAPE and R2 values obtained for the four parts of the day. 

 MAPE R2 

NT 71.77 0.10 

MO 53.17 0.06 

DT 60.67 0.70 

EV 71.06 0.62 

The MO period is a similar case in which there is a first part of about two hours that 

repeats the pa�ern identified at NT, and then a sudden change with a rapid rise in the ML. 

Again, the datasets are faced with variations that are too fast for the model, causing an-

other collapse in the R2 values. For example, during DT, when the ascent and subsequent 

stabilization of the MLH mask the small oscillations, the correlation between both meth-

ods is much be�er. 

Looking at Table 5, it can be seen that by classifying the periods of the day into the 

different SMPs, the annual MAPE values show a very similar behavior to that observed 

for the values in Table 4. However, regarding the annual R2 values, SMP-3 shows R2 values 

for NT (0.48) and MO (0.44) that are much higher than those in Table 4 and higher than 

those of the other SMPs for these two parts of the day. This behavior can be explained 

thanks to one of the characteristics of this SMP compared to the others: its low AOD val-

ues. The AOD of SMP-3 is, on average, about 17%, 32%, 22.3%, 46% and 24% lower than 

the AODs of SMP-1, -2, -4, -5, and -6, respectively. When the AOD is low, the ceilometer 

has difficulties detecting the upper limit of the ML, decreasing its ability to detect the small 

and rapid oscillations of the ML’s upper limit. Therefore, with a low AOD, STRATfinder 

shows a more flat temporal evolution of the ML, similar to that shown via the model. 

Table 5. Annual MAPE and R2 values obtained for the six SMPs in the four parts of the day. 

 NT MO DT EV 
 MAPE R2 MAPE R2 MAPE R2 MAPE R2 

SMP-1 83.64 0.11 62.32 0.16 28.06 0.61 63.86 0.50 

SMP-2 65.44 0.08 52.96 0.04 55.42 0.68 66.04 0.67 

SMP-3 73.47 0.48 55.14 0.44 29.40 0.82 61.37 0.33 

SMP-4 74.89 0.07 49.28 0.02 60.08 0.69 82.83 0.54 

SMP-5 71.42 0.03 56.55 0.08 108.25 0.39 91.41 0.35 

SMP-6 72.16 0.10 43.61 0.19 43.23 0.64 61.70 0.33 

Since the annual values are highly affected by some issues in the estimations of the 

MLH, and in order to give light to the behavior of the ML during the DT and EV periods, 

the dataset has also been divided based on SMPs, as shown in Table 5. Taking a closer look 

at the MAPE and R2 values, some interesting results need to be analyzed. For instance, 

reasonable correlations for DT with a median value of about 0.66 ± 0.14 are found, while 

the EV, for its part, presents a lower median value of R2, which is about 0.43 ± 0.14. In the 

case of the MAPE, DT again shows a reasonable median value (49.33 ± 29.58), while in the 

EV period, this value is slightly greater (64.95 ± 12.74). One can observe that the temporal 

interpolation applied to the ECMWF-IFS data influences these results, so in order to give 

light to this hint, the cases of SMP-1 and SMP-6 are analyzed next. 

Then, for the DT period, SMP-1 and SMP-6 present low annual MAPE values, 28.06 

and 43.23, respectively, pointing out that the SMPs with meteorological conditions for the 

poorest development of the ML now present the best agreement between the datasets, 

contrary to the previous observations. It is worthwhile to note that these annual MAPE 

values for SMP-1 and SMP-6 are about 56.05% and 29.93% lower than the values found 

during the EV (63.86 and 61.70, respectively). This behavior reinforces the idea of the in-

fluence of the temporal interpolation on the ECMWF-IFS model results. Since these SMPs 
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are principally composed of autumnal and wintry days, the DT periods during these 

SMPs are short; therefore, only a couple of actual (without interpolation) computations of 

the ECMWF-IFS model are included in this period. Then, the model estimates the decrease 

in the RL height prematurely, just in the beginning of the EV period. However, the STRAT-

finder results that present a be�er temporal resolution can fluctuate in their detection of 

the last moments of the ML during the early hours of the EV, explaining in that way the 

large increase in the MAPE values. The annual values of R2 for SMP-1 and SMP-6 act in 

the same way, with the DT (0.61 and 0.64, respectively) being about 18.42% and 48.45% 

greater than during EV (0.50 and 0.33, respectively), confirming the effect of the interpo-

lation. 

As shown in Table 5, SMP-5 presents the highest annual MAPE values in both DT 

(108.25) and EV (91.41) because of the effect of its large amount of partly cloudy days, 

commented on above, that leads to errors in the STRATfinder values. However, this SMP 

is the only one with a lower value during EV, concretely showing a decrease of about 

18.43%. This behavior is a consequence of the low MLHs estimated via STRATfinder at 

the end of the DT and the beginning of the EV periods. It is worth mentioning the case of 

SMP-2 that presents smaller differences between periods, that is, a 16.08% larger MAPE 

and a 2.11% lower R2 value. The small difference in the R2 points out that the sharp de-

crease in both datasets is found at the same time or with an hour of difference, as in the 

case of Figures 2 and 3a,d. Nonetheless, the differences in the MAPE suggest that, in spite 

of the fact that the model works be�er during the warmer seasons (62.20% of the analyzed 

hours during SMP-2 were in the summer), the STRATfinder MLH values are normally 

larger at the beginning of the EV period. 

4. Conclusions 

In this study, the effect of different meteorological conditions (seasons, synoptic pat-

terns and parts of the day) on the temporal evolution of the MLH has been analyzed by 

means of the STRATfinder algorithm fed with ceilometer profiles. The results were com-

pared with EMCWF-IFS model computations. Thus, our results show that the MLHs com-

puted using the ECMWF-IFS model are in good agreement with the heights estimated 

using STRATfinder during the summer months because of the good conditions for the 

development of the ML in terms of solar radiation and relative humidity during these 

months. The low surface temperatures detected at the weather station during winter and 

autumn, as well as the more frequent presence of clouds together with the low solar irra-

diance and the high relative humidity measured (above 60%) during these seasons, lead 

to a poorly developed ML, causing, in turn, the worst correlation between both STRAT-

finder and the ECMWF-IFS model. 

The analysis of the evolution of the MLH under different synoptic meteorological 

situations reinforces the fact of the high sensitivity of the algorithm and the model to me-

teorological conditions. Thus, SMP-2, which presents the greatest agreement between the 

two datasets, is the cluster with the highest temperature and solar irradiance, as well as 

the lowest relative humidity, providing ideal conditions for well-developed MLs. On the 

contrary, SMP-1 and SMP-6, with higher relative humidity and lower temperature and 

solar irradiance than SMP-2, correspond to days with a poorly developed ML and, there-

fore, poor agreement between the two datasets. The results obtained for SMP-5 highlight 

the importance of solar irradiance as a limiting factor for obtaining MLHs with STRAT-

finder because it can lead the algorithm to experience detection errors. Therefore, it can 

be concluded from this part that it is necessary to forecast the SMP so that the model can 

be parameterized based on atmospheric conditions. 

The results of the analysis based on periods of the day show that the values obtained 

for the NT and MO periods, because of the poor temporal resolution of the model, cannot 

be analyzed properly. Concerning the DT and EV, these periods present good agreement 

between both datasets when taking a look only at the annual R2, which presents values of 

around 0.70 and 0.62, respectively. However, the annual MAPE values are higher than 
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might be expected according to the annual R2 values found. These high MAPE values are 

a consequence of the effect of the faster decrease in the MLHs estimated using the EM-

CWF-IFS model from 16:00 UTC, which seems to be an artifact resulting from the temporal 

interpolation and the model parameterization. This idea is reinforced when spli�ing the 

periods of the day based on SMPs, when SMP-1 and SMP-6, the periods with the shortest 

DT, show high differences between DT and EV because of the decrease in the MLH to the 

height of the RL, observed in the ECMWF-IFS model computations just at the beginning 

of the EV. On the contrary, the STRATfinder values are able to detect the MLH during the 

early hours of the EV, made easier by its be�er temporal resolution, causing a strong dif-

ference in the tendency of both shapes, leading to low correlations or bad agreements be-

tween them. 

Therefore, although both datasets have been shown to be very sensitive to meteoro-

logical pa�erns, the computation of the MLH using the EMCWF-IFS model appears to be 

more accurate than STRATfinder to detect the ML in cases where it is coupled homogene-

ously to the residual layer, and because of the limitations of the ceilometer signals de-

scribed above, such as the presence of low clouds or the overlap height. However, the 

model, which seems to be optimized for the warmest seasons, is affected by the aforemen-

tioned artificial behavior in the growing phase but especially after 16:00 UTC, when the 

computed MLHs start to decrease independently of the evolution of the aerosol layer be-

cause of the temporal interpolation of the data. For their part, the STRATfinder results also 

present an artifact that is related to how the algorithm discriminates between the ML and 

the RL, but in this case, the artifact is found closer to sunset. So, it can be affirmed that the 

STRATfinder values are more reliable than the computations of the ECMWF-IFS model 

during NT, MO, the final hours of the DT and the early hours of the EV periods. Atmos-

pheric conditions, such as temperature, relative humidity and solar irradiance, are directly 

related to the development of the ML, influencing, in turn, the MLH estimates. Cases with 

low temperature or solar irradiance values, low relative humidity or a combination of these 

factors that lead to a poorly developed ML highlight the aforementioned artificial perfor-

mance of the model and the ceilometer detection issues when low clouds or homogeneous 

aerosol layers appear. 

It can be concluded that, for a complete description of the temporal evolution of the 

ABL, strongly conditioned by the meteorological conditions that take place in each case, in 

addition to ceilometer signals, the use of other complementary methods is necessary, while 

the temporal resolution of the ECMWF-IFS model continues to not be improved. The 

STRATfinder algorithm has demonstrated in this study that a temporal resolution of one 

hour is sufficient to detect variations in the MLH that can be critical, for example, during the 

NT and MO periods, when the air quality worsens under stable conditions or inversions. 

Therefore, the model needs to be improved to achieve an actual temporal resolution of at 

least one hour. For that purpose, it is crucial to provide more detailed information of the 

ABL height for the evaluation of predictions provided via high-resolution numerical mod-

els. The recent implementation of ceilometer networks will allow for a better characteriza-

tion of the complexity of ABL dynamics at larger scales, offering great potential as a correc-

tion tool for ABL heights derived from models. This study has also highlighted the need for 

the use of datasets longer than one year, which can absorb drastic atmospheric changes, thus 

reducing the significant uncertainties observed (see Figures 4 and 6) during the comparison 

of both datasets. Future research should focus on developing methodologies that use ceil-

ometer profiles as input data for models involved in air pollution dispersion assessments. 
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