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In this study, we investigate the effects of proton irradiation on silicon-based heterojunction and molybdenum
oxide (MoOy) selective contact solar cells. The main idea is to study their potential application in small satellites
for measurement and monitoring. The irradiation dose simulates the aggressive environment found in Low Earth
Orbit (LEO), where many satellites currently use Group III-VI (GaInP/GaAs/Ge) solar cells due to their superior
efficiency, albeit at a higher cost. The experimental approach includes fabrication, irradiation, and character-
ization methods. Our results show a decrease in fill factor (F.F.) and overall efficiency after irradiation, mainly

caused by a decrease in shunt resistance and an increase in series resistance. In addition, open-circuit voltage
(Vo) and short-circuit current (Iy) may be affected by displacement damage defects caused by the irradiation
process within the active region or by the formation of new point defects.

1. Introduction

Since the launch of the Vanguard-1 satellite in 1958, which pio-
neered the integration of monocrystalline Si solar cells into its power
system [1-4] there has been a concerted drive to investigate innovative
photovoltaic (PV) configurations tailored to space applications. This
search for improved designs is intended to boost the efficiency and
reliability of PV systems in the challenging environment of outer space.
The relentless pursuit of advances in solar cell technology is motivated
by the need to continuously optimize the performance and durability of
solar power generation in space, thereby ensuring maximum function-
ality of satellites and other spacecrafts.

Recent advances in photovoltaic technology have focused on
enhancing the durability and efficiency of solar cells under extreme
conditions [5-7]. However, the long-term impact of proton irradiation
remains underexplored. One prominent approach in this field involves
utilizing a combination of GaInP, GaAs, and Ge materials, resulting in a
highly efficient solar cell of 32 % under Air mass 0 (AMO) (1 sun, 136
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mW/cm2) conditions [8-12]. However, the drawback associated with
this approach is the high cost of these technologies. Therefore, re-
searchers have been exploring alternative options based on silicon cells,
which, although typically less resistant to radiation [13-15], can offer
comparable efficiency at a reduced budget [16].

Silicon-based solar cells present a compelling alternative due to their
relative affordability and widespread availability. TMO (transition
metal oxides) heterojunction silicon solar cells have attracted consid-
erable scientific attention. These cells exhibit several advantages over
traditional silicon homojunction solar cells. One key advantage is the
manufacturing process, as TMO materials can be synthesized at lower
temperatures ranging from 100 to 200 °C [17,18]. This contrasts with
the higher temperatures typically required for manufacturing diffusion
homojunction silicon solar cells.

Transition metal oxides, such as MoOy, have been extensively
researched for their potential applications in various fields. Studies have
shown that MoOy can serve as hole-selective contact, leading to im-
provements in device performance and stability in applications like
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organic solar cells, organic light-emitting diodes, and thin film transis-
tors [19-21]. Furthermore, TMO heterojunction silicon solar has shown
good reliability, which can be explained by the stability of these inor-
ganic selective contacts [22,23]. Also, MoOy has recently been shown to
improve the stability and protection of perovskite solar cells/absorbers,
that indicates an important potential in space applications [24-26].

This study hypothesizes that silicon-based solar cells with MoOx se-
lective contacts will exhibit greater resilience to proton irradiation. The
primary objectives are to quantify the degradation in efficiency and to
identify structural changes post-irradiation. To achieve this goal, we
studied the results of a controlled proton-induced damage process on a
Heterojunction with Intrinsic Thin layer (HIT) silicon solar cell
compared to the case of implementing a MoOy selective contact. The
proton irradiation energy used in this study aimed to simulate radiation
conditions like those present in Low Earth Orbit (LEO) [27].

The design of HIT solar cells has been modified structurally, incor-
porating MoOy-based selective contacts to achieve cost reductions. This
is accomplished by utilizing fewer critical materials by operating at
lower temperatures, which results in energy savings compared to
traditional diffusion cells. Additionally, these modifications aim to
enhance radiation resistance for greater stability without substantially
compromising the solar cell efficiency. The use of MoOy as a selective
contact material has shown potential for improving carrier collection
[20,23,28,29] and reducing recombination losses, essential for
achieving higher conversion efficiencies in solar cells. Un-irradiated
cells were previously studied in the references mentioned before [20,
23,29,30].

The main purpose of this work is to test the degradation of MoOy and
HIT solar cells when they are subjected to similar conditions to space
radiation. Our research on the effect of proton irradiation on solar cells
involved the study of their Current Density-Voltage (J-V) characteristics
before and after irradiation. This analysis focuses on the understanding
of the performance of the cells under simulated AMO illumination con-
ditions. We gained insight into the influence of the solar cell reverse
saturation current and overall diode characteristics through a detailed
examination of the J-V behavior in both illumination and darkness
conditions. This methodology allowed us a comprehensive evaluation of
the effects of proton irradiation on the functionality and quality of the
solar cells.

These findings are important for the development of cost-effective
radiation-tolerant solar cells, particularly in the context of space appli-
cations. Specifically, the challenges presented by irradiation conditions
in LEO need thorough studies to guarantee the long-term performance
and reliability of photovoltaic systems in space.

2. Experimental

We fabricated HIT solar cells using a p-type crystalline silicon sub-
strate with a resistivity of 2.6 Q cm and 300 pm thick. The substrate
undergoes a sequence of treatments, including an RCA cleaning process
and immersion in a 1 % hydrofluoric acid (HF) solution, until achieving
a hydrophobic state. Subsequently, the treated substrate is introduced
into a Plasma-Enhanced Chemical Vapor Deposition (PECVD) system,
where multiple layers are deposited on the backside. The layered
configuration comprised a 4-nm (4 nm) passivation layer of intrinsic
amorphous silicon (a-SiCx:H), serving the dual purpose of safeguarding
the stack and acting as a coating for the back reflector (BRC). After this,
the backside underwent laser-firing, inducing locally diffused point
contacts. This process yielded a contact area ratio of 0.5 %. The laser
procedure achieved a minimal series resistance while keeping low sur-
face recombination in the back contact where is deposited Al. An n-type
a-Si:H/intrinsic a-Si:H stack was deposited on the top surface to create
the Heterojunction structure. The structure was finalized depositing the
antireflective conductive indium tin oxide (ITO) layer by RF magnetron
sputtering, and a thermal evaporation process was employed to define
the finger bus of the top layer with Ag. The fabrication route of the HIT
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solar cells follows process reported in [31,32].

For MoOx solar cells, the n-Si wafers (1.5 Q cm, 280 pm thick) were
textured by alkaline etching and cleaned using the RCA method and a 1
% HF immersion. The substrates were then immediately loaded into a
PECVD system to deposit a layer stack on the back side. This stack
included a 4 nm a-SiCyx (x~0.2) intrinsic passivation layer, a 15 nm
phosphor-doped a-Si layer and an 80 nm a-SiCy (x~1) backside reflector.
The backside was subsequently subjected to a laser triggering process to
create a locally diffuse point contact array. After a second immersion in
1 % HF, 15 nm of MoOy was thermally evaporated over the front face (8
x 107® mbar, 0.2 A/s). After a brief exposure to air, an anti-reflective
ITO front electrode was deposited by RF magnetron sputtering. After
lithographic patterning of 1 cm? active cell areas, metallization of the
back contact was performed by electron beam evaporation of titanium
(15 nm) and thermal evaporation of aluminum (1 pm), while the silver
grating of the front contact was thermally evaporated. The fabrication
route of the MoOx solar cells follows the process reported in Refs. [33,
34].Fig. 1 shows the structure of the HIT and MoOx solar cells.

To replicate the effect of radiation in LEO orbit, these devices have
been subjected to two proton irradiations at two laboratories. Firstly, the
samples (HIT & MoOy) were irradiated at the Cyclone Cyclotron
Accelerator at Centro Nacional de Aceleradores (CNA) in Sevilla, Spain,
with protons, reaching a total fluence of 1.26 x 10'° p/cm? at 15 MeV.
The proton beam form 90° with solar cell surface and impacts through
the front face (ITO) of the cell. When the results were subjected to joint
analysis with the RD50 team at CERN [35] it was found that the
equivalent displacement damage exceeded 4.25 x 10'° 1-MeV neu-
trons/cm? [36]. A second irradiation process was carried out at the
Institute of Nuclear Physics of the Czech Academy of Sciences (CAS) in
Prague using the U-120M cyclotron and an X-Y positioning device with a
rectangular collimator. The samples were exposed to a significant dose
of 2.1 x 10° p/cm? at 16 MeV in this phase. In both irradiation steps, the
cells were completely covered by the beam. The values used in each
radiation step are recorded in Table 1.

Furthermore, it is important to note that the samples were exposed to
an approximate total ionizing dose of nearly 6 krad, which is equivalent
to the radiation exposure experienced by an object in space over 8.5
years [37]. Such exposure is crucial for evaluating the long-term dura-
bility and performance of materials intended for space applications.

In both irradiation cases, meticulous attention was given to the
experimental setup to ensure that maximum displacement damage was
induced in the samples, adhering to industry standards and guidelines.
To achieve this, the terminals of the samples were deliberately grounded
during the irradiation process. Grounding the terminals dissipates any
accumulated charge or electrical potential within the samples, thereby
allowing a more accurate assessment of the displacement damage
caused by the energetic particles [38].

Cell characterization was performed after each irradiation step.
Measurements were made both in the absence of light and under
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Fig. 1. Structures of HIT solar cell (left) and MoOy solar cell (right).
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Table 1
Irradiation steps.

Radiation Fluence (p/ Energy IEDD" Ionizing dose
step cm?2) (MeV) (krad)
CNA 1.26 x 10'° 15 4.25 x 5.12
1010
CAS 2.10 x 10° 16 6.91 x 0.81
10°
Total 4.94 x 5.93
1010

2 IEDD: Individual Equivalent Displacement damage (1-MeV neutrons/cm?).

illumination. Characterization was performed only after the radioiso-
topes were deactivated (typically we measured 10 days after the irra-
diation processes). This procedure ensured that any transient defects
were eliminated.

The J-V curves under illumination were measured at room temper-
ature (25 °C) and with adjusted AMO spectral conditions. The samples
were placed in a Class A Steuernagel Lichttechnik SC-575 solar simu-
lator. The front and back contact was made on the fingers through a 3-
wire system. This setup allowed the variation of current and voltage
parameters.

Dark J-V measurements were performed at various temperatures
within a helium closed-cycle Janis cryostat using a Keithley 4200-SCS
(Semiconductor Characterization System). The 2-diode solar cell-
circuit equivalent model [39-41] was utilized to fit the results, with
forward and reverse response currents adjusted throughout the tem-
perature range (340-220 K).

Transmission electron microscopy (TEM) measurements were per-
formed using a JEOL 2100 HT microscope, operated at 200 kV and using
a double-tilt sample holder to orient the lamella. For XEDS analysis we
used an Oxford Instruments INCA microanalysis system at ICTS — Centro
Nacional de Microscopia Electrénica.

3. Results

Montecarlo simulations using SRIM (Stopping and Range of Ions in
Matter) software were used to model the effects of proton impact. In
Fig. 2, we present the proton trajectory on complete solar cell structure
a), and the first 145 nm (active area) of the solar cell b). In Fig. 2 a) we
can observe that almost all the total ions cross the solar cell. Indeed, the
projected range of protons in a silicon substrate is 1440 pm. Therefore,
we can conclude that the damage is distributed throughout the material.

In Fig. 3 we present the vacancies caused by proton collisions in the
MoOx cell. In Fig. 3 a) we can observe the damage caused in the active
area of the cell and in 3 b) the full cell. We can observe that the damage
caused in ITO and MoOy layers is lower than Si substrate damage.
Regarding the MoOy layer, we can observe that the radiation caused
vacancies concentration in the order of 10* cm™3 across whole layer. As
the electrical behavior of this material depends highly of O vacancies, a
change in it is expected. In Fig. 3 b), it is clear than the vacancies created
across the whole cell is always lower than 10% cm ™~ and almost constant.
Similar results were obtained for HIT solar cell structure.

TEM images of both cells (before and after irradiation) are presented
in Fig. 4 for MoOx solar cell. Similar results were obtained for HIT cell.
Image a) displays the microstructure before any irradiation process,
while image b) shows the microstructure after the CAS step irradiation
(Table 1). TEM procedures for measurements before irradiation and
after the second irradiation step were conducted on different cells
fabricated using identical processes.

Fig. 4 reveals no significant observable variations in the HIT cell after
the irradiation steps. The analysis performed for the MoOy sample in
Fig. 4 shows a thin layer of silicon oxide (SiOy) despite being subjected
to HF [42,30,41] treatment before the deposition processes. The spon-
taneous regrowth of a thin silicon oxide interlayer upon MoOy deposi-
tion has been explained in a previous work [43]. In addition, no

Materials Science in Semiconductor Processing 190 (2025) 109312

[ [
Depth vs. Y-Axis

— Target Depth —

Depth vs.

— Target Depth —

Fig. 2. a) Proton trajectory on MoOy solar cell obtained by Montecarlo SRIM
simulation. b) Proton trajectory on active area of the same cell.

significant variations in the 2 nm native oxide layer were observed in the
irradiation processes undergone.

By comparing images (a) and (b), it is evident that no visible change
or damage occurs in the crystal structure of c-Si, the amorphous layers,
or the thin native oxide layers after the irradiation processes. No
extended defects, such as stacking faults or dislocations, are observed
after all the irradiation steps. The insets of Fig. 4 show the diffraction
pattern of the c-Si region, confirming that the crystalline structure is
maintained in this region of the solar cell. Point defects may not be large
or coherent enough to affect diffraction patterns. Additionally, the de-
fects generated may be uniformly and sparsely distributed within the
material structure, rendering them undetectable by TEM.

Fig. 5a) and b) and Table 2, present the J-V characteristics under
illumination of the HIT and the MoOx cells, respectively. For each figure,
we present the current density variation as a function of voltage after
each step of irradiation received.

First, we observe that the open circuit voltage (Vo) and short circuit
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Fig. 3. Number of vacancies obtained by SRIM simulation for a) active region
of the cell and, b) whole the cell.

current density (Jsc) do not show significant changes after the first
irradiation step. However, the F.F. deteriorates significantly. Our ob-
servations revealed a significant increase in series resistance accompa-
nied by a noteworthy decrease in shunt resistance. Both contribute to a
substantial deterioration of the fill factor and therefore the overall ef-
ficiency of the cells is significantly degraded. Furthermore, by exposing
the solar cells to additional proton irradiation at a higher cumulative
dose of 5.93 krad, we observe a further degradation of the F.F., the V,,
and, mainly in the Iy values. Proton irradiation caused consistent
degradation trends in both types of cells, resulting in an efficiency loss of
almost 50 % of their initial value.

In Fig. 6 we present the EQE of MoO solar cell before and after been
radiated. We can observe a decrease in the EQE for all wavelengths, that
is an indication that the cell was damaged throughout its volume. This
result is in full agreement with SRIM simulation, where we previously
observed almost constant damage across the whole cell. However, if we
obtained how much change the EQE after radiation at each wavelength
(inset on Fig. 6) in percent, we obtain more deviation at high and low
wavelengths. This result could indicate than radiation damages the
passivation at the front and at back contacts of the cell specifically.

Fig. 7 a) and b) show dark J-V measurements for the HIT cell and the
MoOy cell respectively, at room temperature. For both cells, J-V char-
acteristics are presented for each different irradiation step. Solid dark
lines show the results of numerical fittings, which will be discussed in
the next section. For these fittings the two diodes model was used.
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Fig. 4. TEM for MoO, solar cells. Reference condition (up) after CAS step irradi-
ation (5.93 krad) (down). Samples with a zoom on C-Si Type layer to Optical
diffraction view.

From these figures, it is evident that with each irradiation step, there
are significant changes in the shape of the J-V curves at different bias
regimes. In the high positive bias region (>0.6 V), we can observe a
decrease in the current values as the irradiation dose increases, which
indicates an increase in the series resistance. Regarding the low bias
region (<0.6 V) we can observe an important increase in the current
value for the last irradiation step. In the same way, at reverse bias we can
observe an increase in the current values as the irradiation dose grows.
The next section will discuss all these changes in the framework of
changes in the dominant electronic transport mechanisms.

4. Discussion

First, we will refer to the results of the solar cell in illumination. The
decrease of the short-circuit current in the HIT and MoOx cells could be
attributed to displacement damage in the active region of the devices
caused by proton irradiation. This damage may create point defects,
reducing the lifetime of the light-generated minority carriers, and
thereby decreasing the collection efficiency of photogenerated carriers
[40,44]. This scenario correlates well with the observed reduction of the
Voo, Which is very sensitive to recombination processes. The reduction in
lifetime due to the creation of point defects will lead to higher recom-
bination, which will ultimately cause the V,. reduction [45]. This result
is in full agreement with the EQE decrease observed for the irradiated
cell on Fig. 7. As we exposed before, the passivation of the cell at the
front and back structure is possible.

We should consider different parameters to discuss the observed
decrease in F.F. as the irradiation dose increases. First, radiation
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Fig. 5. HIT(a) and MoOy (b) solar cell, J-V illumination curves before and after
each irradiation step.

Table 2

Electrical parameters at different irradiation steps on HIT and MoOx solar cells.
Sample Voo (V) Jsc(A)  FF N Ri(Q Ra(Q)
HIT No irradiation 0.63 0.032 0.67 10.2 4.4 4798
HIT (5.12 krad) 0.62 0.032 0.46 6.8 8.4 176
HIT (5.93 krad) 0.61 0.025 0.36 4.2 15 106
MoOx No irradiation 0.6 0.029 0.66 8.6 3.8 2130
MoOy (5.12 krad) 0.57 0.028 0.51 5.9 6 64
MoOy (5.93 krad) 0.56 0.022 0.47 4.5 8.4 80

exposure can induce various mechanisms that elevate Rg [46]. One po-
tential factor is the degradation of ITO conductivity [47,48] which lead
to a significant increases in Rs [40,49] Also, it is possible a
radiation-induced degradation in the transport properties of the metal
electrodes [50,51] Another important factor which can increase the
series resistance is the radiation-induced deactivation of dopants within
the silicon bulk, potentially phosphorus or boron [48]. The irradiation
processes can lead to the deactivation of dopants in both crystalline
silicon (c-Si) and amorphous silicon (a-Si). This deactivation results in a
reduction of the built-in potential of the junction, which is influenced by
the product of the acceptor (Ny) and donor (Np) concentrations [52].
Studies have shown that the deactivation of dopants in silicon substrates
can occur due to the preferential relocation of dopant atoms slightly
displaced from lattice sites, forming clusters that contribute to electrical
deactivation [53]. Furthermore, in Ref. [54], it is highlighted that the
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deactivation of dopants can occur due to the formation of dopant-defect
complexes, leading to reduced electrical activation. Additionally, the
presence of defects such as donor-pair-vacancy-interstitial complexes
can contribute to dopant deactivation and impact the electrical activity
of dopants [55]. Finally, the segregation of dopant atoms to interfaces,
such as SiO»/Si interfaces, can also lead to their deactivation [56,57].

Another factor which can lead to a F.F. reduction is a decrease in the
solar cell shunt resistance. This shunt resistance decrease is usually
directly related to the appearance of low-resistance alternative current
paths through the junction or the cell borders. In our case, these new
current paths could be related to the appearance and accumulation of
point defects through the junction, either on the surface or at the in-
terfaces between different layers. These point defects appear due to the
irradiation process.

In addition to Rg and Rghyne degradation, changes in transport
mechanisms could occur after radiation processes. To this end, we will
discuss the dark J-V curves measured at various temperatures ranging
from 220 K to 340 K. In most previous studies, two different current
regimes have been observed in the forward bias direction for both HIT
[58] and MoOx solar cells [42,59]. To analyze these results, we used the
accepted two diodes model for solar cells. To be consistent with the
usual notation, the model is:

I=Liioder + lLaiode2 + Ishunt (€9)
q(V - IRs)
I=1I KA A |
o1 {exp|: mKT
q(V — IRg) V - IRg
I RV =)
+ "‘2{8"1’[ KT R»

Here, I is the current across the cell, V the voltage at the cell electrodes,
Ip,1 and Iy > denote the saturation currents and n; is the ideality factor for
each diode. At the same time Ry is the series resistance, Rgy, denotes the
parallel (shunt) resistance, k is Boltzmann’s constant, and T is the ab-
solute temperature in kelvin.

To fit the measurements, we used the numerical program “2/3-Diode
Fit” [60], which is based on the work of Breitenstein and Rifland [61].
Lines in Fig. 6 are an example of the good agreement between fitting and
measurements at room temperature. Similar fittings were obtained for
all temperatures and radiation steps in this study and can be found in the
supplementary material.

From these fittings, we obtained a diffusion process in the high bias
region (V > 0,6 V) of the I-V, with a constant diode factor of n; = 1. We
observed this process for both cells and for all radiation steps. The only
effect we can observe that affects this diffusion process after radiation is
the increase in series resistance. As diffusion process occurs on silicon
bulk, we can conclude that the radiation does not affect it.

Regarding the low bias mechanisms (V < 0,6V) we cannot fit into a
process with constant ideality factor ny. Indeed, we obtain values much
higher than 2, and with temperature dependence. Because of this, to
analyze this transport process, it is better to fit to Ax(T) (exponential
factor in eq. (1)], which is the slope of the curves in logarithmic rep-
resentation. Ao(T) is defined as follows:

_q
nsz

As(t) (2)

Fig. 8 shows the temperature dependence of this exponential factor
Ay(T) for this low forward bias region, for both cells and for all the ra-
diation steps. To compare, we include in the graphs the value of A;(T)
for the diffusion process (always the same for all radiation steps). In the
HIT cell, we observe a rather constant value of Ay(T) with temperature.
This behavior is widely reported in different works as a tunnel process in
silicon heterojunctions [62-66]. We can observe this behavior for all
radiation steps, which may indicate that the transport mechanism which
dominates conduction in this low bias regime does not change. How-
ever, although the slope does not change, the saturation current Iy
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increases its value one order of magnitude after the last radiation step. In
Fig. 7 this effect is clear. These two behaviors (same slope and more
saturation current) combined, may indicate that the tunnel process re-
mains after radiation, but it has been enhanced. Probably the radiation
dose of 5.93 krad causes an increase in defects concentration at the
heterojunction interface, in where tunnels in heterojunctions occur.

Same behavior can be observed in Fig. 8 (b) for the MoOy based solar
cell. In previous work [25], we determine multi-tunneling captur-
e-emission (MTCE) as the most probably transport process in this region.
Indeed, from SRIM simulation, we obtained that the defects concentra-
tion caused by irradiation was in the order of 10° cm ™3, that is not too
high but probably high enough to explain this change in I ».

For a better understanding of these transport processes, we have also
analyzed the temperature dependence of the saturation current Ip;. We
present in the supplementary material, the fitted saturation current
values (Ip; and Ipy) as a function of 1000/T, for both types of solar cells
and for all radiation steps. From these fittings we obtained the activation
energy Ea; following Equation (3). The index i denotes the diffusion
process (i = 1) or low bias process (i = 2).

Eu. i
o =Ioo; exp( - TTI?) 3

Fig. 9 presents the results for the activation energy of both transport
mechanisms and both types of solar cells. As a first observation, the
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Fig. 9. Activation energy of the saturation current density for HIT and MoOy
solar cells.

irradiation process does not seem to produce significant changes in any
of the activation energies, suggesting that the transport mechanisms for
both diodes remain unmodified. Secondly, the activation energies ob-
tained for low bias mechanism lies around 0.3-0.45 eV. These values are
consistent with a tunnel process, and concretely with the MTCE tunnel
proposed before. This process consists of multi-tunneling between gap
states with subsequent recombination through carrier capture or ree-
mission: a-Si:H gap states in the case of the HIT type solar cell [64,66,67]
or the MoOx gap states in MoOy-type solar cells [21,22,30,68,69]. This is
to be expected within the framework of the MTCE model, introduced by
Matsuura et al. [70].

Finally, the activation energy of the high forward bias mechanism
scatters around the c-Si band gap value of 1.12 eV. This result and the
fixed ideality factor n; = 1 support the proposed model of the Shockley
diffusion law governing the transport in the high-forward bias regime.

As we have previously discussed, the irradiation process does not
seem to change the transport mechanisms identified. However, it could
modify the prevalence of one mechanism over the other. We can observe
that, independently of the type of solar cell, I; slightly increases with
the increase of the radiation dose, while Iy, rises considerably it value
after the second irradiation process. This indicates that the irradiation
process produces a clear predominance of the tunnel mechanism over
the diffusion process. This prevalence is so intense that for the case of the
highest radiation dose, the tunneling mechanism masks the diffusion
process in almost the whole J-V curve, as Fig. 7 shows.

The saturation current for the diffusion mechanism (Ip1) is directly
related to the diffusion length (Leff) in the neutral region of the crys-
talline silicon (c-Si) substrate. Therefore, the slight increase in Iy; sug-
gests that the irradiation process induces the formation of point defects
in the c-Si bulk. These defects subsequently increase the density of
recombination centers, thereby reducing the diffusion length within the
substrate. Other works have shown that radiation can create defects
such as vacancies and interstitials in the silicon lattice, which act as
recombination centers [69]. These defects can trap carriers and facilitate
non-radiative recombination, leading to an increase in the saturation
current [71]. The density of these defects depends on the type of radi-
ation and dose, which could correlate with the observed increase in Ij;.
[72].

The saturation current for the tunnel mechanism (Ip2) is mainly
related to the density of traps and gap states present in the MoOy layer or
in the a-Si layer (depends on solar cell type). The significant increase in
Ioo suggests that the irradiation process increases drastically the density
of these gap states.

Radiation exposure has been shown to impact the atomic structure of
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various materials significantly. Furthermore, in the context of silicon,
amorphous silicon has been observed to plastically deform under high-
energy heavy ion irradiation, like conventional glasses [73] Moreover,
the generation of point defects in crystalline silicon by heavy ions has
been studied, highlighting the dose rate and temperature dependence of
defect creation [74]. TMO’s like MoOy have shown dual behavior in
terms of conductivity based on the doping levels. Studies have indicated
that MoOy can exhibit enhanced conductivity at low doses, attributed to
improved hole collection and transport properties [75]. However, at
higher doses, a degradation in conductivity might occur. This behavior
is linked to the structure and composition of the material, where
sub-stoichiometric molybdenum oxide has been identified as a high
work function material that can efficiently enhance hole injection in
various applications. This trend is commonly observed in transition
metal oxides [76].

5. Conclusions

As a first conclusion, the results obtained indicate that silicon-based
solar cell structures, either with MoOy or HIT-type selective contacts,
experience a degradation of approximately 50 % in their efficiency value
when irradiated with a cumulative radiation dose equivalent to that
received for 8.5 years when exposed to LEO conditions.

A detailed study of heterojunction solar cells under the influence of
radiation has revealed several critical aspects concerning their perfor-
mance deterioration and the predominant conduction mechanisms. The
main aspects based on the points analyzed are as follows.

5.1. Impact on performance parameters

Initial degradation of cells under average radiation levels is mainly
observed in the F.F. due to changes in Rg and Rg,. However, both I and
Voc also show significant degradation under intense radiation condi-
tions. This pattern suggests that intense and cumulative radiation causes
more extensive and widespread damage to the cell.

5.2. Conduction mechanisms

Measurements in darkness and at various temperatures have
confirmed the existence of two main conduction mechanisms in these
heterojunction cells: Tunneling and diffusion at low and high forward
bias, respectively. This finding corroborates previous knowledge on the
behavior of heterojunction cells and contributes to understanding
charge transport processes in these devices.

5.3. Effects of radiation on transport mechanisms

Despite exposure to different radiation levels, the basic transport
mechanisms (tunneling and diffusion) do not appear to change. This
result indicates that the fundamental nature of charge transport in
heterojunction cells is robust to irradiation, which is a positive finding
concerning material stability and cell design.

5.4. Change in the dominance of transport mechanisms

Although transport mechanisms remain unchanged, radiation affects
the relative prevalence of these mechanisms. Radiation induces many
traps/levels in the forbidden energy gap of MoOy and amorphous silicon
(a-Si). These defects facilitate multistep tunneling capture and emission
(MTCE) process, thus modifying the charge transport dynamics and
potentially influencing the overall efficiency.
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