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Gefitinib and Afatinib Show Potential Efficacy for Fanconi
Anemia-Related Head and Neck Cancer

Check for
updates

Helena Montanuy', Agueda Martinez-Barriocanal®®, José Antonio Casado*>, Lloreng Rovirosa',
Maria José Ramirez"*®, Rocio Nieto?, Carlos Carrascoso-Rubio*®, Pau Riera®’, Alan Gonzéalez®,
Enrique Lerma’, Adriana Lasa*®, Jordi Carreras-Puigvert®, Thomas Helleday®, Juan A. Bueren*®,

Diego Arango?3, Jordi Minguillén"*>

, and Jordi Surrallés

14,5

Purpose: Fanconi anemia rare disease is characterized by bone
marrow failure and a high predisposition to solid tumors, especially
head and neck squamous cell carcinoma (HNSCC). Patients with
Fanconi anemia with HNSCC are not eligible for conventional
therapies due to high toxicity in healthy cells, predominantly
hematotoxicity, and the only treatment currently available is sur-
gical resection. In this work, we searched and validated two already
approved drugs as new potential therapies for HNSCC in patients
with Fanconi anemia.

Experimental Design: We conducted a high-content screening
of 3,802 drugs in a FANCA-deficient tumor cell line to identify
nongenotoxic drugs with cytotoxic/cytostatic activity. The best
candidates were further studied in vitro and in vivo for efficacy
and safety.

Results: Several FDA/European Medicines Agency (EMA)-
approved anticancer drugs showed cancer-specific lethality or
cell growth inhibition in Fanconi anemia HNSCC cell lines. The

Introduction

Fanconi anemia is a rare genetic disease, caused by mutations in at
least 22 genes, which encode for proteins involved in interstrand-
crosslink DNA repair. Patients with Fanconi anemia suffer from bone
marrow failure, congenital abnormalities, and a high incidence of
malignancies, such as solid tumors and leukemias (1, 2). The man-
agement of the hematologic phenotype has been remarkably improved
over the last 20 years, thanks to optimized hematologic stem cell
transplantation protocols, leading to an important increase in Fanconi
anemia patient survival, from less than 20 years of age in the 1990s to
more than 30 years observed today (3, 4). The prevention and
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two best candidates, gefitinib and afatinib, EGFR inhibitors
approved for non-small cell lung cancer (NSCLC), displayed
nontumor/tumor ICs, ratios of approximately 400 and approx-
imately 100 times, respectively. Neither gefitinib nor afatinib
activated the Fanconi anemia signaling pathway or induced
chromosomal fragility in Fanconi anemia cell lines. Importantly,
both drugs inhibited tumor growth in xenograft experiments in
immunodeficient mice using two Fanconi anemia patient—
derived HNSCCs. Finally, in vivo toxicity studies in Fanca-
deficient mice showed that administration of gefitinib or afatinib
was well-tolerated, displayed manageable side effects, no toxicity
to bone marrow progenitors, and did not alter any hematologic
parameters.

Conclusions: Our data present a complete preclinical analysis
and promising therapeutic line of the first FDA/EMA-approved
anticancer drugs exerting cancer-specific toxicity for HNSCC in
patients with Fanconi anemia.

treatment of solid malignancies are expected to further impact the
survival and quality of life of these patients (5). While there are some
studies on chemoprevention, with chronic treatment proposals such as
quercetin or metformin (6, 7), few therapeutic options are available
beyond surgical resection once solid malignancies appear (8, 9). The
most frequent solid tumors, accounting for up to 50%, are HNSCC,
with an incidence 700-fold higher than in the general population.
Patients can tolerate complex surgeries for oral tumor removal, but
usually receive mild chemotherapy, radiotherapy, or a combination,
that yields moderate to high toxicities, with low survival rates of
around 30 months (4, 8, 9).
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Translational Relevance

Our work reports for the first time the repositioning of gefitinib
and afatinib, two anticancer EMA/FDA-approved drugs, to treat
head and neck squamous cell carcinoma (HNSCC) in Fanconi
anemia, a rare disease whose patients currently have surgical
resection as their only therapeutic option. We screened existing
drugs for antitumor activity and identified both candidates using a
combination of cell-based and in vivo mouse models. Our team
recently obtained orphan drug designation (ODD) by EMA for
gefitinib (EU/3/18/2075) and afatinib (EU/3/18/2110) (FDA ODD
pending), with the midterm goal to organize a multicenter, inter-
national clinical trial to prove that gefitinib/afatinib improve the
follow-up of these patients when diagnosed with HNSCC.

In this study, we searched for anticancer drugs approved by the
FDA and/or European Medicines Agency (EMA) that could be
repositioned to treat HNSCC in patients with Fanconi anemia
thanks to the induction of cancer specific lethality and identified
several approved drugs (10, 11). The best drugs from this screening
were thoroughly studied in vitro and in vivo, obtaining complete
preclinical data and a solid basis to present the first, nontoxic, and
potentially therapeutic option for patients with Fanconi anemia
with HNSCC.

Materials and Methods

Cell lines and reagents

Wild-type (PN) and FANCA-deficient (FA551) primary fibroblasts,
WT (VU040-T), FA-derived 1131 (VU1131-T2.8, FANCC_/_), 1604
(VU1604-T, FANCL™'™), and 1365 (VU1365-T, FANCA™™) and
SCC25 and Detroit 562 HNSCC cell lines, were grown in DMEM
(Biowest) supplemented with 10 % heat inactivated FBS and plasmocin
(ant-mpt, Invivogen). WT- and FANCA-deficient lymphoblastoid cell
lines were grown in DMEM supplemented with 20% heat-inactivated
FBS, sodium pyruvate (Gibco), nonessential amino acids (Gibco),
B-mercaptoethanol (Gibco), and plasmocin. HNSCCs were kindly
provided by Dr Josephine Dorsman, from VU University Medical
Center (Amsterdam, the Netherlands). Non-Fanconi anemia HNSCC
cell lines were from ATCC. Diepoxibutane (DEB, 202533), hydroxy-
urea (HU, H8627), and Mitomycin C (MMC, M0503) were purchased
from Sigma. Drugs for in vitro studies, gefitinib (HY-508945), AEE788
(14816), afatinib (11492), AZD9291 (16237), ceritinib (19374), CO-
1686 (16244), and vandetanib (14706) were from Cayman Chemical
and cetuximab/Erbitux was from Merck. For in vivo studies, drugs
gefitinib/Iressa (AstraZeneca) and afatinib/Giotrif (Boehringer Ingel-
heim) were used, and vehicles Tween-80 (P4780), methylcellulose
4,000cP (M0512), and alpha-lactose (L3625) were from Sigma.

Screening validation

A total of 3,800 drugs' high-content screening was described
previously (Montanuy and colleagues, submitted). For nongenotoxic
candidate validation, Fanconi anemia primary fibroblasts and Fanconi
anemia HNSCC cell lines were seeded in 384-well plates, treated with
candidate drugs at 1 umol/L concentration per duplicate and cultured
for 7 days. Cells were then fixed, Hoechst stained, and nuclei images
taken with ImageXpress confocal microscope (Molecular Devices,
representative images in Supplementary Fig. SIA). Nuclei in each
well were counted with CellProfiler software.
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Survival assays

Seeded cells in 96-well plates were exposed to nine different con-
centrations of MMC or antitumor drugs and cultured for 3 or 7 days.
Cell growth and survival was measured with sulforhodamine B (SRB)
staining assay (12). ICs, was determined by calculating logarithmic
normalized trend lines with GraphPad. To identify best antitumor
candidates, we calculated a ratio from ICs, of nontumor cell lines
(primary fibroblasts) versus averaged ICs, of the averaged three
Fanconi anemia HNSCC cell lines.

Western blot analysis

Western blot analysis was performed as described previously (13).
FANCD?2 (Ab2187), total ERK1 (Ab32537), phosphorylated ERK1/2
(pT202/pY204 for ERK1, pT185/pY187 for ERK2; Ab50011), total
AKT (Ab32505), and Vinculin (Ab18058) antibodies were from
Abcam. Ser473 phosphorylated AKT (9271T), total EGFR (4267T),
and Tyr1068 phosphorylated EGFR (3777T) antibodies were from Cell
Signaling Technology.

Chromosome fragility and cell-cycle analysis

Chromosome fragility in cell lines was measured for 48 hours with
flow cytometric micronucleus (FCM) assay, as described earlier
(14-16). Micronuclei (MN) frequency was expressed as the number
of MN per thousand nuclei. Percentage of cells arrested in G,-M phase
of the cell cycle was obtained from nuclei plots. For in vivo chromo-
some fragility in mice, genotoxicity was measured in erythrocytes and
reticulocytes from peripheral blood of wild-type and Fanca-deficient
mice as described previously (17). Briefly, peripheral blood was
drawn from mice tail (~100 pL), collected into EDTA containing
tubes, fixed in methanol, and stored at —80 °C. Samples were then
incubated with anti-CD71-FITC antibody to select reticulocytes
from erythrocytes, and stained with propidium iodide to detect
micronuclei. FACS analysis was performed in a FACSCanto cytometer
(Becton Dickinson).

Gene sequencing of HNSCC cell lines

To analyze mutations in cancer-related genes (including EGFR)
in HNSCC cell lines, we used TruSight Tumor 15 (Illumina), a
next-generation sequencing panel designed to identify sequencing
variants in 15 genes commonly mutated in solid tumors and asso-
ciated with marketed therapeutics (AKT1, BRAF, EGFR, ERBB2,
FOXL2, GNAI1l, GNAQ, KIT, KRAS, MET, NRAS, PDGFRA,
PIK3CA, RET and TP53).

In vivo xenograft experiments

NOD-SCID mice (both sexes, age 6- to 9-week-old, Charles River)
were injected subcutaneously in the right flank with a mixture 1:1 of
1 x 10° FA-HNSCC cells-Matrigel (Corning). Animals were moni-
tored twice a week (body weight and tumor volume) until tumors were
approximately 150 mm®. Animals were then randomized into 4
experimental groups (1 = 8 animals/group): (i) vehicle (0.5%
Tween-80); (ii) gefitinib; (iii) vehicle (0.5% methylcellulose); (iv)
afatinib. Treatments were administered 5 days a week orally (gavage):
gefitinib/Iressa 150 mg/kg and afatinib/Giotrif 20 mg/kg (18-21).
Vehicles were further supplemented with lactose at 98 mg/kg and
117 mg/kg, respectively, to pair excipients in the medicinal products.
Animals were monitored three times a week (body weight and tumor
volume) until tumors were approximately 1,000 mm?. Tumor volume
was determined by using the formula: (length x width?) x (/6). At
endpoint animals were euthanized, and tumors were surgically
removed. Tumor specimens were formalin-fixed and paraffin-
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embedded for routine histologic analysis. Animal experiments were
performed under protocols approved by the Vall d’Hebron Ethical
Committee for Animal Experimentation and the appropriate govern-
mental agency and carried out in accordance with the approved
guidelines.

IHC

Tumor samples excised from mouse xenograft experiments
were fixed in 4% formalin. For IHC, NovoLink polymer detection
system (Novocastra Laboratories) was used. Anti-phopho-ERK1
(pT202/pY204)/phospho-ERK2 (pT185/pY187) immunostaining
(1:200 dilution) was carried out after heat-induced antigen retriev-
al (4 minutes, pressure cooker) with 10 mmol/L citrate buffer pH
6.0, and then counterstained with hematoxylin and mounted.

In vivo toxicity experiments in Fanca-deficient mice

Fanca-deficient mice were described previously (22). Wild-type
and Fanca-deficient mice (female, age ranging from 8 to 20 weeks)
were weight randomized into 4 experimental groups and started to
receive treatment (n = 6 animals/group): (i) vehicle (Tween-80);
(ii) gefitinib; (iii) vehicle (methylcellulose); (iv) afatinib. Treat-
ments were administered 5 days a week orally (gavage): gefitinib
150 mg/kg and afatinib 20 mg/kg, for 2 weeks. Animals were
monitored three times a week (body weight), and tail bled at 0
(pretreatment) and 14 days (endpoint) of treatment. At endpoint,
animals were euthanized and bone marrow from femurs extracted
for further analysis.

FACS analysis of hematopoietic cell populations

For counting LSK™ cells from bone marrow, we selected Lin ™~ (all
FITC-labeled: TER-119, from eBiosciences; B220, RA3-6B2 from
BioLegend; CD3, 145-2C11 from BD Biosciences; CD11b/Macl,
M1/70 from BioLegend; GR1, RB6-8C5 from BioLegend), C-Kit+
(C-Kit PE/Cy7, 2B8 from BioLegend), and Sca-1" (Sca-1 PE, E13-
161-7 from BD Biosciences) cells. For peripheral blood cells,
the following antibodies were used: B220-FITC (RA3-6B2), GR1-
PE (RB6-8C5), CD4-BV711 (RM4-5), and CD11b/MAC1-AF647
(M1/70) were from BioLegend; CD3-PEvio770 (145-2C11) was
from Miltenyi Biotec; CD8-PECy5 (53-6-7) was from BD Bios-
ciences. T lymphocyte (CD3™"), B lymphocytes (B220"), and mye-
loid cells (non-T, non-B cells) were gated in the region of live
leucocytes from FSC-A, SSC-A, and DAPI parameters. CD4" and
CD8™ cells were quantified from CD3" cells. Myeloid cell sub-
populations GRI"MAC1™" (mainly neutrophils and other granulo-
cytes) and GR1"MAC1" (mainly monocytes, macrophages, and
dendritic cells; ref. 23) were quantified from CD3 B220" cells.

Blood hematology and bone marrow colony-forming unit
assays

Peripheral blood was drawn from mice tail (~100 uL), collected into
EDTA containing tubes (Sarstedt) and counts were determined using
an Abacus Junior Vet hematology analyzer (Diatron). Number of
colony-forming unit-granulocyte/macrophage (CFU-GM) progeni-
tors present in total bone marrow was performed as described
previously (22).

Statistical analysis

All experiments were performed using triplicate repeats unless
otherwise stated, and data present means + SEM. Statistical sig-
nificance was tested using Student ¢ test, and P values were reported
as *, P < 0.05; **, P < 0.01; ***, P < 0.001; and ****, P < 0.0001.
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Results

EGFR inhibitors selectively inhibit the growth of Fanconi anemia
HNSCC cell lines

From a previous screening in FANCA-deficient tumor cells
(Montanuy and colleagues, submitted) we sought to find nonge-
notoxic drugs that induce cancer-specific cytotoxicity. We used
primary fibroblasts from FA donors as nontumor cells and three
different FA patient-derived HNSCC cell lines: 1131 (FANCC
deficient), 1604 (FANCL deficient), and 1365 (FANCA deficient;
ref. 24). From 150 selected candidates, validation analysis at a
concentration of 1 umol/L identified seven anticancer drugs:
ceritinib, an anaplastic lymphoma kinase (ALK) inhibitor, used
to treat NSCLC (25); CO1686 (rociletinib), a second-generation
EGEFR inhibitor; AZD9291 (osimertinib), a third-generation EGFR
inhibitor approved for patients with EGFR T790M mutation—
positive metastatic NSCLC (26); vandetanib, a multikinase inhib-
itor including EGFR, VEGFR2 and RET, approved for thyroid
cancer (27); AEE788, also a dual inhibitor of EGFR/ERBB2 and
VEGFR2; gefitinib, a first-generation inhibitor of EGFR, also
approved to treat NSCLC (28); and afatinib, a second-
generation EGFR inhibitor, also used to treat NSCLC (Fig. 1A
and B; Supplementary Fig. SIA-S1F; ref. 29). Interestingly, other
EGFR and VEGER inhibitors, such as erlotinib and vatalanib, did
not have or had a low nontumor/tumor ratio in the cell lines tested,
probably due to different cell line sensitivities that these drugs may
exert (data not shown). In this sense, cetuximab treatment, a highly
specific EGFR-targeting antibody used to treat HNSCC in the
general population, among other malignancies (30) inhibited
growth in all Fanconi anemia HNSCC cell lines, while having no
effect in primary fibroblasts, showing specific dependency of EGFR
pathway for Fanconi anemia HNSCC growth (Supplementary
Fig. S1G). Subsequent cytotoxicity assays with doses ranging from
low nanomolar to micromolar concentrations showed, as expected,
that the DNA crosslink-inducer MMC was highly toxic both in
Fanconi anemia HNSCC cell lines as well as primary cells, at less
than 1 nmol/L (Fig. 1C). In sharp contrast, gefitinib and afatinib
were the drugs that best inhibited growth in all three HNSCC cell
lines derived from patients with Fanconi anemia, while having a
much lower effect in primary Fanconi anemia fibroblasts (Fig. 1D
and E). Gefitinib produced a sensitivity ratio of nontumor versus
tumor cell lines of 386 times, and afatinib 112 times, exerting its
antitumor effect at a low nanomolar concentration (the ICs, for
HNSCCs averaged 25.3 nmol/L for gefitinib and 10.8 nmol/L for
afatinib; see Fig. 1F). Other drugs with good antitumor profile were
AEE788 (with an average ICsy of 28.4 nmol/L), AZD9291 (ICs,
64.2 nmol/L), and vandetanib (ICs, of 108.4 nmol/L). However,
when compared with primary fibroblasts, only AEE788 showed
results similar to afatinib (nontumor versus tumor ratio of 81
times). CO1686 (ICs, of 629.3 nmol/L) and ceritinib (ICsq of 1,246
nmol/L) showed modest differences between malignant and
healthy cells (ratios of 2.4 and 1.3 times, respectively; see Supple-
mentary Fig. SIB-S1F). We performed the survival assays at 7 days
to better show long-term nontoxicity in primary fibroblasts; 3-day
treatments of gefitinib and afatinib also gave similar results
(data not shown). We also confirmed gefitinib and afatinib inhib-
ited non-Fanconi anemia HNSCCs in a similar trend (Supple-
mentary Fig. S1IH and data not shown). Thus, gefitinib and
afatinib were the best anticancer drugs that specifically inhibited
the growth of Fanconi anemia HNSCC cell lines at low nanomolar
concentrations.
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Figure 1.

Drug screening identified gefitinib and afatinib with antitumor activity in Fanconi anemia (FA)-derived HNSCCs, nontoxic for Fanconi anemia cells. A, FANCA-
deficient U20S cell line was used to screen for drugs with acute cytotoxicity. Nongenotoxic drugs with potential activity were selected and validated in Fanconi
anemia HNSCCs and primary cells. B, Validation screening identified 7 potential drugs with high growth inhibition in three different Fanconi anemia HNSCCs while

maintaining good viability in Fanconi anemia primary fibroblasts (at 1 umol/L). Bars show

mean of samples performed at least in duplicates. C-E, Extended

cytotoxicity analysis with gefitinib (D) and afatinib (E) in primary fibroblasts (from wild-type, and FANCA-deficient patient) and three different Fanconi anemia
HNSCC cell lines. Mitomycin C (C) was used as a control. The mean + SEM of at least three independent experiments is shown, with normalized curves in lines. F, ICso
(nmol/L) of the candidate drugs used, in Fanconi anemia fibroblasts (black) and Fanconi anemia HNSCC cell lines (averaged, gray). Ratio of nontumor versus tumor

ICs0 (below) is shown to highlight best candidates (e.g., gefitinib, afatinib, and AEE788).
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Gefitinib and afatinib are nongenotoxic in FANCA-deficient
cells

EGFR (ERBB-1) is a member of the ERBB family of tyrosine kinase
receptors that has a central role in the tumorigenesis of many types of
solid tumors, including HNSCC (31). Multiple drugs targeting these
receptors have been approved for the treatment of several cancers, such
as gefitinib and afatinib, as well as vandetanib and AZD9291 (26-29).
These drugs bind to the tyrosine kinase domain and impair kinase

activity and downstream signaling pathways, such as PI3K/AKT and
the RAS/MAPK axis. Moreover, no genotoxic toxicity is reported from
these drugs. To discard any direct or indirect effect on DNA that could
be easily repaired by normal cells but compromise Fanconi anemia cell
viability, we treated U20S cells with gefitinib or afatinib to analyze
FANCD2 monoubiquitination, a central step in the Fanconi anemia/
BRCA pathway, induced by several types of DNA damage (2). As seen
in Fig. 2A and B, neither gefitinib nor afatinib up to 10 pumol/L were
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able to activate the Fanconi anemia/BRCA pathway as measured by
FANCD?2 monoubiquitination by Western blot analysis, indicating
that these drugs do not induce interstrand-crosslinks (ICL), stalled
replication forks or double strand breaks on DNA that would
require processing by the Fanconi anemia pathway. We further
analyzed their genotoxic capacity in Fanconi anemia cells, which are
highly sensitive to ICLs such as diepoxybutane (32). Again, as seen
in Fig. 2C-G, high concentrations of gefitinib or afatinib were
unable to induce chromosome fragility (micronuclei, MN) or G,-M
cell-cycle arrest (a specific hallmark of Fanconi anemia cells treated
with ICL-inducing agents) in WT or Fanconi anemia lymphoblas-
toid cell lines, which express EGFR (Fig. 2D) and are derived from
T cells reported to have a functional EGFR pathway (33, 34). In
summary, our in vitro results showed that nontumor Fanconi
anemia cells could be safely treated with gefitinib and afatinib at
therapeutic concentrations, as they did not activate the FA/BRCA
pathway, nor induce chromosome fragility or cell-cycle arrest in the
absence of the Fanconi anemia pathway.

EGFR pathway in Fanconi anemia HNSCCs

Previous reports indicate that the EGFR pathway is functional in
sporadic HNSCCs, and targeting this pathway inhibits tumor
growth (35). Thus, we sought to further explore the EGFR pathway
inhibition achieved by gefitinib and afatinib in Fanconi anemia
HNSCCs. As shown in Fig. 3A, 24-hour treatment with gefitinib or
afatinib inhibited downstream signaling mediators of the EGFR
pathway in all three Fanconi anemia HNSCC cell lines tested, such
as phosphorylated AKT or ERK1/2. As previously reported in sporadic
HNSCCs (36), we also observed that the EGFR pathway was over-
activated in Fanconi anemia HNSCCs in comparison with primary
fibroblasts, as detected by total and phosphorylated EGFR expression
(Fig. 3B). In the general population, the majority of HNSCCs have
mutations in TP53 (72%) or PIK3CA (18%) genes, but few in EGFR
(4%; refs. 35,37, 38). Interestingly, van Zeeburg and colleagues showed
a similar TP53 mutation trend in Fanconi anemia HNSCCs (8 of 13
Fanconianemia HNSCCs tested, 62%, carried TP53 mutations; ref. 39).
Mutation analysis of key tumor-promoting genes showed that all
three Fanconi anemia HNSCCs presented mutations in TP53, with a
variant frequency of almost 100% in DNA from the 1131 and 1604
cell lines, and 34% from the 1365 cell line (Fig. 3C; ref. 24). No other
genes, such as EGFR, PIK3CA, AKTI1, NRAS, or KRAS were found
mutated in these cell lines. Interestingly, EGFR MLPA assay showed
a gain in EGFR copy number for 1131 and 1604, but not for 1365
cell lines (data not shown). These results highlight that Fanconi
anemia HNSCC cell lines have a functional EGFR pathway similar
to sporadic HNSCCs, with no mutations in key genes, increased
EGEFR activity, and expression, in 2 of 3 cell lines with EGFR gene
copy number gain, and functional AKT and ERK1/2 activities that
could be inhibited by gefitinib and afatinib.

Gefitinib and afatinib inhibit growth of Fanconi anemia HNSCCs
in mouse xenografts

To further investigate the therapeutic potential of gefitinib and
afatinib for Fanconi anemia HNSCC, we used a preclinical mouse
subcutaneous xenograft model. The Fanconi anemia HNSCC cell lines
1604 and 1131 were subcutaneously implanted in NOD-SCID immu-
nodeficient mice. Tumor growth was monitored over time, and when
the tumors reached approximately 150 mm?, animals were random-
ized into vehicle control groups or gefitinib (Fig. 4) and afatinib
(Fig. 5) treatment groups. Importantly, treatment with these two FDA/
EMA-approved EGFR inhibitors led to a significant reduction of the
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growth of the tumors compared with control animals at the end of the
experiment (Figs. 4A-C and E and 5A-C and E), or a significant
shrinkage of the size of the tumors compared with the size at the
beginning of the treatment (Figs. 4D, G, H and 5D, G, H). Treatment
did not have a major impact on mouse weight (Supplementary
Fig. S2A-S2D). The efficacy of the treatment was further confirmed
measuring the weight and the average volume change of the tumors at
the end of the experiment (Supplementary Fig. S2E-S2L). Finally,
tumors from vehicle-treated mice showed strong phospho-ERK
immunostaining (Figs. 4I-J and 5I-] and Supplementary Fig. S3),
while tumors from gefitinib or afatinib-treated mice had almost no
phospho-ERK signal, confirming a high efficiency of either drug in
inhibiting the EGFR pathway in both HNSCC in vivo.

Gefitinib and afatinib treatment did not produce hematotoxicity
in Fanca-deficient mice

Our in vitro results show gefitinib and afatinib are innocuous in
Fanconi anemia fibroblast cells at therapeutic concentrations (Fig. 2).
The most frequently reported adverse effects (AE) for these drugs in
humans are skin rashes, diarrhea, and nausea and vomiting, among
others (40-42). Thus, hematologic toxicity was not expected, but given
the extreme fragility of patients with FA, we sought to discard toxicity
of these EGFR inhibitors in animal models of the disease. After two
weeks of chronic administration of gefitinib or afatinib in wild-type
(WT) and Fanca-deficient mice, we monitored weight and general
health status three times a week, hematologic parameters before and at
the end of the experiment, and bone marrow status when mice were
sacrificed. As seen in Fig. 6A, gefitinib treatment had no effects on
body weight either in the WT or in Fanca-deficient mice. General
health status showed no evident toxicity, especially skin rash or
diarrhea, typical adverse effects reported for gefitinib and afatinib.
We did not observe any differences in white or red blood cells, platelets,
hemoglobin, hematocrit, or leukocyte populations from peripheral
blood (CD4 and CD8 T cells, B cells, and myeloid cells), LSK™ cells or
colony-forming units (CFU) from bone marrow (Fig. 6; Supplemen-
tary S4-S7). Following afatinib treatment, some Fanca-deficient mice
showed weight loss during the first week of the treatment (Fig. 7A).
Clinical trials in HNSCC and NSCLC show that afatinib efficacy is
higher than the standard of care but produces more toxicity and AEs
than gefitinib. In these cases, a dose adjustment is often chosen with
good results (43, 44). For this reason, from day 7, we reduced afatinib
dosages while maintaining its therapeutic effect (from 20 mg/kg/day to
15 mg/kg/day). Fanca-deficient mice progressed favorably after dose
reduction and indeed recovered weight at the end of the experiment,
also seen in wild-type mice (Fig. 7A; Supplementary $4D). Afatinib
administration also mildly reduced some hematologic parameters, but
in both WT and Fanca-deficient mice, and blood counts were always
within the physiologic range (Fig. 7; Supplementary Figs. S4, S6, and
S7; ref. 45). Notably, we did see an increase in blood myeloid cells in
Fanca-deficient mice, which could suggest an increase in infection
susceptibility, as previously reported for this drug (Supplementary
Fig. S7B; refs. 46, 47). Finally, to exclude any in vivo genotoxic effects
on chromosomal stability, we analyzed MN presence in blood reti-
culocytes, which reflects acute chromosome fragility, and in erythro-
cytes, which represents chronic chromosomal instability in bone
marrow erythroid precursors in vivo (17). Fanca-deficient mice spon-
taneously showed a reduction in reticulocyte counts (Supplementary
Fig. S8A), while MN from erythrocytes or reticulocytes increased by
more than two-fold respect WT mice (Fig. 6F; Supplementary S8B).
Interestingly, neither gefitinib nor afatinib treatment affected these
chromosome fragility biomarkers in wild-type or Fanca-deficient
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Figure 3.

EGFR pathway in Fanconi anemia (FA) HNSCC cell lines. A, 1365 (left), 1131 (middle), and 1604 (right) Fanconi anemia HNSCC cells were stimulated 24 hours with the
indicated doses of gefitinib and afatinib, and Western blots for expression and phosphorylation status of key kinases of the EGFR pathway were performed. Vinculin
was used as a loading control (p-Vinculin refers to membranes blotted with phospho-antibodies). Images are representative of at least three independent
experiments with similar results. B, Total EGFR and phospho-EGFR basal expression in Fanconi anemia HNSCC in comparison with WT and Fanconi anemia primary
fibroblasts (left). Relative expression normalized to WT primary fibroblasts is shown. Middle and right graphs show mean 4 SEM of phospho-EGFR and total EGFR,
respectively, of three independent experiments. C, Gene variants identified and their frequency in Fanconi anemia HNSCCs using TruSight Tumor 15 kit (see Materials

and Methods).
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Figure 4.

Gefitinib inhibits Fanconi anemia (FA) HNSCC growth in vivo in mouse xenograft experiments. Fanconi anemia (FA)-derived HNSCC 1604 (A, C, D, G, I) and 1131
(B, E, F, H, J) xenografts are shown. A and B, Excised tumors at endpoint. C and E, Tumor growth by vehicle (black lines) or gefitinib (blue lines) treatment
groups. The arrow indicates the start of the treatment. Graphs show mean & SEM. D and F, Response Evaluation Criteria in Solid Tumors (RECIST)
classification from the percentage of tumor volume change. CR, complete response; PR, partial response; SD, stable disease; PD, progression disease. G and H,
Percentage of tumor volume change at baseline (start of treatment) for individual tumors (black bars, vehicle; blue bars, gefitinib). The percentage of tumor
volume change of treated (T) versus vehicle (V) is shown. Dashed lines represent 20% volume above and —30% below the x-axis. I and J, IHC of phospho-ERK
activation in representative formalin-fixed, paraffin-embedded tumors from xenografts treated with vehicle (top) or gefitinib (bottom). Student t test:
*, P<0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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Figure 5.

Afatinib inhibits Fanconi anemia (FA) HNSCC growth in vivo in mouse xenograft experiments. Fanconi anemia-derived HNSCC 1604 (A, C, D, G, I) and 1131
(B, E, F, H, J) xenografts are shown. A and B, Excised tumors at endpoint. C and E, Tumor growth by vehicle (black lines) or afatinib (green lines) treatment.
The arrow indicates the start of the treatment. Graphs show mean + SEM. D and F, RECIST classification from the percentage of tumor volume change, as
shown in Fig. 4D and F. G and H, Percentage of tumor volume change at baseline (start of treatment) for individual tumors (black bars, vehicle; green bars,
afatinib). The percentage of tumor volume change of treated (T) versus vehicle (V) is shown. Dashed lines represent 20% volume above and —30% below the
x-axis. | and J, IHC of phospho-ERK activation in representative formalin-fixed paraffin-embedded tumors from xenografts treated with vehicle (top) or
afatinib (bottom). Student ¢ test: *, P < 0.05; **, P < 0.07; ***, P < 0.001; ****, P < 0.0001.
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Figure 6.

Gefitinib is nontoxic in Fanca-deficient mice. A, Percentage body weight of wild-type and Fanca-deficient mice, treated with vehicle or gefitinib (see Materials
and Methods). Red blood cells (B) and platelets (C) at 0 and 14 days of vehicle or gefitinib treatment. Dashed lines in B show physiologic range of red blood cells. D and
E, LSK™ cell percentage (D) and colony-forming units (CFU) capacity from bone marrow cells (E) at endpoint (14 days). F and G, /n vivo genotoxic analysis in murine
blood cells. F, Percentage of erythrocytes with MN in wild-type versus Fanca-deficient mice. G, Percentage of MN erythrocytes in mice treated with vehicle or
gefitinib. B=G graphs show data for individual mouse (solid dots, wild-type, open dots, Fanca-deficient) and mean 4 SEM. Student ¢ test: ns, not significant; *, P< 0.05;
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mice, indicating that these EGFR inhibitors do not exert any clasto- Discussion

genic effect in the development of blood cells irrespective of the FA
pathway. In summary, as seen in wild-type and Fanca-deficient mice,
gefitinib or afatinib administration is safe in vivo as a chronic treat-
ment, with afatinib showing some toxicity that could be balanced by
dose adjustment.
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Figure 7.

Afatinib is nontoxic in Fanca-
deficient mice. A, Percentage body
weight of wild-type and Fanca-
deficient mice, treated with vehicle
or afatinib. From day 7, afatinib
dose was reduced from 20 mg/kg/
day to 15 mg/kg/day. Red blood
cells (B) and platelets (C) at O
and 14 days of vehicle or afatinib
treatment. Dashed lines in B show
physiologic range of red blood
cells. LSK™ cell percentage (D)
and colony-forming units (CFU)
capacity from bone marrow
cells (E) at endpoint (14 days). CFU
graph shows afatinib data super-
imposed to gefitinib data from
Fig 6E. F, Percentage of MN ery-
throcytes in mice treated with
vehicle or afatinib. B=F graphs
show data for individual mouse
(solid dots, wild-type, open dots,
Fanca-deficient) and mean =+
SEM. t test: ns, not significant;
*, P<0.05 **, P< 0.0l

Twenty years ago, FA was mainly a pediatric disease, as most
patients died in the first two decades due to bone marrow failure or
leukemias (5). With improved transplantation protocols, patients with
FA now reach their fourth decade of life. Thus, HNSCC and other solid
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tumors are arising as the main challenge for their long-term
survival, and last efforts in recent decades to treat patients with
current therapies have resulted in poor survival rates. Because of its
rare condition, few case reports have been published. Beginning in
the 2000s, they highlighted the frequent clinical complications and
severe toxicities of conventional chemotherapy and radiotherapy in
these patients (8, 9, 48-50). On average, the median age reported at
diagnosis has been 31-33 years, with a median follow-up of around
30-35 months, with very low tolerance to radiotherapy and che-
motherapy. These case reports and small cohort studies highlight a
painful reality and an unmet medical need that patients with
Fanconi anemia suffer nowadays: beyond tumor resection, there
is no safe or effective treatment for patients with Fanconi anemia
with solid tumors in general, but especially HNSCCs.

Our work describes for the first time comprehensive preclinical
data regarding gefitinib and afatinib, two previously approved
anticancer drugs, with a strong potential for treating HNSCCs in
Fanconi anemia. Drug validation in Fanconi anemia tumor and
nontumor cells identified several approved antitumor drugs induc-
ing Fanconi anemia cancer—specific lethality, with gefitinib and
afatinib having the best ICs, nontumor/tumor ratio (Fig. 1; Sup-
plementary Fig. S1). Antibody-based EGFR inhibitor cetuximab
remains the only FDA-approved targeted therapy available for
sporadic HNSCC, but it works in combination with radiotherapy
or standard chemotherapy, which are not well-tolerated by patients
with Fanconi anemia (31). Indeed, Wong and colleagues and Kutler
and colleagues have reported patients with Fanconi anemia who
received postsurgery cetuximab and radiotherapy. Two of them
displayed lower toxicities and the other two had manageable
toxicities, but all died of recurrent or metastatic disease (8, 51).
Unfortunately, without preclinical evidence of efficacy and safety
and controlled studies such as with clinical trials, clinicians may
find unsuitable to choose cetuximab as a single therapeutic option
for patients with Fanconi anemia.

Our work shows that gefitinib and afatinib are effective in vitro in
three different Fanconi anemia HNSCC cell lines (Fig. 1) and more
importantly in vivo, in xenograft experiments with immunodeficient
mice with two different Fanconi anemia—patient derived HNSCC
tumors (Figs. 4 and 5; Supplementary S2 and S3). In addition, our
results also highlight that gefitinib and afatinib are safe in nontumor
Fanconi anemia cells, as they did not activate the Fanconi anemia/
BRCA pathway nor induce chromosome instability (Fig. 2), and more
remarkably in Fanca-deficient mice; these drugs did not generate
treatment-related hematotoxicity nor bone marrow failure (Figs. 6
and 7; Supplementary S4-S8).

Jung and colleagues published in 2005 a case report of a patient with
Fanconi anemia with a large squamous cell carcinoma on the tongue,
which was 90% positive on EGFR according to THC staining. The
patient was then administered gefitinib as a palliative treatment, and
after 2 months the tumor size was reduced by 80%, with no gefitinib-
associated AEs such as skin rash or diarrhea (52). As shown here, our
data demonstrate both gefitinib and afatinib have cancer-specific
lethality in Fanconi anemia HNSCC, with no toxicity targeting DNA,
nor hematotoxicity in mouse models. We did observe some toxicity in
afatinib-treated Fanca-deficient mice, which was reverted by dose
adjustment, maintaining the therapeutic effect (Fig. 7A; Supplemen-
tary Fig. S4D). We did also observe an increase of myeloid cell
populations (Supplementary Fig. S7), which suggests patients with
FA may need more thorough follow up with afatinib compared with
gefitinib.
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Given that Fanconi anemia is a rare disease, the repositioning of
approved medicines to achieve patient treatment is a viable approach
regarding time and the cost/effectiveness ratio to market authoriza-
tion (53, 54). With this in mind, we recently received the orphan drug
designation (ODD) status for gefitinib and afatinib by EMA to treat
HNSCCs in patients with Fanconi anemia (FDA orphan application
submitted). ODD gives the sponsors regulatory benefits and facilities
regarding reduced fees, scientific advice, protocol assistance, and
market exclusivity after authorization, with the purpose to promote
clinical trials that demonstrate safety and efficacy of new or reposi-
tioned drugs to treat rare diseases. This support from the European and
American drug regulatory institutions may help to push current
preclinical research to organize, coordinate, and initiate a multicenter,
international clinical trial with gefitinib and/or afatinib to treat
HNSCCs in Fanconi anemia with the aim to provide the patients a
new anticancer therapeutic option and improve their clinical outcomes
and quality of life.
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