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Abstract

This study focuses on the dynamics of compressibility-driven flames that emerge in narrow

tubes, closed at their ignition end, when conductive heat losses through the walls are appre-

ciable. A narrow gap approximation is used to reduce the governing equations to an effectively

one-dimensional problem. In long channels this problem admits traveling-wave solutions which

we have investigated numerically for finite values of the Zel’dovich number, and asymptotically

in the limit of large Zel’dovich numbers. In particular, we describe the flame structure and the

dependence of the propagation speed on the physico-chemical parameters, including the heat

loss and compressibility parameters, and examine the transition from compressibility-driven to

isobaric flames when systematically reducing the representative Mach number.

Key words: Compressibility-driven flames, Isobaric flames, Heat Loss, Flames in long ducts,

Activation Energy Asymptotics

1. Introduction

The propagation of a flame into a quiescent combustible mixture is a fundamental problem

in combustion theory. The one-dimensional problem admits a traveling wave solution describing

the propagation of a planar flame that separates burned products from the fresh combustible

mixture and travels at a relatively low speed, generally known as the laminar flame speed. The

flame structure consists of a preheat zone, where the fresh mixture is heated by conduction and

the reactants drawn by diffusion, and a thin reaction zone where most of the chemical activity

takes place. In the absence of heat losses, the temperature attains the isobaric adiabatic flame

temperature. The representative Mach number, corresponding to the ratio of the flame speed to

the speed of sound is extremely small throughout the wave, such that compressibility effects are
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negligibly small. The gas density decreases as a result of thermal expansion and the propagation

occurs under practically isobaric conditions.

It was recently discovered that when compressibility effects are small, but not negligible,

the one-dimensional problem admits another type of traveling wave solution that propagates at

a constant speed, but much higher speed than the laminar flame speed [1, 2]. This occurs in

long tubes closed at their ignition end where, in the absence of heat losses, the temperature

of the burned gas trapped behind the flame attains the adiabatic isochoric flame temperature,

which is much larger than the adiabatic isobaric flame temperature. The fresh unburned gas

is first compressed and heated, before it expands as a result of the heat conducted from the

reaction zone, and the pressure rises significantly throughout the entire wave. The transition

from compressibility-driven to isobaric flames as the Mach number is reduced, was not clearly

understood in these earlier studies.

Although flame acceleration due to compressibility effects are also observed when a flame

propagates from an open end tube, traveling wave solutions with constant propagation speed are

not possible. When the flame propagates from an open end tube, the pressure behind the flame is

not a constant because it must equilibrate with the atmospheric pressure when the burned prod-

ucts flow out of the tube [3]. Since the pressure, and hence the temperature of the burned gas vary

spatially, a traveling wave solution is not possible. This differs from the case of isobaric flames,

because the pressure in a one-dimensional setting is excluded from the problem formulation and

flame propagation from an open end tube at a constant speed is possible.

In this paper, we examine the structure and dynamics of compressibility-driven flames when

heat losses through the walls are appreciable. The problem is investigated numerically for finite

values of the Zel’dovich number and asymptotically for large Zel’dovich numbers. The results

of the asymptotic approximation were shown to agree well with the numerical results. More-

over, the asymptotic approximation was able to capture and describe the transition from fast

compressibility-driven to slow isobaric flames, when systematically reducing the compressibil-

ity parameter Λ to small enough values, a limit that was found difficult to describe numerically.

2. General formulation

A combustible mixture at temperature Tu is contained in a long narrow duct of circular cross-

section of radius R and length L. At time t = 0, the mixture is ignited at the left end of the tube
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and, as a result, a flame propagates along its axis towards the right end. The left end of the tube

remains closed during the propagation while the right end is kept open with the gas exposed to

atmospheric pressure. For lean mixtures, the amount of oxidizer consumed during combustion is

relatively small, such that for a chemical reaction modeled by an irreversible global step,

Fuel + Oxidizer → Products,

the fuel consumption rate may be expressed as ω̂ = Bρ̂nY exp(E/RT̂ ) where ρ̂ is the density

of the mixture, Y is the fuel mass fraction, T̂ is the temperature, E is the overall activation

energy of the chemical reaction, R is the gas constant, and B is an appropriately-defined pre-

exponential factor. Since a one-step reaction is a gross simplification of the complex chemical

reaction scheme that characterizes combustion processes, the (empirical) exponent n is left arbi-

trary. It takes the values n = 2, or n = 1, when the oxidizer mass fraction YO, or the oxidizer

concentration ρ̂YO/WO, is assumed constant (here WO is the oxidizer molecular weight). Often

the exact value of n has slight relevance, but in the present study its value appears to be important

due to the role played by the density when compressibility effects become significant. We have

therefore retained n arbitrary, and considered below both values, n = 1, 2.

The combustion field is assumed axisymmetric, so that all variables depend on the axial

distance x̂, radial coordinate r̂, and time t̂. The axial and radial velocity components of the

gas mixture are denoted by û and v̂, with ρ̂, p̂ and T̂ the density, pressure and temperature,

respectively. Dimensionless variables are introduced as follows:

x = x̂/δT , r = r̂/R , t = SLt̂/δT , u = û/SL , v = v̂/(aSL) ,

ρ = ρ̂/ρu , p = a2(p̂−pu)/ρuS2
L , Y = Y/Yu , θ = (T̂−Tu)/(Ta−Tu) ,

where Yu is the mass fraction of fuel with ρu, pu, Tu the density, pressure and temperature of the

fresh initial mixture, SL is the flame speed of a planar, adiabatic and isobaric flame, δT =DT /SL

is the thermal flame thickness, DT = λ/ρucp is the thermal diffusivity of the mixture with

λ the thermal conductivity and cp the specific heat of the mixture at constant pressure (both

assumed constant), Ta = Tu + QYu/cp is the adiabatic flame temperature with Q the total

heat of combustion, and a = R/δT is the duct radius in units of the flame thickness δT . Note

that the normalized temperature θ tends to zero in the fresh mixture; it is equal to one in the

burned gas, under adiabatic and isobaric conditions. Finally, when the same symbol is used

for both dimensional and dimensionless quantities, the one with the “hat” accent represents the

dimensional value.
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Assuming constant transport properties, conservation of mass, momentum and energy in the

gas phase (0 < r < 1) take the form
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is the viscous dissipation function and

ω(ρ, θ, Y ) =
(1+q)2β2

2Le sL
2
ρnY exp

{
β(θ−1)

1+q(θ−1)/(1+q)

}
(7)

is the reaction rate. The parameters appearing in these equations are: the ratio of specific heats

γ = cp/cv , with cv the specific heat of the mixture at constant volume (assumed constant);

the Zel’dovich number β = E(Ta−Tu)/RT 2
a or activation energy parameter; the heat release

parameter q=QYu/cpTu; the Prandtl number Pr=ν/DT , with ν the kinematic viscosity of the

mixture; the Lewis number Le=DT /D, with D the mass diffusivity of the fuel; the scaled Mach

number M = Ma2/a2, where Ma=SL/c is the representative Mach number corresponding to

the ratio of the laminar flame speed SL and the speed of sound c=(γpu/ρu)1/2 at atmospheric

pressure. We note parenthetically that Pr−1 is the Reynolds number Re, when the latter is based

on the flame thickness δT and the laminar flame speed SL.

The analytic formula for the laminar flame speed,

S as
L =

√
2Leβ−2 DT Bρn−1

u (Tu/Ta)
n/2 e−E/2RTa ,
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obtained in the limit β → ∞, has been used when expressing the reaction rate in dimensionless

form. To account for the difference between the value SL for a finite value of β and its asymptotic

value, and ensure that the dimensionless flame speed of a planar adiabatic (isobaric) flame for

any value of β is equal to one, the factor sL =SL/Sas
L has been introduced in (7). This factor is

the eigenvalue of the following boundary value problem

dθ

dξ
=

d2θ

dξ2
+ ω ,

dY

dξ
= Le−1 d2Y

dξ2
− ω ,

θ = 0, Y = 1 as ξ → −∞ ,

θ = 1, Y = 0 as ξ = +∞ ,

with ω given by (7), and for a given finite value of β it can be easily determined numerically [3].

Clearly, sL = 1 +O(β−1) when β → ∞.

The temperature inside the walls of the duct is given by T̂w, while its external surface is held

constant, at the same temperature Tu as that of the given mixture. The physical properties of

the solid material, i.e., the density ρw, thermal conductivity λw, and heat capacity cw, are all

assumed constants, with Dw the thermal diffusivity. Introducing dimensionless variables

hw = Hw/R , θw = (T̂w−Tu)/(Ta−Tu) ,

where Hw is the wall thickness, the heat equation in the solid wall (1 < r < 1 + hw) takes the

form
∂θw
∂t

= α

{
∂2θw
∂x2

+
1

a2
1

r

∂

∂r

(
r
∂θw
∂r

)}
, (8)

where α = Dw/DT is the solid-to-gas thermal diffusivity ratio.

Boundary conditions that reflect the symmetry of the combustion field, no slip at and no mass

penetration though the solid walls, and continuity of heat fluxes at the gas-solid interface, are:

v = 0,
∂Y

∂r
=
∂θ

∂r
=
∂u

∂r
= 0, at r = 0 ,

u = v = 0, θ = θw,
∂Y

∂r
= 0,

∂θ

∂r
= a2λ̂

∂θw
∂r

, at r = 1 ,

θw = 0, at r = 1 + hw ,

(9)

where λ̂ = λw/a2λ is the ratio of the solid-to-gas conductivities, scaled with a2 to express the

disparity between the solid and gas properties when the parameter a is small. The conditions at
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the two ends of the tube are:

u = v = 0 ,
∂p

∂x
=
∂θ

∂x
=
∂Y

∂x
= 0 , at x = 0 ,

p = 0, θ = 0, ρ = 1, Y = 1 at x = ℓ ,
(10)

where ℓ = L/δT represents the length of the duct in units of the flame thickness. In general, the

problem also requires specifying initial conditions describing the ignition source but the exact

nature of these conditions are unnecessary in this study, as clarified below.

3. Narrow-gap approximation

We consider first the limit a2 ≪ 1, corresponding to a narrow duct, and expand all variables

in power series of a2, namely in the form f = f0 + a2f1 + . . . for a generic function f . This

procedure is described in detail in [2] where the adiabatic case for a rectangular channel was con-

sidered. The application to a non-adiabatic and circular duct requires only minor modifications,

which are summarized below.

To leading order, Eqs. (4)-(5) in the gas phase and Eq. (8) in the solid wall, together with

boundary conditions (9), yield

θ0 = θ0(x, t) , Y0 = Y0(x, t) , θw0
= θ0(x, t)

[
1− ln r

ln(1 + hw)

]
. (11)

The momentum equations (2)-(3) simplify to

∂p0
∂x

= Pr
1

r

∂

∂r

(
r
∂u0

∂r

)
,

∂po
∂r

= 0 , (12)

and, when integrated yields p0 = p0(x, t) and u0 = 2U(1− r2), where

U(x, t) = 2

∫ 1

0
ru0 dr = − 1

8Pr

∂p0
∂x

is the mean axial velocity. The equation of state then yields ρ0 = ρ0(x, t). Integrating the

continuity equation (1) with respect to r, provides an expression for v0(r, x, t) (not needed in

what follows) and, when applying the boundary conditions at r = 0 and r = 1, results in

∂ρ0
∂t

+
∂(ρ0U)

∂x
= 0 . (13)

The implication is that in a narrow tube, the mixture properties in the radial direction are nearly-

uniform while the axial velocity has a parabolic profile with a mean velocity U that remains to

be determined.
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To the next order, Eqs. (4)-(5) simplify to
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where ω0 = ω(ρ0, θ0, Y0). Using the leading order solution (11), the boundary conditions (9)

simplify to
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where b = 2λ̂/ln(1 + hw). Note that for thin walls (Hw ≪ R), the heat loss parameter
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λ
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is proportional to the ratio of the perimeter and area of the duct cross section, and inversely

proportional to the wall thickness. Integrating from r = 0 to r = 1 and using

1∫
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yields equations for θ0 and Y0 which, together with (12) and (13), constitute a complete system

of equations for the determination of the combustion field.

Introducing Λ = 8PrM and P = M p0, and dropping the subscript 0 for simplicity of

notation, the narrow-gap approximation (a2 ≪ 1) yields the following system of equations
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and boundary conditions

U = 0, ∂θ/∂x = ∂P/∂x = ∂Y/∂x = 0, at x = 0 ;

θ = 0, ρ = 1, P = 0, Y = 1 as x = ℓ .

with ω = ω(ρ, θ, Y ) given by (7).

Except for the heat-loss term in (15), the problem is identical to the one reported earlier for

the propagation in two-dimensional narrow adiabatic channels [2]. When Λ → 0, the deviation

of the pressure from its ambient value P = 0 and the problem reduces to the one describing

the propagation of a non-adiabatic isobaric flame. The key parameter here is the reduced Mach

number

Λ = 8
(
δ2T /R

2
)
PrMa2

that measures the importance of compressibility effects on flame propagation. We note that

Λ ∼ Ma2/Re2 is proportional to the square of the Knudsen number which, at first sight, may in-

validate the continuum hypothesis when Λ ∼ 1. Fortunately, most of the results presented below,

including the transition from a compressibility-driven flame to an isobaric flame, correspond to

small values of Λ. We have occasionally extended the computations to Λ = 1 only to examine

the trend exhibited by the solution when systematically increasing Λ and better understand its

mathematical structure.

4. Traveling wave solutions

The main objective of the present study is to examine the possible development of travel-

ing wave solutions, namely steadily propagating flames that evolve in sufficiently long tubes

(L ≫ δT ) after the initial transient due to the ignition source has faded out. Hence, the boundary

conditions at the far right can be safely applied when x → ∞, except when the flame is near

the end of the duct. We thus seek solutions of the system (14)-(18) of the form f(x − sct),

corresponding to a wave traveling to the right at a constant speed sc. Let ξ = x−sct, the mass

conservation equation (14) reduces to

d

dξ
[ρ(U − sc)] = 0 (19)
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and, when integrated yields ρ(U − sc) = −sc after the conditions U ∼ 0, ρ ∼ 1 have been

applied as ξ → ∞. Eliminating U from Eqs. (17)-(18), then yields

(1 + γP )
dP

dξ
= −Λsc (γP − qθ) (20)

with the remaining equations

−sc
dθ

dξ
=

d2θ

dξ2
− γ − 1

q
sc
dP

dξ
+ ω − bθ , (21)

−sc
dY

dξ
=

1

Le

d2Y

dξ2
− ω , (22)

1 + γP = ρ(1 + qθ) . (23)

The boundary conditions in the fresh mixture are

P = 0, θ = 0, ρ = 1, Y = 1 as ξ → ∞ . (24)

There is, however, a significant difference in the boundary conditions imposed behind the flame,

in the burned gas, when b = 0 or b > 0. In both cases the fuel is completely consumed and

the products eventually reach a state of rest. However, for the adiabatic case (b = 0) the state

variables tend to constant values in the burned gas region, while for the non-adiabatic case (b > 0)

the state of the gas must reach asymptotically the state of the fresh mixture. Hence,

∂Y/∂ξ = ∂θ/∂ξ = ∂P/∂ξ = 0 for b = 0

Y = θ = P = 0 for b > 0

⎫
⎬

⎭ as ξ → −∞ . (25)

The eigenvalue problem (20)-(25) describing the propagation of compressibility-driven flames

will be first addressed numerically in the next section, followed by a discussion of the asymptotic

approximation for large activation energies.

We note that, for the adiabatic case, the combination of Eqs. (21) and (22) leads to an equation

that can be integrated once to give

−sc(θ + Y ) =
dθ

dξ
+

1

Le

dY

dξ
− γ − 1

q
scP − sc , (26)

where the conditions in the fresh mixture, i.e., as ξ → ∞, have been used. Together with (20)

and (18) it determines the state of the burned gas, where Y = 0, as

P ∼ q, θ ∼ γ, ρ ∼ 1 as ξ → −∞ . (27)
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The next terms in the asymptotic behavior for large negative ξ can be obtained by linearizing

equations (20) and (26). One finds

P ∼ q + C1e
λ1scξ + C2e

λ2scξ

θ ∼ γ + C3e
λ1scξ + C4e

λ2scξ
(28)

where the Ci’s are constants of integration and

λ1,2 =
−(1 + Λγ + qγ)±

√
(1 + Λγ + qγ)2 − 4Λ(1 + qγ)

2(1 + qγ)
.

Since λ1,2 < 0, the solution behind the flame for the adiabatic case decays exponentially to-

wards the equilibrium values (27). These values, reached when the reaction rate becomes negli-

gibly small, determine the flame pressure, temperature and density (denoted by the subscript f ),

namely Pf = q, θf = γ and ρf = 1.

The state of the burned gas and the values of Pf , θf , ρf for the non-adiabatic case (b ̸= 0),

remain to be determined.

5. Numerical results

The calculations reported below were carried out in a finite domain, ξmin < ξ < ξmax,

which was increased systematically in order to determine the independence of the results to

the computational domain. The spatial derivatives were discretized on a uniform grid using

a second order central difference scheme and the equations were solved using a Gauss-Seidel

method with over-relaxation. The number of grid points was doubled in some cases without

notable difference in the results. The solutions were obtained using two types of iterations.

When a single-valued response was expected, e.g., when b = 0, the value of the flame velocity

sc was calculated directly as a function of parameters. In the presence of heat loss a multi-

valued response was anticipated, and the value of b was calculated for given sc. In either case, a

Gauss-Seidel procedure was used to compute sc or b.

In order to eliminate the freedom in shifting the coordinate ξ by a constant, we have fixed

the temperature at an internal point within the domain; say θ = θ∗ at ξ = ξ∗, with θ∗ chosen

judiciously. The choice θ∗ = 0.8 ÷ 1.1 was found appropriate in all the reported calculations.

The value θ∗ is shown on the temperature profiles of Fig. 2 reported below, with an open circle.
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To render the extensive computations manageable, the boundary conditions (25) were conve-

niently replaced with the “mild” conditions

∂2P

∂ξ2
=
∂2θ

∂ξ2
=
∂2Y

∂ξ2
= 0 as ξ → −∞ .

which permits reducing the size of the integration domain. For the adiabatic case, these con-

ditions are automatically satisfied. For the non-adiabatic case, we have verified that using (5)

instead of (25) has a negligible influence on the solution when the size of the computational

domain is sufficiently large.

In most of the calculations reported below we have chosen q = 5, γ = 1.4 and β = 10,

focusing on variations in the heat loss parameter b, the Lewis number Le, and the compressibility

parameter Λ. In order to examine the importance of the exponent n on flame propagation, the

two values n = 1 and n = 2 have been examined.

5.1. Adiabatic flames

We consider first the adiabatic duct, b = 0, which was previously examined in [2] for the

case n = 2. Profiles of the state variables across the flame are shown in Fig. 1 for the two

exponents n = 1 and n = 2 and for Λ = 1 and Λ = 0.1, with a magnification of the region

near the reaction zone presented in Fig. 2 for Λ = 0.1. In the latter the reference temperature

θ∗ used in the computations is marked by the symbol ◦. We observe that the flame structure is

remarkably different than the structure of ordinary isobaric flames. The preheat zone is preceded

by a region where the gas is heated by adiabatic compression, with the pressure and density

increasing continuously. This region, corresponding to Y ≈ 1, is followed by a relatively thin

convective-diffusive zone, where the temperature increases abruptly by the heat conducted from

the reaction zone with the density dropping sharply as a result of gas expansion, and a much

thinner diffusive-reactive layer where combustion occurs with the fuel being completely depleted

(Y → 0). The thickness of the reaction zone is shown in Fig. 2 using the spatial distribution of

the reaction rate ω. As a result of the heat released by the chemical reactions and the continuous

increase in pressure, the temperature rises above the isobaric adiabatic flame temperature to

the value θf = γ, corresponding to the isochoric adiabatic flame temperature, with the density

dropping to ρf = 1. The pressure attains its maximum value Pf = q in the reaction zone.

The state of the gas behind the flame remains constant, with all variables retaining their values

reached in the reaction zone.
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Figure 1: Pressure, temperature, density, and mass fraction Y profiles of adiabatic (b = 0) compressibility-driven flames

with Le = 1, for two values of the compressibility parameter Λ and the two exponents n = 1 and n = 2; the unburned

gas on the right, and the burned gas on the left sides. In each case the propagation speed sc is indicated.
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Figure 2: Magnification of the temperature, density and mass fraction profiles of the adiabatic (b = 0) compressibility-

driven flame with Λ = 0.1 shown in Fig. 1 in the vicinity of the reaction zone; the reference point marked with a symbol

◦ correspond to θ∗.

Due to the relatively slow preheating caused by adiabatic compression when Λ is small, the

overall flame zone is much thicker. The increase in temperature and corresponding drop in den-

sity across the reaction zone appear much sharper and occur in a relatively thinner region. This

“jump” in density and temperature across the reaction zone is in sharp contrast to the continuous

change observed in isobaric flames. It would have been instructive, therefore, to examine the

flame structure by further reducing the value of Λ. Unfortunately, due to the steepening of the

temperature and density profiles and the widening of the preheat zone, serious numerical difficul-

ties are encountered when attempting to find solutions with a distributed reaction rate for smaller

values of Λ = 0.1.

The propagation speed as a function of Λ, for unity, sub- and super- unity Lewis number

flames, is plotted in Fig. 3 for the two values n = 1 and n = 2. As discussed in [2], the

propagation speed of compressibility-driven flames is much larger than the speed of isobaric

flames; the influence of compressibility manifests itself though the increase in flame temperature

from θf =1 to θf = γ, amplified by the large activation energy of typical combustion reactions.

The relatively weak dependence of sc on the Lewis number is expected, because of the secondary
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Figure 3: The propagation speed of an adiabatic compressibility-driven flame as a function of the compressibility param-

eter Λ, for n = 1 and 2 and three values of the Lewis numbers: Le = 1.5 - dash-dotted lines, Le = 1 - solid lines;

Le = 0.5 - dashed lines.

role that thermo-diffusive effects have on the propagation of planar flames. The notable increase

in sc when increasing the exponent n is due to the large variations in density, particularly near

the reaction zone, which has a direct effect on the reaction rate. The most surprising result is the

lack of dependence of the propagation speed on the compressibility parameter, which persists

even when decreasing Λ to small values, and does not approach the expected value sc = 1 when

Λ = 0. Evidently, the limit Λ → 0 is singular, as is also observed from the structure of the

solution shown in Fig. 1 when reducing Λ. Since the classical isobaric formulation is recovered

when formally imposing Λ = 0 in the governing equations (20)-(24), treating the case Λ ≪ 1

requires taking the analysis to higher orders, which is beyond the scope of the present article. The

limit Λ → 0 will be clarified in the following by numerically investigating the propagation of

non-adiabatic flames and systematically reducing the values of Λ and the heat loss parameter b.

5.2. Non-adiabatic flames

It is well known, for isobaric flames, that the dependence of the propagation speed on the

heat-loss parameter is multi-valued for 0 ≤ b < bc, and no (steady) solution exist for b > bc.

The response curve of sc vs b is therefore C-shaped, with a turning point at b = bc correspond-

ing to flame extinction. The upper branch, along which the propagation speed decreases from
14



sc = 1 when increasing the heat loss parameter b, corresponds to stable states; the lower branch

along which sc increases with increasing b corresponds to unstable states that cannot be realized

physically. The critical parameter bc is given in the asymptotic limit β → ∞ by bc = (βe)−1

[4, 5], a result that has been recently extended in [6] to large but finite values of β.

The response curve tracing the propagation speed as a function of the heat loss parameter

is also C-shaped, as shown in Fig. 4 for several values of Λ and the two exponents n = 1 and

n = 2. The focus presently should be on the solid curves, which were obtained numerically; the

dashed curves representing the asymptotic approximation for large β will be discussed in the next

section. For 0 ≤ b < bc the solution is multi-valued. The two solutions for a given b < bc are

quite distinct as illustrated in Fig. 5, where temperature, pressure and fuel mass fraction profiles

are plotted for each of the two solutions corresponding to b = 1.31 (the two steady states are

marked in Fig. 4(a) by the symbol ◦). Due to heat loss, the flame temperature θf < γ and the

pressure Pf < q in both cases, but the flame associated with a higher temperature and pressure

propagates nearly three times faster than the the flame with the lower temperature and pressure.

Steady states along the upper branch of the response curve, corresponding to solutions with sc
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Figure 4: Propagation speed of compressibility-driven flames as a function of the heat loss parameter b for O(1) values

of the compressibility parameter Λ and Le = 1; the solid lines correspond to the numerical results with β = 10, the

dashed lines are based on the asymptotic approximation derived in Sec. 6.
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Figure 5: Profiles of temperature, pressure and mass fraction of compressibility-driven flames corresponding to the two

distinct solutions for b ≈ 1.31, marked in Fig. 4(a) by the symbol ◦; computed for Λ = 1 and n = 1.

that decrease from the adiabatic value when increasing b, are presumably stable; those along the

lower branch of the response curve with sc increasing when increasing b are unstable. One notes

that the critical heat-loss parameter bc for compressibility-driven flames is much larger than the

corresponding value for isobaric flames, implying that these fast flames can resist heat-loss to

a greater extent without being extinguished. Evidently, bc = O(1) even for the relatively large

value of β = 10 considered here, and depending on Λ and n can be as large as b = 10.

6. Asymptotic analysis

In this section, we derive an asymptotic solution of the eigenvalue problem (20)-(24) for large

activation energy β, that more clearly elucidates the structure of compressibility-driven flames

and the dependence of their propagation speed on the relevant parameters. In particular, we are

interested in the dependence of sc ranging from O(1) to small values of Λ, to clarify the limiting

behavior Λ → 0. It is convenient to recast the exponential term in the reaction-rate (7) using

exp

{
β(θ − 1)

1 + q(θ − 1)/(1 + q)

}
= eA exp

{
β̃(θ − θf )

1 + q̃(θ − θf )/(1 + q̃)

}
, (29)
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where θf remains to be specified,

A =
β(θf − 1)

1 + q(θf − 1)/(1 + q)
, q̃ =

q

1 + q(θf − 1)/(1 + q)
,

and the activation energy parameter is expressed in the form

β = [1 + q(θf − 1)/(1 + q)]2 β̃ .

Evidently, β̃ and β have the same order of magnitude, and β̃ → ∞ when β → ∞. The reaction

rate becomes

ω =
(1 + q)nρn

f

s2c

(β
β̃

)2
eA

︸ ︷︷ ︸
µ

β̃2s2c
2Le sL

2

( ρ
ρf

)n
Y exp

{
β̃(θ − θf )

1 + q̃(θ − θf )/(1 + q̃)

}
. (30)

A similar transformation was used in [2] to study the structure of adiabatic compressibility-driven

flames and in [6] to generalize the asymptotic results for non-adiabatic isobaric flames to large

but finite values of β.

For large β̃ the chemical reaction is confined to a sheet along which θ = θf , such that θf
stands for the flame temperature. If the pressure and density along the sheet are denoted by

Pf and ρf , then ρf = (1 + γPf )/(1 + qθf ). Under adiabatic conditions, θf = γ, Pf = q and

ρf = 1, but for non-adiabatic flames these values remain to be determined. Finally, we note that

in numerical calculations with a distributed reaction, i.e., with finite β̃, an appropriate choice

for the determination of the flame temperature, density and pressure is the location where the

reaction rate takes its maximum value.

Rescaling length using ζ = sc ξ, the governing equations (20)-(22) become

(1 + γP )
dP

dζ
= −Λ(γP − qθ) (31)

−dθ

dζ
=

d2θ

dζ2
− γ − 1

q

dP

dζ
+ ω̃ − b̃ θ (32)

−dY

dζ
=

1

Le

d2Y

dζ2
− ω̃ , (33)

where

ω̃ = µ
β̃2

2Le sL
2

( ρ
ρf

)n
Y exp

{
β̃(θ − θf )

1 + q̃(θ − θf )/(1 + q̃)

}
.

Here µ is the effective Damköhler number given by

µ =
1

s2c
(1 + γPf )

n
( 1 + q

1 + qθf

)n−4
eA,
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and b̃ = b s−2
c plays the role of a parameter. For a specified b̃, the solution of Eqs. (31)-(33)

together with the boundary conditions (24)-(25) determines the values of θf , Pf , ρf as well as µ.

The latter then provides the following expression for the propagation speed,

sc = µ−1/2(1 + γPf )
n/2

(1 + qθf
1 + q

)2−n/2
exp

{
β

2

θf − 1

(1 + qθf )/(1 + q)

}
, (34)

with the corresponding heat loss parameter obtained a-posteriori from

b = b̃ s2c . (35)

The formulation, so far, is valid for any value of β̃, but will be used below to determine an

asymptotic approximation to the propagation speed, denoted as sasc , valid for β̃ ≫ 1.

6.1. Outer zones

We proceed with the asymptotic solution for β̃ ≫ 1. Chemical reaction in this limit is

confined to a sheet which, without loss of generality, may be located at ζ = 0. Elsewhere, in

the pre- and post-reaction regions, or the outer regions where ζ > 0 and ζ < 0 respectively, the

reaction rate is exponentially small and the problem reduces to solving (31)-(33) with ω̃ = 0.

Across the reaction front all variables remain continuous, namely [[P ]] = [[θ]] = [[Y ]] = 0, where

the operator [[f ]] = f |ζ=0+ − f |ζ=0− denotes the jump in the quantity f across ζ = 0. Since the

reaction rate can be eliminated when adding Eqs. (32) and (33), the additional jump condition
[[
dθ

dζ

]]
+

1

Le

[[
dY

dζ

]]
= 0 , (36)

is obtained when integrating the resulting equation across ζ = 0. The solution for the fuel mass

fraction in the outer regions is given by

Y =

⎧
⎨

⎩
0, ζ < 0,

1− exp(−Leζ), ζ > 0.
(37)

The solution for the pressure and temperature requires solving

(1 + γP )
dP

dζ
= −Λ(γP − qθ) , (38)

−dθ

dζ
=

d2θ

dζ2
− γ − 1

q

dP

dζ
− b̃ θ , (39)

subject to the jump conditions

[[P ]] = [[θ]] = 0, [[dθ/dζ]] = −1 (40)
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across the reaction sheet, and the boundary conditions P ∼ 0 and θ ∼ 0 as ζ → ±∞. The jump

and boundary conditions are sufficient for determining the solution ahead and behind the reaction

front. However, it is a nonlinear problem that does not possess an exact analytical solution, and

has been solved numerically using a shooting method, as described in Appendix A.

Figure 6 shows typical profiles of the temperature (red/solid lines) and pressure (blue/dashed

lines) in the outer regions, calculated for q = 5. The sharp increase in temperature ahead of the

flame compared to slow decrease behind the flame is in agreement with the numerical results
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Figure 6: Profiles of temperature (red/solid lines) and pressure (blue/dashed lines) in the pre- and post-reaction front

(outer solutions) of compressibility-driven flames, determined from the asymptotic solution for large β̃ with q = 5.
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reported in Fig. 5. The jump in the temperature derivative across the reaction zone (ζ = 0) is

more clearly seen in the rescaled region shown in the figure inset.

Figure 7 shows the calculated values of the flame temperature θf and pressure Pf as a function

of the (scaled) heat loss parameter b̃, for a wide range of Λ. Both, θf and Pf , tend to their adiabatic

values, θf = γ and Pf = q, when b → 0, and decrease substantially in the presence of heat loss.

For a given value of b̃, the flame temperature and pressure decrease when decreasing Λ, but

not much when when b̃ exceeds a certain threshold. Finally, we note that we have deliberately

selected in this figure values of Λ < 0.1, to demonstrate that the asymptotic solution captures a

range of parameters where the direct numerical computations faced some difficulties.

In Fig. 8 we show the temperature gradient Φ ≡ dθ/dζ|ζ=0− , which corresponds to the

amount of heat conducted to the burned gas region from the reaction zone, as a function of b̃. In

the adiabatic case, all the heat generated in the reaction zone is conducted to the fresh mixture;

the temperature of the burned gas remains constant, i.e., θ = θf = γ, and Φ = 0. In the presence

of heat loss, the temperature of the burned gas drops below θf , with Φ increasing when increasing

b̃. The graph also shows that the heat conducted to the burned gas is primarily a result of heat

10-6 10-5 10-4 10-3 10-2 10-1 1000.5

1

1.5

10-6 10-5 10-4 10-3 10-2 10-1 1000.5

0.75

1

1.25

1.5

10-6 10-5 10-4 10-3 10-2 10-1 1000.5

0.75

1

1.25

1.5

10-6 10-5 10-4 10-3 10-2 10-1 1000.5

0.75

1

1.25

1.5

10-6 10-5 10-4 10-3 10-2 10-1 1000.5

0.75

1

1.25

1.5

10-6 10-5 10-4 10-3 10-2 10-1 1000.5

0.75

1

1.25

1.5

θf

b

q=5, γ=1.4

Λ=0.001

Λ=0.01

Λ=1

Λ=0.0005

Λ=0.005

~

Λ=0.1

(a) Flame temperature θf

10-6 10-5 10-4 10-3 10-2 10-1 1000

1

2

3

4

5

6

10-6 10-5 10-4 10-3 10-2 10-1 1000

1

2

3

4

5

6

10-6 10-5 10-4 10-3 10-2 10-1 1000

1

2

3

4

5

6

10-6 10-5 10-4 10-3 10-2 10-1 1000

1

2

3

4

5

6

10-6 10-5 10-4 10-3 10-2 10-1 1000

1

2

3

4

5

6

10-6 10-5 10-4 10-3 10-2 10-1 1000

1

2

3

4

5

6

Pf

b

q=5, γ=1.4

Λ=0.001

Λ=1

Λ=0.01

Λ=0.0005

Λ=0.005

Λ=0.1

~

(b) Flame pressure Pf

Figure 7: Flame temperature and pressure of compressibility-driven flames, plotted as a function of b̃ for various values

of Λ; determined from the asymptotic solution for large β̃ with q = 5 and γ = 1.4.
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Figure 8: The temperature gradient Φ = dθ/dζ|ζ=0− , corresponding to the heat conducted to the burned gas region;

calculated for various Λ with q = 5 and γ = 1.4.

loss and depends only weakly on the compressibility parameter Λ. In the range 0 < Λ < 1, it

may be treated as practically independent of Λ. Finally, we note that the value of Φ is needed in

the analysis of the reaction zone discussed next.

6.2. Reaction zone

Although the outer solutions provided the pressure, temperature and fuel mass fraction dis-

tributions across the flame, the details of the reaction zone are needed for the determination of

the propagation speed. To this end, we introduce the stretching transformation, ζ = β̃−1η, and

expand all variables about their values at the reaction front, namely

P = Pf − β̃−1χ(η) + . . . , θ = θf − β̃−1φ(η) + . . . , Y = β̃−1ψ(η) + . . .

Substituting into the governing equations (31)-(33) yields

dχ

dη
= 0,

d2φ

dη2
=

1

2Le
µψ e−φ,

1

Le

d2ψ

dη2
=

1

2Le
µψ e−φ , (41)

where the leading terms sL ∼ 1 and ρ ∼ ρf have been used in evaluating the reaction rate ω̃.

The first equation indicates that χ ≡ 0 and verifies that the pressure, to leading order, remains

continuous across the reaction zone. Matching the inner and outer expansions requires

ψ =
dψ

dη
∼ 0 ,

dφ

dη
∼ −Φ, as η → −∞
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1

Le

dψ

dη
∼ 1

dφ

dη
∼ −Φ+ 1, as η → +∞

which are used as boundary conditions for the determination of φ(η) and ψ(η).

The first integral of Eqs. (41) yields

dφ

dη
− 1

Le

dψ

dη
= −α

and, when using the matching condition as η → +∞, one finds that α = Φ, a constant that has

been already determined by the outer solution, as shown in Fig. 8. A second integration yields

φ− 1

Le
ψ = −αη,

where, without loss of generality, the constant of integration has been set to zero by appropriately

choosing the origin of the stretched coordinate η. Let f = Le−1ψ the inner problem reduces to

solving

d2f

dη2
=

1

2
µ f e−f+αη (42)

f =
df

dη
∼ 0 as η → −∞ , f ∼ η as η → +∞ (43)

Equation (42) with the three conditions (43) can be solved numerically, for given α, to deter-

mine f(η) and the constant µ. This boundary value problem was previously encountered when

examining the structure of diffusion flames in the ”premixed flame regime” [7], and was recently

reexamined in [6]. Rather than fitting the numerical data to determine the dependence of µ on α,

we use below an approximation valid for α ≪ 1. When α = 0, corresponding to the adiabatic

case, eq. (42) can be integrated once and, when applying the boundary conditions (43) yields that

µ = 1. A standard regular perturbation method yields the next two terms, such that

µ = 1− µ1 α− µ2 α
2 + . . . , (44)

with µ1 ≈ 1.3440 and µ2 ≈ −0.9032.

In summary, the outer solution determines the profiles of the temperature, pressure and fuel

mass fraction, as well as the values θf , Pf and Φ as function of b̃, and the inner solution provides,

for a given Φ, the value of µ. The asymptotic approximation of the flame speed, sasc , is then

obtained from Eq. (34) with the corresponding heat loss parameter obtained from (35). Finally,

we note that for the adiabatic case (µ = 1) the asymptotic approximation sasc reduces to the

expression derived in [2] for n = 2.
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6.3. Comparison to the numerical results

Next, we compare the asymptotic approximation to the propagation speed, sasc , to the numer-

ical solution sc obtained directly from (20)-(24). Considering first the adiabatic case, we show

in Fig. 9 the numerically-computed sc, plotted for Λ = 1 (solid lines) and Λ = 0.2 (marked

with a △ symbol), as a function of the Zel’dovich number β, for the two exponents n = 1 and

n = 2. Also shown in the figure is sasc (dashed lines) which, as noted earlier, is practically

independent of Λ. Evidently, the asymptotic result approximates well the “exact” propagation

speed computed numerically for a wide range of β. The difference between the two, however,

does not seem to reduce appreciably when increasing β, as may have been expected. The reason

is due to the exponentially growing factor in the asymptotic expression for sc, as discussed in

Appendix B.

In Fig. 4 we have added the dependence of sasc on b, for the corresponding values of Λ

and n, as dashed curves. The comparison shows that the asymptotic expression approximates

the “exact” numerical results extremely well. The minor discrepancies result from adopting

0 5 10 150

20

40

60

80

100

120

0 5 10 150

20

40

60

80

100

120

0 5 10 150

20

40

60

80

100

120

0 5 10 150

20

40

60

80

100

120

0 5 10 150

20

40

60

80

100

120

0 5 10 150

20

40

60

80

100

120

n=2

n=1

q=5, Le=1

sc

β

Figure 9: Comparison of the propagation speed of adiabatic, compressibility-driven flames sc determined numerically

(solid lines for Λ = 1 and triangle symbols for Λ = 0.2) to the asymptotic approximation sasc (dashed lines) for the two

exponents n = 1 and n = 2, with q = 5 and Le = 1.
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the approximate expression (44) for µ and retaining only the leading term in the inner/outer

expansions.

7. The transition from fast to slow flames

Using the asymptotic approximation derived in the preceding section, we now examine the

propagation speed of compressibility-driven flames for small values of Λ, which was found pro-

hibitively difficult to evaluate numerically. In Fig. 10 we present response curves of sasc versus

b, for values of Λ that systematically approach zero. The dashed curve corresponds to Λ = 0, or

isobaric flames. The upper branch of all curves with Λ > 0 terminates at the same point when

b = 0, which corresponds to the propagation speed of adiabatic flames (as discussed earlier,

this value is practically independent of Λ) and is marked in the figure with the symbol •; the

upper branch of the dashed curve terminates at sasc = 1. The graphs in this figure demonstrate

the transition that occurs in the C-shaped response curve when reducing the compressibility pa-

rameter. For sufficiently small values of Λ the response curve for a given value of b consists of

four distinct solutions, instead of two, as clearly illustrated in the figure insets. Assuming that
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Figure 10: Propagation speed (based on the asymptotic approximation with β = 10) of compressibility-driven flames as

a function of the heat loss parameter b for small values of Λ; computed with Le = 1 and q = 5. The curves marked

with open circles are shown in the figure insets on a refined scale.
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Figure 11: The sensitivity of the propagation speed sasc on the activation energy parameter β, for Λ = 0.001 and the

two exponents n = 1 and n = 2.

the segments with positive slope, where sc increases with increasing b, correspond to unstable

states, the results can be interpreted as follows. When increasing the heat loss parameter b, start-

ing from a nearly-adiabatic state, the flame speed decreases to a point where, instead of being

extinguished (as in the case of a C-shaped curve) the flame propagates at a substantially slower

speed that continues to decrease when further increasing b. In some cases, as for Λ = 0.01 with

n = 2, the flame speed drops to a value corresponding to an isobaric flame. In all cases the flame

is extinguished when b exceeds the critical value bc.

Finally, we note that, although the flame temperature θf and pressure Pf of compressibility-

driven flames are, to leading order, independent of the activation energy parameter, the propaga-

tion speed depends significantly on β as shown in Figure 11; see also the approximation given

by Eq. (34). The (stable) isobaric flames, on the other hand, are practically independent of β.

8. Conclusions

In this study, we have investigated the structure and dynamics of compressibility-driven

flames that evolve in long tubes closed at their ignition end, in the presence of heat losses through

the tube walls. A narrow gap approximation is used to reduce the governing equations to an ef-
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fectively one-dimensional problem, with the reduced Mach number Λ playing a key role on the

flame behavior. In long channels this one-dimensional problem admits traveling-wave solutions

that we have investigated numerically for finite values of the Zel’dovich number β, and asymp-

totically in the limit of β ≫ 1. The structure of compressibility-driven flames, with Λ > 0,

is significantly different that the classical isobaric flames corresponding to Λ = 0. The fresh

unburned gas is first compressed and heated before it expands by the heat conducted from the

reaction zone, and the pressure rises substantially throughout the entire wave. Under adiabatic

conditions, the temperature of the burned gas trapped behind the flame attains the isochoric flame

temperature, Tb = Tu + QYu/cv , which is much larger than the isobaric flame temperature

Ta = Tu +QYu/cp, and the pressure attains the value pb = pu(1 +QYu/cvTu). The propaga-

tion speed ∼ exp(−E/2RTb) is much higher than the laminar flame speed ∼ exp(−E/2RTa),

and for the typical β of combustible mixtures can be twenty to fifty times larger. A notable re-

sult is the weak dependence of the propagation speed on the compressibility parameter, which

persists to very small values of Λ.

In the presence of heat losses we show that, similar to isobaric flames, the response curve

that traces the dependence of the propagation speed on the heat loss parameter is C-shaped.

Anticipating that the lower branch corresponds to unstable states, the solution branch along the

upper branch corresponds to a flame that slows down when heat losses intensify and extinguishes

(at the turning point) when heat losses become excessive. However, unlike isobaric flames, the

fast compressibility-driven flames can better resist heat-losses, and survive under substantially

larger values of the heat loss parameter b. The propagation speed at extinction is nearly half the

speed of the adiabatic flames, and remains substantially high exceeding the laminar flame speed

by ten-to-twenty times.

The results of the asymptotic analysis are in agreement with the numerical results for finite

values of Λ. Moreover, the asymptotic approximation was able to capture and describe the

transition from fast compressibility-driven to slow isobaric flames when systematically reducing

the compressibility parameter Λ, a limit that is not easily accessible in numerical integrations. We

show that when the characteristic Mach number is reduced and compressibility effects weaken,

the response curve of the propagation speed vs heat loss has a more complex shape that exhibits

a bistable behavior. For a given set of parameters (Mach number and heat loss), compressibility-

driven states corresponding to fast and slow flames coexist. Thus, a fast propagating flame will
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Figure 12: The roots of the cubic (A.46), for γ = 1.4 and Λ = 0.1, as a function of b̃.

abruptly transition to a slower flame when heat losses exceed a critical threshold; the slow flame

continues to slow down when the heat losses intensify before extinguishing. At very low values

of Λ the compressibility-driven flame is highly sensitive to heat losses and could abruptly shift

to an isobaric flame with a very small amount of heat loss.
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Appendix A

In this appendix, we describe the shooting method used to numerically solve the outer prob-

lem (38)-(39), subject to the jump conditions (40). The equations are solved in the finite domain

ζmin < ζ < ζmax, with ζmin and ζmax taken sufficiently large to ensure that the solution remains

domain independent. Since P ∼ 0 as ζ → ±∞, the asymptotic behavior of the solution for large

|ζ| can be obtained from the linearized form of the equations. Eliminating P , yields a third order

linear equation for θ with constant coefficients. The solution then takes the form

θ ∼
3∑

i=1

c±i eaiζ , P ∼
3∑

i=1

Λq

ai + γΛ
c±i eaiζ , (A.45)
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where c±i are arbitrary constants (the ± corresponding to positive/negative ζ), and ai are the roots

of the cubic

a3 + (1 + Λγ)a2 + (Λ− b̃)a− b̃Λγ = 0. (A.46)

It can be easily verified that for b̃ > 0 the three roots of (A.46) are real; one of them positive

(say, a1 > 0) and the other two negative (a2, a3 < 0). The three roots for γ = 1.4 and Λ = 0.1,

for example, are shown in Fig. 12 as a function of b̃. The implication is that

θ ∼ c−1 ea1ζ , P ∼ Λq

a1 + γΛ
c−1 ea1ζ as ζ → −∞ , (A.47)

since c−2 = c−3 ≡ 0. The coefficient c−1 can therefore be used as a shooting parameter. Starting

with the asymptotic behavior (A.47), the equations are integrated from at ζmin to ζ = 0, where

the jump conditions are applied, and then from ζ = 0 to ζmax. The coefficient c−1 is adjusted

iteratively until the condition c+1 = 0 as ζ → +∞ is satisfied, which ensures that θ ∼ 0 and

P ∼ 0 in the limit.
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Figure 13: The dependence of F , defined in (B.49) on the expansion parameter β−1 for two values of Λ with n = 2;

the solid curve corresponds to the asymptotic approximation, the ◦ symbol to the numerically computed values, and the

dashed curves to the linear extrapolation to β−1 = 0.
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Appendix B

In this appendix, we discuss the nature of the asymptotic approximation of the propagation

speed for large β̃ or equivalently for β ≫ 1, focusing on the adiabatic case (b = 0). Extending

the expansion of sc to higher orders, requires expanding the inner and outer expansions in power

series of β−1. With

θf = γ + β−1θf 1
+ β−2θf 2

+ . . . ,

Pf = q + β−1Pf 1
+ β−2Pf 2

+ . . . ,

equation (34) for the propagation speed takes the form

sasc =
(1 + qγ)2

(1 + q)2−n/2
exp

{
β

2

γ − 1

(1 + qγ)/(1 + q)

}

︸ ︷︷ ︸
E

(
1 +

a1
β

+
a2
β2

+
a3
β3

+ . . .

)
(B.48)

where a1 and a2 are O(1) constants, independent on β. We note parenthetically that (B.48)

is not a classical asymptotic expansion, with well defined gauge functions, but has the form

of a “composite expansion” consisting of the product of exponential and algebraic factors with

different dependencies on β. The calculation of a1, a2, etc., involves a formidable task that will

not attempted here. Rather we will validate the expansion (B.48) using the “exact” numerical

solution of sc. Plotted in Fig. 13 is the dependence of

F = β
(sc
E

− 1
)
∼ a1 +

a2
β

+
a3
β2

+ . . . (B.49)

on β−1 for Λ = 1, 0.2 and n = 2 with the dashed lines corresponding to the linear extrapolation

to β−1 = 0. The coefficients in the asymptotic expansion (B.48) can now be evaluated a-

posteriori:

a1 = lim
β−1→0

F , a2 = lim
β−1→0

[
β(F − a1)

]
, etc .

The common value a1 ≈ 0.77 (also read from Fig. 13), and the values of a2 for Λ = 1 and

Λ = 0.2 are a2 ≈ −0.33 and a2 ≈ 1.98, respectively. To this order sasc is found to approach

the “exact” numerical values of sc with an accuracy of less than 0.1% over the entire range of β

considered.
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