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Abstract

The present study examines, in presence of thermal expansion e↵ects, the existence of the multiplicity of solutions

previously reported within the context of di↵usive-thermal modeling in [15], for lean premixed flames with low

Lewis number (Le < 1) propagating in narrow circular adiabatic channels subject to a Poiseuille flow. For this,

direct numerical simulations have been carried out within the framework of variable-density Navier-Stokes equations

and zero-Mach-number approximation. The simulations, conducted for both axisymmetric and three-dimensional

cylindrical geometries, confirm the coexistence of multiple steady flame structures for a given flow rate. They show

that axisymmetric flames concave towards the upstream are more unstable to three-dimensional perturbations than

convex (toward the upstream) flames. This result evinces earlier findings obtained from stability analysis. The non-

axisymmetry property of the flame is also found to push back the critical flashback limits at larger flow rate when

compared to those predicted under the assumption of flame axisymmetry.
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1. Introduction

New technology research for the development of micro combustion devices as power source for portable devices

[1–3] has promoted the interest on the problem of small-scale flame dynamics. The consequent large surface-to-

volume ratio makes di�cult the flame stabilization, challenging the progress in the fabrication of such small-scale

combustors. Flashback, ignition and flammability limits are fundamental issues for the advancement of these innova-

tive applications.

The propagation of premixed flame in a tube constitutes a basic configuration in the buildup of miniaturized com-

bustors. Experiments [4–9] have shown that the characteristics of the flame propagation regime are sensitive to various
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parameters such as transport, thermodynamics and conductive properties, composition mixture and tube geometry.

The major di�culties encountered in the experiments are the quenching phenomena (that limits the narrowness of

the tube), and the requirement of complicated techniques to maintain and control the flame, and of very small-scale

measurements techniques. These drawbacks restrain a detailed description of small-scale flame characteristics.

Within the context of numerical simulation, premixed flames dynamics in a planar channel have been the focus

of many studies. Simplified approaches making use of di↵usive-thermal (constant density) modeling [10–14] have

provided relevant e↵ects of channel height, conductive wall properties, inlet flow rate, and of di↵usion and chemical

properties on the flame structure. The premixed flame propagation in planar channel has also been examined within the

framework of compressible Navier-Stokes equations, accounting for simple [16, 17, 34, 35] and complex chemistry

[18–20]. Besides, propagation of premixed-flame in cylindrical tubes was studied in [15, 21, 22, 24] making use of

di↵usive-thermal model, and in [23, 25–29, 31, 33] accounting for thermal expansion.

One pertinent question in performing numerical simulations concerns the geometry setup regarding the symmetry

properties of the flame. Indeed, many of numerical studies make use of the symmetry/axisymmetry assumption for the

flame shape. However, breaking of symmetry can occur as observed in some experiments [4, 6, 7]. The asymmetrical

behavior of premixed flames in a planar channel have been examined in recent numerical simulations [12–14, 19, 20].

These studies outline the steady propagation of asymmetric flames in narrow channels under adiabatic/isotherm wall

conditions, generally for large flow rate and Lewis numbers less or equal to unity.

Analysis of breaking of flame symmetry in cylindrical tubes is much more constraining as three-dimensionality

of the geometry has to be accounted for in the simulations, thus requiring higher computational resources. These

numerical limitations often promote the use of axisymmetry assumption in the simulation of flame propagating in

circular channel [23, 25–30]. However, the stability analysis [15, 36] predict that loss of flame shape axisymmetry

can occur under three-dimensional perturbations. Even though three-dimensional numerical results are generally

scarce in the scientific literature, they do report breaking of axisymmetry of propagating flame in circular tubes with

isothermal [31, 33] and adiabatic [15] wall conditions.

An interesting finding by [15] is the coexistence, for the same set of parameters, of multiple steady solutions

(composed of axisymmetric and non-axisymmetric flame shapes) reported for flames with Lewis numbers smaller

than unity propagating in narrow cylindrical adiabatic channels. The adiabatic wall condition falls more within a

fundamental than practical purpose, nevertheless the complex flame dynamics reported in [15] under such condition

is worth to be further scrutinized. Here, we propose to examine the thermal expansion e↵ects on the multiplicity of the

steady flame progation regimes. For this, variable-density numerical simulations are carried out within the zero-Mach

number approximation. Identically to [15], the dynamics of the flame is examined for flames characterized by a Lewis
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Figure 1: Sketch of the flow configuration. Flame front visualised by isocontours of reaction rate (top) and corresponding non-dimensional density
and temperature profiles along the axial direction (bottom).

number less than unity. The simulations are conducted for both axisymmetrical and three-dimensional geometries.

2. General formulation

A combustible mixture at initial temperature T0 and density ⇢0 flows in a channel of circular cross-section of radius

R0. The mass flow rate at the inlet of the channel is an imposed parameter that determines the mean flow velocity in

the fresh mixture. A sketch of the flow is given in Fig. 1. In all flow configurations pictured below, the fresh cold

mixture is located at the left of the flame (at z = 0). The inlet flow may be either directed to the right when the flow

rate is defined positive, as shown in Fig. 1, or to the left when the inlet flow rate is defined as negative. Depending on

the flame and flow parameters, the flame front can propagate in both directions relative to the wall.

The chemistry is modeled by a global, one step and irreversible reaction of the form F + O ! P + Q, where F,

O and P denote the fuel, the oxidizer and the products, respectively, and Q is the heat released per unit mass of fuel.

We assume for simplicity that the mixture is lean in fuel and consider the oxidizer mass fraction as constant. Then,

the reaction proceeds at the rate ⌦ = B⇢02Y 0 exp(�E/RT ), where E is the overall activation energy, R is the universal

gas constant, Y 0 is the fuel mass fraction and B is a pre-exponential factor containing the oxidizer mass fraction.

The burning velocity of the planar flame, S L, the thermal flame thickness defined as �T = DT /S L, together with

the adiabatic flame temperature Ta = T0 + QY0/cp are used below to specify the non-dimensional parameters. In the
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above expressions, DT stands for the thermal di↵usivity, cp for the specific heat at constant pressure and Y0 for the

upstream fuel mass fraction. In what followed the constant transport properties and the specific heat are assumed.

The appropriate dimensionless variables are (z, r) = (z0, r0)/�T , t = S Lt0/�T , v = v

0/S L, ⇢ = ⇢0/⇢0, p = p0/⇢0S 2
L,

✓ = (T �T0)/(Ta �T0) and Y = Y 0/Y0, where primes are used for the corresponding dimensional variables. Here p0 is

the pressure deviation from the ambient (atmospheric) pressure which, in view of the low Mach number approximation

adopted here, is constant. The non-dimensional channel’s radius writes as R = R0/�T and the reduced Damköhler

number used below is defined by d = (R0/�T )2 = R2.

The standard (dimensionless) governing equations become

⇢t + r · (⇢v) = 0, (1)

⇢vt + r · (⇢v · v) = �rp + Prr(r · v + r · vT ), (2)

⇢✓t + r · (⇢✓v) = r2✓ + !, (3)

⇢Yt + r · (⇢Yv) = Le�1r2Y � !, (4)

⇢(1 + q✓) = 1, (5)

where subscripts here and below denote partial di↵erentiation.

The dimensionless parameters appearing in Eqs. (1)-(5) are the heat release parameter q = (Ta�T0)/T0, the Lewis

number Le = DT /DF , whereDF stands for the molecular di↵usivity of the fuel, and the Prandtl number Pr = ⌫/DT ,

where ⌫ is the kinematic viscosity of the mixture. The dimensionless reaction rate ! = ⌦DT /⇢0S 2
LY0 is given by:

! =
�2

2Leu2
p

(1 + q)2⇢2Y exp
(

�(✓ � 1)
(1 + q✓)/(1 + q)

)
, (6)

where � = E(Ta � T0)/RT 2
a represents the Zel’dovich number. The factor up = S L/UL appearing in Eq. (6) is

introduced to account for the di↵erence between the assymptotic value of the laminar flame speed obtained for large

activation energy � � 1, UL =
p

2Le��2DTB⇢0 (T0/Ta) e�E/2RTa . The factor up ensures that for a given � the non-

dimensional speed of a planar flames equals to one. In what followed we use � = 10, q = 5 as representative values.

The corresponding numerical values of up calculated for Le = 0.7 and 0.5 are 1.0851 and 1.1068, respectively.

Equations (1)-(5) are solved subject to the following boundary conditions: at the inlet of the pipe (in the fresh

mixture), the velocity field corresponds to a fully developed Poiseuille flow with the given dimensionless flow rate m;

at the outlet of the pipe, the velocity, temperature, density and mass fraction satisfy zero-gradient boundary condition;
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Figure 2: Axisymmetric solutions; flame velocity u f and consumption speed uc given as a function of the flow rate m for d = 10 and d = 20 for
Le = 0.7 ((a) and (b)) and Le = 0.5 ((c) and (d)). Arrows delimit the region of solution multiplicity. In the inset plots results obtained within the
frame of thermo-di↵usive modeling by [15] are recalled and the corresponding regions of solution multiplicity are delimited by dashed lines.

the wall is considered as non-slip and adiabatic.

The selected reference frame moves with the flame. This is achieved by an iterative correction of the axial flow

velocity (see [19]) aimed to balance m with the velocity consumption uc, whose dimensionless expression is given

by uc = 1/(⇡R2)
R +1
�1
R R

0

R 2⇡
0 !d'drdz. Once the balance is reached, the wall moves with respect to the wall at

the dimensionless velocity given by u f = uc � m, and the flame position is fixed inside the computational domain. A

stationary solution, by reference to the moving system, is thus obtained. It should be noted that, in all cases considered

below, Le < 1 and the flame propagated with a constant velocity.

The set of dimensionless equations (1)-(5) was resolved for both the axisymmetric and fully three-dimensional

computations making use of as a baseline the open source Computational Fluid Dynamics (CFD) code OpenFoam [37].

In the axisymmetric simulations, the standard axisymmetry boundary conditions used at the pipe axis. The three-

dimensional computational domain consists of a triangular prism decomposition with computational cells of almost-
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Figure 3: Axisymmetric pipe: multiple solutions; d = 10, Le = 0.7, m = �2; visualization of (top) reaction rate isocontours and (bottom)
streamlines superimposed with isocontours of temperature ✓;

uniform size, having their base distributed orthogonally to the axial direction (Oz). The implemented numerical

method is based on the finite volume method formulated in a collocated grid arrangement. The first order Euler

scheme was used for temporal discretization and second-order scheme for spatial discretization. In the axisymmetric

simulations the grid-resolution takes the dimensionless values �r = 0.1 and 0.05 for Le = 0.7 and Le = 0.5, respec-

tively. Grid independance of the steady converged solutions was checked by performing simulations with half grid

resolution that provide results with less than 2% of di↵erence. A total cell number of 1773360 has been used to

discretize the three-dimensional pipe computational domain in each simulation presented. Grid resolution identical to

the axisymmetric simulations was used for Le = 0.7 while it was slightly relaxed to 0.07 for Le = 0.5. The time step

required to maintain numerical stability and ensure convergence of the solution is close to 5 ⇥ 10�5 in dimensionless

unit. The converged stationary solution is obtained after a transient time, once the balance between consumption

speed and flow rate is reached and the velocity flame propagation becomes constant. It is important to note that, as

consequence of the time-marching procedure used in the present computations, the steady solutions obtained here are

stable. Finally, the control parameters selected here for the analysis of the flame dynamics are the inlet flow rate m,

the Lewis number Le and the Damköhler number d (or, equivalently, the pipe radius).

3. Axisymmetric simulations

The evolution of the flame propagation velocity, u f , and of the burning velocity, uc, are given as a function of the

inlet flow rate m for the Lewis number Le = 0.7 and 0.5, in Fig. 2 (a)-(b) and Fig. 2 (c)-(d), respectively, for the two

Damköhler numbers d = 10 and 20. It is shown that, over a range of flow rate, a region of multiple solutions exists, in

agreement with the di↵usive-thermal modeling-based simulations [15]. However, by comparison with the predictions

provided by the di↵usive-thermal approach, recalled in the inset plots of Fig. 2, the occurrence of multiple solutions
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Figure 4: Axisymmetric pipe; multiple solutions: d = 20, Le = 0.5, m = �2.65; visualization of (top) reaction rate isocontours and (bottom)
streamlines superimposed with isocontours o

is displaced from near zero to negative values of m when thermal expansion is accounted for. Moreover, multiplicity

of solutions appears for larger values of Le. Indeed, for identical parameters as those considered here, multiplicity in

[15] is only found for Le = 0.5.

The shift of multiplicity region to negative values of m can be explained by the e↵ect of the net flow on the

flame curvature, that results from both the axial velocities upstream (imposed Poiseuille velocity at the pipe inlet) and

downstream (increase of axial velocity due to mass continuity) of the flame front. When thermal expansion is not

included, the flame curvature is mainly governed by the fluid velocity imposed at the inlet pipe. As for example, right

Fig. 3 (Le = 0.7, m = �2 and u f = 3) illustrates the case where the reverse flow direction through the front flame has

an opposit e↵ect to the negative imposed inlet pipe velocity on the flame curvature, resulting in an almost planar flame

front. By reference to the non-dimensional parameters, the planar flame occurs for m = 0 in the di↵usive-thermal

approach by [15]. The increase of axial velocity modifies the flame curvature and thus the flame dynamics when

compared to the di↵usive-thermal modeling.

Figure 3 displays the flame and flow structures for the case Le = 0.7, d = 10 and m = �2, for which multiple

solutions are found. In this case, the upper branch of the solution corresponds to a convex flame towards the inflow

with a overheated region located close to the pipe axis, similar to a mushroom-shaped flame. Otherwise, the lower

branch coincides with a flame having a overheated region located near the pipe wall and resembling a tulip-shaped

flame. In this case, the former flame structure presents the highest curvature and thus the larger flame propagation.

Shown in Fig. 2 is the crossing of the mushroom-shaped and tulip-shaped flame branches as d increases (d = 20

and Le = 0.7) or Le diminishes (d = 10 and 20, Le = 0.5). Before crossing, the flame characteristics illustrated in

Fig. 4 for Le = 0.5, d = 20 and m = �2.65 are similar to those reported above for Le = 0.7, d = 10 and m = �2.

Above crossing, as m increases, a reverse tendency is observed: the mushroom-shaped flame branch has a smaller
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Figure 5: Axisymmetric pipe; multiple solutions: d = 20, Le = 0.5, m = �0.5; visualization of (top) reaction rate isocontours and (bottom)
streamlines superimposed with isocontours of temperature ✓;

curvature and thus a lower propagation velocity than the tulip-shaped flame branch. This behavior is pictured in Fig.

5 for Le = 0.5, d = 20 and m = �0.5. Note that coexistence of mushroom and tulip premixed-flames with Lewis

number unity, freely propagating in axisymmetric tubes, has been reported in the early numerical study by [25], under

adiabatic and isotherm wall conditions, and radius R � 60.

The streamlines drawn in Figs. 3-5 clearly show the jump of the axial velocity through the flame front resulting

from thermal expansion previously mentioned above. Contrary to the di↵usive-thermal modeling approach, the curva-

ture of the flame is subject to the flow acceleration through the front flame which in turn alters the consumption speed

and flame velocity propagation. The di↵erences in terms of parameters (Le, d and m) at which multiple solutions are

observed here, when compared with [15], result from the e↵ect of thermal expansion on the flame curvature. Note

that, in the present simulations, it is not possible to fix the flame propagation velocity and compute the corresponding

inlet flow rate to make the two flame branches continuously recover as done in [15].

4. Three-dimensional simulations

Figures 6 (a)-(b) provide a direct comparison between the three-dimensional and axisymmetric simulation results

of the evolution of u f and uc as a function of the flow rate m, for Le = 0.7 and d = 10. Similar to the axisymmetric cal-

culations, only steady and stable solutions have been obtained. The evolution of u f and uc show that, for large negative

values of the inlet flow rate (m < �3), the three-dimensional simulations display a unique axisymmetric propagating

flame, while as m is increased, axisymmetric and non-axisymmetric steady-state flame regimes can coexist. However,

for m � �1 the three-dimensional simulations predict a unique non-axisymmetric propagating flame. For large posi-

tive flow rates m � 9, the flame reverses its propagation direction and flashback occurs. Note that, identically to the

results reported for a planar channel in [19], the non-symmetric flame propagation regime pushes back the flashback
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Figure 6: 3D solutions; flame velocity u f (top) and consumption speed, uc (bottom), as a function of the dimensionless flow rate m, obtained for
d = 10 with Le = 0.7 and 0.5. Dashed lines delimit the region of solution multiplicity for the 3D simulations.

phenomena to larger m (m ⇠ 9) when compared with the predictions of the corresponding axisymmetric calculations

(m ⇠ 4).

Due to computational limitations, the simulations for Le = 0.5 have been restricted to a few values of m. Never-

theless, the main characteristics in terms of axisymmetry and non-axisymmetry of the flame shape, are similar to those

found for Le = 0.7. In this case, the two solution branches cross, the coexistence of axisymmetric and non-axisymetric

solutions extending over a larger range of inlet flow rate values compared to Le = 0.7.

An overview of the evolution of the flame structure, as a function of m, is drawn in Fig. 7 for Le = 0.7, by rep-

resenting the given isosurface of dimensionless temperature ✓=0.9 and the isocontours of the dimensionless reaction

rate ! in the transversal plane y = 0. For m = �3, the axisymmetric solution has a mushroom-like shape. As m is

further increased, the flame becomes non-axisymmetric and is further stretched, with tulip-like flame characteristics

in the transverse plane y = 0 and a slant-like shape in the transverse plane x = 0. The also pictured streamlines and
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Figure 7: 3D circular pipe; d = 10, Le = 0.7; evolution of flame structure with m; (left): isosurface temperature ✓ = 0.9 superimposed with the
streamlines and isocontours of axial velocity both given in the plane x = 0; (right): isocontours of reaction rate given in the plane y = 0.

isocontours of the axial flow velocity Uz display the manifest jump of axial velocity through the flame that can reach

a factor 10 between upstream and downstream of the flame front.

The multiple flame solutions obtained for m = �2 in the three-dimensional pipe is represented in Fig. 8 for

Le = 0.7, and in Fig. 9 for Le = 0.5. In Fig. 10 is provided the double flame structure found for m = �0.05 and

Le = 0.5. In all cases, the axisymmetric flame corresponds to the mushroom-shaped flame, with the overheated region

in the pipe axis, while the non-axisymmetric flame has the slant shape with the overheated region near the pipe wall.

Note that, above the multiple solutions region at large values of m, only non-axisymmetric flames develop and that no

solution corresponding to axisymmetric tulip-shaped flame have been found in the three-dimensional simulations.

These results indicate that the axisymmetric tulip-shaped flame does not remain stable to three-dimensional pertur-

bations while the axisymmetric mushroom-shaped flame does. This result corroborates the stability analysis reported

in [15]. We find that axisymmetric convex flames towards the upstream (mushroom flame) can remain stable for large

negative inlet flow rate. However, the axisymmetric concave flame (tulip flame) evaluates to a non-axisymmetric

flame under three-dimensional perturbations for any values of the considered parameters here.
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Figure 8: 3D circular pipe; multiple solutions: d = 10, Le = 0.7, m = �2; (left): isosurface of temperature ✓ = 0.8 superimposed with the
temperature contours given in the transversal plane x = 0; (right): temperature isocontours given in the radial plane z = Lz/2 (right).

Figure 9: 3D circular pipe; multiple solutions: d = 10, Le = 0.5, m = �2; isosurface of temperature ✓ = 0.8 superimposed with the temperature
contours given in the transversal plane x = 0 (left); temperature isocontours given in the radial plane z = Lz/2 (right).
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Figure 10: 3D circular pipe; multiple solutions: d = 10, Le = 0.5, m = �0.05; isosurface of temperature ✓ = 0.8 superimposed with the temperature
contours given in the transversal plane x = 0 (left); temperature isocontours given in the radial plane z = Lz/2 (right).

5. Conclusions

The propagation regime of lean premixed low-Lewis number flames in a channel of circular cross-section with

imposed Poiseuille inlet flow was investigated making use of numerical simulations and simplified chemistry model.

This study aimed to illustrate how far thermal expansion influences the multiplicity of solutions and breaking of

axisymmetry, previously found within a di↵usive-thermal modeling approach by [15]. The considered flow and flame

parameters were the flow rate of the fresh mixture m, the Lewis number Le (less than unity), and the tube radius R in

term of Damköhler number d =
p

R.

Making use of axisymmetry assumption for the pipe geometry, the present numerical simulations confirm the

existence of multiple steady axisymmetric flame propagation regimes for a given flow rate: both convex and concave

flames towards the upstream flow can coexist. Under thermal expansion e↵ects, multiplicity of flame propagation

regimes is shown to appear at larger (but less than unity) Lewis number in comparison with the constant density

approach, as consequence of the modification of the flame structure by the flow acceleration through the front flame.

The three-dimensional simulations also show a multiplicity of solutions. However, the axisymmetric concave

flame branch is not obtained, instead the steady propagation regime of non-axisymmetric flames takes place. By con-

trast, the branch corresponding to the axisymmetric convex flame shape remains robust for large negative values of the

inlet flow rate m. These findings complete and point out the earlier stability analysis results [15] that predict axisym-

metric concave flames are unstable under three-dimensional perturbations, giving rise to steady non-axisymmetric
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flames. The present results show that the range of inlet flow rate for which axisymmetric and non-axisymmetric

flames coexist tends to further extend as the Lewis number decreases.

Regarding the set up of numerical simulations, this study shows that the assumption of axisymmetry is not ade-

quate for the numerical study of propagating flames in circular tubes, excepted in the range of large negative inlet flow

rate (flame-assisted flow). Another result, of practical interest, is the underestimation of the critical flow rate for the

flashback phenomena provided by the use of axisymmetry assumption.

Finally, the e↵ects of heat wall-loss on the solution multiplicity and breaking of symmetry reported here will be

the focus of a future work.
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