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Abstract

This paper presents a numerical study of the propagation of isobaric premixed flames

in narrow channels, focusing primarily on the symmetry of solutions. Because of the com-

plexity of the problem, only few but very important effects such as the thermal expansion,

the Lewis number and heat losses are included in the formulation and only a planar channel

geometry is investigated. It is demonstrated that symmetric and non-symmetric steady state

flames can exist simultaneously, for certain ranges of the parameters.

The parametric dependence of the corresponding bifurcation points is also investigated.

It is found that both subcritical and supercritical bifurcations are possible for different values

of the parameters. The steady-state results are successfully compared with direct time-

dependent simulations. The simulations show that, as a general rule, in cases where both

types of solutions exist simultaneously, the non-symmetric solutions are stable while the

symmetric solutions are unstable.

1 Introduction

The flame propagation in ducts and channels of different cross-sections represents a cornerstone
problem in combustion science with multiple applications in many practical combustion devices.
The main complication arising in the study of this problem resides in the fact that various phys-
ical phenomena act simultaneously in the process, thus creating serious obstacles in getting a
clear physical insight. The properties of the combusting mixture (reactivity / heat release / dif-
fusivity), the rate at which it flows in the duct, the geometry of this duct or the heat transfer to
and from the walls all intervene in determining the characteristics of the propagating flame.

After pioneering works on the numerical analysis of flames propagating in ducts [1, 2], the
interest in small-scale combustion systems has recently revived the studies on the effects of the
channel flow rate [3, 4], heat-losses [5, 14], the Lewis number [4, 6, 7, 13, 15–17] and thermal
expansion [8–12, 18–21] on the propagation of flames in narrow channels.
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In many of the above mentioned works it was assumed from the start that the flame shape
should be symmetric with respect to a line of symmetry (axisymmetric in circular channels or
symmetric about the midplane in two-dimensional channels) [1–3, 5–7, 9, 10, 12, 31]. This
restriction on symmetry for freely propagating flames was removed systematically in [4, 11] and
the issue has received a significant attention only recently, see [13–17, 20, 21]. Experimental
observations of non-symmetric premixed flames freely propagating in narrow channels appeared
in [22], for example.

The results presented in [13] showed that in narrow channels, for mixtures with Lewis num-
ber smaller than one, symmetric and non-symmetric solutions may co-exist for the same set
of parameters. It was demonstrated by means of global stability analysis that when this is the
case, the non-symmetric solution is stable while the symmetric solution is usually unstable.
This effect of symmetry breaking was first demonstrated in the context of a constant density
(diffusive-thermal) model and using a global one-step Arrhenius kinetics with a single reac-
tant characterized by a constant Lewis number, so that it could be unmistakably linked to the
diffusive-thermal instability [4, 13–16]. A similar effect was reported in [11], based on the com-
plete Navier-Stokes equations in isothermal and appreciably wider ducts. These results have
been validated recently within a more realistic direct simulation model including the detailed
chemical kinetics and transport for lean hydrogen-air flames propagating in adiabatic channels
and channels with heat losses [20, 21].

The possibility of symmetry breaking for flames with Lewis number larger than one was
illustrated in [13] in a case with Le = 4, showing non-symmetric oscillatory dynamics during
flame propagation. Even though such high values of the Lewis number can be found, for exam-
ple, in a mixture of butane and oxygen diluted with helium [23], these cases are not considered
in the present study, focusing attention on Lewis number variations not far from unity.

It should be mentioned that the existence of non-symmetric flames was also reported not
long ago for completely different configurations. In these experimental [24] and numerical
[25–28] investigations, instead of freely propagating, the flames were stabilized by means of
partially heated walls in narrow conducts. The symmetry breaking under these conditions is not
necessarily related to Lewis number or thermal expansion effects, as shown in [29], where it was
demonstrated for Le = 1 within the constant density model. It must be remarked that, even if
being dynamically unsteady in the above configurations, the flame of this kind does not show
free propagation, and is therefore different from the flames explored in the present study.

The present work investigates the combined influence of the thermal expansion and the dif-
ferential diffusion effects on breaking the flame symmetry for flames freely propagating in nar-
row channels, using a one-step Arrhenius kinetics and a zero-Mach-number approximation. We
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include also in the study the effects of the reactants flow rate and heat losses through the channel
walls. Undoubtedly this leaves aside some important effects that have received attention recently,
such as the influence of buoyancy forces acting in horizontal or vertical channel configurations
studied in [30]. An important part of the present results is related to the determination of the
critical flash-back points, namely, the conditions for which the flame is stabilized with respect
to the channel wall. This state was under consideration recently in [31] where only symmetric
solutions were considered.

The numerical costs of studying the flame symmetry breaking in planar and circular channels
are clearly different. Because the last case requires vastly more numerical resources, only a
planar 2D configuration is treated in the present work. Perhaps this simplification could mean
that some important effects related, for example, to an additional flame curvature appearing in
circular channels are overlooked. Nevertheless we expect that the main trends reported in the
present study will persist in circular-channel geometry. The corresponding 3D results will be
reported elsewhere.

The aim of the current study is not to analyze exhaustively the full range of parameters and
their possible combinations but rather to investigate tendencies leading to the emergence of non-
symmetric flames in narrow channels. In particular we focus on the estimation of the critical
conditions for which the symmetry breaking takes place and the influence of this symmetry
breaking on the critical flash-back conditions.

The article is arranged as follows: in Section 2, we present the general formulation; the
numerical treatment is briefly described in Section 3; numerical results describing steady-state
flames are outlined in Section 4 and the results of time-dependent modeling are given in Sec-
tion 5. Finally, conclusions are drawn in the last section.

2 General formulation

Consider a combustible mixture (fuel and oxidizer) at initial temperature T0, density ρ0 and
fuel mass fraction Y0, flowing in a channel with mean velocity U0. For the sake of simplicity,
we consider planar two-dimensional channels. In what follows, h and hw denote the channel
height and the wall thickness, respectively, and x′, y′ denote the longitudinal and wall-normal
coordinates. Primes here and hereafter mark dimensional quantities if the same notation is used
for dimensional and non-dimensional variables. The subindex ”0” indicates initial fresh stream
values.

It is assumed that the external surface of the wall is maintained at the temperature of the
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fresh mixture T0. If the wall is thin compared with the channel width, hw ≪ h, the temperature
distribution inside the wall is linear. Using continuity of the heat flux at y′ = 0 and y′ = h, the
temperature boundary conditions at the internal wall surfaces become

λg
∂T

∂y′

∣∣∣∣
y′=0

=
λw
hw

(T |y′=0 − T0), −λg
∂T

∂y′

∣∣∣∣
y′=h

=
λw
hw

(T |y′=h − T0), (1)

where λg and λw are the thermal conductivities of the gas and the wall material, respectively.
The combustible mixture undergoes a chemical reaction modeled by a global irreversible

step F + O → P , where F denotes the fuel, O the oxidizer and P the products. Assuming that
the mixture is lean in fuel, the oxidizer mass fraction remains nearly constant. The amount of
fuel consumed per unit volume and per unit time is given by Ω = BρnY exp (−E/RgT ), where
B is a pre-exponential factor, ρ is the density of the mixture, Y is the fuel mass fraction, E is the
overall activation energy, and Rg is the universal gas constant. There is no unanimous agreement
in the combustion literature concerning the power n, and values n = 1 and n = 2 have been
used in different studies. We assume also constant transport properties and heat capacity cp of
the mixture.

The burning velocity of the planar flame SL, the thermal flame thickness defined as δT =

DT/SL, with DT = λg/ρ0cp the thermal diffusivity, and the adiabatic flame temperature Ta =

T0+QY0/cp, with Q the total heat of combustion per unit mass of fuel, are used below to specify
the non-dimensional parameters. Using the above scales based on the flame properties allows
to compare numerical results calculated for different chemical and transport parameters. To this
end, the dimensionless channel width, a = h/δT , and the dimensionless flow rate, m = U0/SL,
are introduced.2

Dimensionless variables are defined as follows

x = x′/δT , y = y′/h, u = u′/SL, v = v′/(aSL), ρ = ρ′/ρ0,

Y = Y ′/Y0, θ = (T − T0)/(Ta − T0), p = a2p′/ρ0S2
L,

(2)

where u, v are the velocity components in the x- and y-directions, respectively, and p is the
pressure.

Two types of calculations were carried out in the present study. For the first type, used to
calculate the steady-state solutions (thus imposing ∂/∂t = 0 in the governing equations), the
reference frame was attached to the flame, namely to a point (x∗, y∗) with a given temperature
θ = θ∗. The velocity of this point with respect to the wall, uf = Uf/SL, constitutes an eigenvalue
of the problem and gives the flame propagation velocity. Indeed, in the case of steady flame

2Notice that instead of a, the reduced Damköhler number d = (h/δT )2 was used in [13, 14] in order to measure
the channel width.
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propagation the whole flame surface propagates with a constant velocity equal to uf , which
is independent of both the location of the reference point and of the reference temperature.
Evidently, θ∗ and y∗ must be chosen judiciously so that this point lies outside the quenching layer
near the wall (if it exists). The calculations of the second type were carried out to investigate
the time-dependent flame dynamics, and in this case a reference frame attached to the wall was
used. In this case uf = 0 was imposed in the governing equations presented below. Notice that
in the two types of calculations u and v represent the flow velocities with respect to the wall.

Under the above and zero-Mach number assumptions, the governing equations and the equa-
tion of state are

∂ρ

∂t
+
∂(ρ[u+ uf ])

∂x
+
∂(ρv)

∂y
= 0, (3)

ρ
(∂u
∂t

+ [u+ uf ]
∂u

∂x
+ v

∂u

∂y

)
= − 1

a2
∂p

∂x
+ Pr

[ 1

a2
∂2u

∂y2
+
4

3

∂2u

∂x2
+

1

3

∂2v

∂x∂y

]
, (4)

ρ
(∂v
∂t

+ [u+ uf ]
∂v

∂x
+ v

∂v

∂y

)
= − 1

a4
∂p

∂y
+ Pr

[ 1

a2

(4
3

∂2v

∂y2
+
1

3

∂2u

∂x∂y

)
+
∂2v

∂x2

]
, (5)

ρ
(∂Y
∂t

+ [u+ uf ]
∂Y

∂x
+ v

∂Y

∂y

)
=

1

Le

(∂2Y
∂x2

+
1

a2
∂2Y

∂y2

)
− ω, (6)

ρ
(∂θ
∂t

+ [u+ uf ]
∂θ

∂x
+ v

∂θ

∂y

)
=

(∂2θ
∂x2

+
1

a2
∂2θ

∂y2

)
+ ω , (7)

1 = ρ(1 + qθ), (8)

where q = (Ta − T0)/T0 = QY0/cpT0 is the heat release parameter, Pr = µcp/λg is the Prandtl
number, with µ the viscosity of the mixture and Le = λg/ρ0cpD is the Lewis number, with D
the mass (fuel) diffusivity. The chemical reaction rate takes the form

ω =
β2

2Leu2
p

(1 + q)nρnY exp

{
β(θ − 1)

1 + q(θ − 1)/(1 + q)

}
, (9)

where β = E(Ta − T0)/RgT 2
a is the Zel’dovich number. In what follows, the values Pr = 0.7

and β = 10 were fixed in all cases presented. Anticipating the numerical results presented in the
following sections, it was found that the parameter n has little quantitative consequence on the
phenomena investigated. For this reason, most of the calculations were carried out for n = 2 but
a comparison with n = 1 will be given in some figures.

The dimensionless version of Eq. (1), and the no-flux and no-slip conditions at the wall, take
the form

(
∂θ

∂y
− b a θ

)∣∣∣∣
y=0

=

(
∂θ

∂y
+ b a θ

)∣∣∣∣
y=1

=
∂Y

∂y

∣∣∣∣
y=0,1

= u
∣∣
y=0,1

= v
∣∣
y=0,1

= 0, (10)
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where b = (λw/λg)(δT/hw) is the heat transfer parameter. The limiting cases of adiabatic and
isothermal walls correspond to b → 0 and b → ∞, respectively.

Since axial diffusion becomes negligible far upstream the flame, the state of the gas is con-
stant and uniform with v = 0, implying that the flow field is unidirectional and satisfies the
equations ∂p/∂y = 0 and ∂p/∂x = Pr∂2u/∂y2. As a result, a Poiseuille flow is established
with

u = 6my(1− y), v = 0, θ = 0, Y = 1 as x → −∞ , (11)

where m = U0/SL is the non-dimensional mean flow rate. For far downstream boundary condi-
tion we require

∂2θ/∂x2 = ∂2Y/∂x2 = ∂u/∂x = v = 0 as x → +∞. (12)

This mild outlet boundary condition for the temperature field replaces a more severe zero-
temperature condition which should be imposed far downstream when heat losses are not neg-
ligible. The numerical simulations reported below show that the influence of the downstream
boundary condition becomes negligible, as it should be, if the size of the computational domain
is reasonably long downstream the flame.

The factor up = SL/Sas
L included in Eq. (9) ensures that the non-dimensional speed of a

planar adiabatic flame equals one for a given finite β, where Sas
L is the asymptotic value of

adiabatic laminar flame speed calculated at β → ∞:

Sas
L =

√
2(λ0/cp)Leβ−2Bρn−2

0 (T0/Ta) n exp(−E/2RTa) (13)

Precise calculation of up requires the solution of the following eigenvalue problem

dθ/dz = d2θ/dz2 + ω, dY/dz = Le−1d2Y/dz2 − ω,

z → −∞ : θ = Y − 1 = 0, z → +∞ : θ − 1 = Y = 0,
(14)

where ω is given by Eq. (9). The numerical values of up calculated by a shooting method are
given in Table 1 for some selected cases.

3 Numerical treatment

Steady-state computations were carried out in a finite domain, xmin ≤ x ≤ xmax, using
xmin = −20 and xmax = 20 as typical values. All the numerical results reported below were ob-
tained using second-order, three-points central differences for spatial derivatives on a rectangular
uniform grid. Typical values for the non-dimensional reference temperature were θ∗ = 0.5÷0.7.
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q \ Le 1.05 1.0 0.9 0.8 0.7

5 1.0498692 1.0546892 1.0645288 1.0746449 1.0850506
n = 2 4 1.0539540 1.0588333 1.0687959 1.0790412 1.0895828

3 1.0602406 1.0652127 1.0753679 1.0858156 1.0965703

n = 1 5 0.9731785 0.9773721 0.9859223 0.9946979 1.0037088

Table 1: Values of up calculated for various Le and q, all for β = 10.

The reference point was located at y∗ ≈ 0.5÷0.9 and approximately in the middle of the domain
along the x-axis. The independence of the results to these values was verified specifically.

The stream function-vorticity formulation was adopted for the steady-state computations.
With the stream function ψ, defined from

ρ(u+ uf ) = ∂ψ/∂y, ρv = −∂ψ/∂x , (15)

and the vorticity ζ = a2∂v/∂x− ∂u/∂y, the Navier-Stokes equations reduce to

ρ(u+ uf )
∂ζ

∂x
+ ρv

∂ζ

∂y
= Pr

[
∂2ζ

∂x2
+

1

a2
∂2ζ

∂y2

]
+ J (16)

a2
∂

∂x

(
1

ρ

∂ψ

∂x

)
+

∂

∂y

(
1

ρ

∂ψ

∂y

)
= −ζ (17)

where J is the vorticity production given by

J =
∂[ρ(u+ uf )]

∂y

∂u

∂x
− a2

∂[ρ(u+ uf )]

∂x

∂v

∂x
+
∂(ρv)

∂y

∂u

∂y
− a2

∂(ρv)

∂x

∂v

∂y
.

Equations (16) and (17) along with (6) and (7) and the boundary conditions (properly rewrit-
ten in terms of ψ and ζ) were solved numerically using a Gauss-Seidel iteration method with
successive over-relaxation to determine the eigenvalue uf .

In a similar manner to that reported in [13, 14], anticipating that the symmetric steady so-
lutions might be unstable, symmetric flames were calculated separately, in half the domain
(0 ≤ y ≤ 1/2) and imposing symmetric boundary conditions for the temperature, the mass
fraction and the velocities at the centerline, namely

y = 1/2 : ∂θ/∂y = ∂Y/∂y = ∂u/∂y = v = 0. (18)

In cases where the calculations were carried out in the entire domain, 0 ≤ y ≤ 1, the following
integral

S =

∞∫

−∞

dx

1/2∫

0

[θ(x, y, t)− θ(x, 1− y, t)]dy (19)
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helps to identify the symmetry of the solutions. Clearly, S = 0 (within numerical accuracy) for
a symmetric solution, but it takes a nonzero value when the solution becomes non-symmetric. It
should be emphasized that in cases when symmetric solutions exist exclusively, the calculations
in the entire domain (0 ≤ y ≤ 1/2 led to symmetric solutions (with S ≈ 0).

For all unsteady calculations presented below, the set of dimensionless time-dependent equa-
tions (3)-(8) was resolved (imposing uf = 0) making use of the open source code OpenFoam
[32]. The implemented numerical method was based on the finite volume method formulated in
a collocated grid arrangement. The first order Euler scheme was used for temporal discretization
and a second-order scheme for spatial discretization. The flame was maintained in the compu-
tational domain using the same methodology as in [17, 20, 21].

4 Steady-state solutions

4.1 Influence of the channel width

The limit a = h/δT → 0, or the narrow channel approximation, can be easily executed from
Eqs. (3)-(7) for the adiabatic case, b = 0, see [18]. For this purpose all variables are expanded
in power series of a2, namely f = f0 + a2f1 + . . . , where f stands for a generic variable. To a
first approximation, the resulting equations , implying that the temperature and mass fraction are
both function of x only, are identical to those describing the planar flame front, where uf +m

represents the flame propagation speed. Thus, by virtue of up introduced in Eq. (9), uf +m = 1.
In the presence of heat-losses, for b > 0, even small, the limit a → 0 can not be executed for

a fixed value of b. This follows from Eq. (10) where a appears to the power one thus invalidating
the above a2-expansion. As a consequence

for a fixed b > 0 a quenching channel width exists, below which there is no solution. This
circumstance can be overcome by introducing the parameter b̃ = b/a = (λwλg)(δ2T/hw h) in the
temperature boundary conditions and taking the limit a → 0 for b̃ fixed. Once again the solution
is independent of the y-coordinate and, thus, symmetric in this limit. This indicates that there
exists a threshold value of the channel width, a = ac, above which non-symmetric solutions can
exist and below which only symmetric solutions appear.

Consider first the flames with Le = 1 in adiabatic channels, b = 0. The dimensionless
velocity uf = Uf/SL is shown in Fig. 1 (left plot) as a function of the non-dimensional flow
rate m = U0/SL, calculated for β = 10 and q = 5 for several values of the channel width,
a = h/δT . The right plot of Fig. 1 shows the symmetry indicator S plotted versus m for the
same values of a. Solid-line curves correspond to symmetric flames calculated in a half-width
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Figure 1: The computed flame velocity uf = Uf/SL (left plot) and the symmetry indicator S
(right plot) as functions of the non-dimensional flow rate m = U0/SL for Le = 1 and several
values of a, all results for β = 10, q = 5 and an adiabatic channel, b = 0. Solid and dashed lines
represent symmetric and non-symmetric flames, respectively, calculated with n = 2; diamond
symbols correspond to the cases with n = 1 (only for a = 6 and 8); the bifurcation points are
marked with open circles. Open gradient symbols represent the results of unsteady calculations
for m = 1 and m = −1, both for a = 6.

domain imposing the symmetric boundary conditions given by Eq. (18) for n = 2. Dashed-line
curves correspond to non-symmetric flames, also for n = 2. Diamond symbols represent the
numerical results calculated with n = 1.

One can see in Fig. 1 that the parameter n appearing in the reaction rate Eq. (9) has little
consequence on the flame velocity uf and the symmetry indicator S, thus affecting only slightly
the bifurcation value of the flow rate, at least in the considered range of parameters. For this
reason the majority of calculations presented below were carried out for n = 2. Open triangles
in this figure show the results of unsteady calculations with n = 2, used to validate the numerical
codes and to verify the stability of the solutions, as will be discussed in Section 5.

Two typical solutions are shown in Fig. 2. These flames were obtained for the same set of
parameters (a = 6 and m = 1) where the upper solution is symmetric and the other one is
non-symmetric.

Figure 1 illustrates the impact of channel width on the emergence of non-symmetric solutions
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Figure 2: Symmetric (upper plot) and non-symmetric (lower plot) steady flames (color
isotherms) and streamlines (white lines) in an adiabatic channel, for a = 6, m = 1, Le = 1,
β = 10, q = 5, n = 2.

in narrow channel configurations. One can see that for a given channel width, a, non-symmetric
flames appear for flow rates above a critical value, m = mc. These bifurcation points, marked
in Fig. 1 with open circles, are shown in Fig. 3 as a function of the channel width a. It is clear in
this figure that there exists a critical channel thickness (indicated approximately with a vertical
line), to the left of which only symmetric flames exist.

4.2 Influence of thermal expansion

The influence of thermal expansion is shown in Fig. 4, where the dimensionless velocity uf (left
plot) and the symmetry indicator S (right plot) are plotted as functions of m for several values of
the thermal expansion parameter q. All curves were calculated for β = 10 and Le = 1. The solid
lines represent symmetric solutions and the dashed lines non-symmetric ones. The bifurcation
points mc above which non-symmetric flames are possible are marked with open circles. One
can see that with decreasing values of q the bifurcation point shifts to the the right.

The constant density or thermo-diffusive limit widely used in combustion studies can be
obtained, formally, by taking q → 0 in Eqs. (3)-(8) only for a fixed Zel’dovich number, β. The
necessity to fix the Zeldovich number stems from the fact that, in a strict sense, β = Nq/(1+q)2,
where N = E/RgT0. Thus, the limit q → 0 has sense only for β fixed in Eq. (9). The other
possibility would be to fix both β and q in the reaction rate term Eq. (9) and to apply q = 0 in
the equation of state Eq. (8). This last choice was used in [13, 14]. In any of the two cases, the
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Figure 3: The bifurcation point mc plotted as a function of the channel width a for Le = 1,
β = 10, q = 5, n = 2 and b = 0; the non-symmetric solutions exist above the curve; the vertical
dashed line shows the approximate critical value of a.

system of governing equations is reduced to the temperature and mass fraction equations with a
prescribed parabolic velocity profile. No non-symmetric flames were found for Le = 1 in this
limit, see [13, 14]. When this result is compared with that of Eqs. (3)-(7), it is evident that the
bifurcation value mc tends to infinity as q → 0 for Le = 1. This is shown in Fig. 5, where mc is
plotted as a function of q calculated for a case with a = 6, Le = 1, β = 10 and b = 0.

4.3 Influence of heat-losses

Up to this point, adiabatic channels have been considered, with b = 0 applied in the boundary
condition Eq. (10). Figure 6 shows the properties uf (left plot) and S (right plot) as functions of
m several values of the heat losses parameter b, all curves plotted for a = 8, Le = 1, β = 10

and q = 5. The results indicate that the bifurcation value of the flow rate, mc, shifts rapidly to
larger values of m even with a moderate increase of b. This agrees with the results obtained by
Tsai, see [11], where channels with isothermal walls were studied and non-symmetric flames
were obtained only for significantly large values of the duct width, of order D/δT = O(100),
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Figure 4: The computed flame velocity uf = Uf/SL (left plot) and the symmetry indicator S
(right plot) as functions of the non-dimensional flow rate m = U0/SL for Le = 1 and several
values of q. The solid line and the small triangles in the left plot correspond to symmetric flames
calculated for q = 5 and q = 3, respectively, dashed lines to non-symmetric flames; all curves
calculated for a = 6, β = 10, n = 2 and an adiabatic channel, b = 0; the bifurcation points are
marked with open circles.

where D was the diameter of the duct.

4.4 Influence of the Lewis number

The structure of flames at low Lewis numbers is illustrated in Fig. 7, where a symmetric and a
non-symmetric flame are shown for the same set of parameters. These solutions correspond to
the points marked with open triangles in Fig. 10. It is well known that for Le < 1 there is a
region behind the flame where the temperature exceeds the adiabatic flame temperature due to
the combined effect of the flame curvature and differential diffusion. One can see that in the
non-symmetric flame case the temperature maximum is significantly higher.

The numerical analysis carried out in [13] showed that for Le < 1 non-symmetric flames
can exist even in the framework of the constant density model, q = 0. The incorporation of the
thermal expansion effect, q > 0, reinforces this phenomenon. Figure 8 shows the flame velocity
uf and the symmetry indicator S plotted versus m for a = 6, β = 10, q = 5 and several values of
Le. Solid and dashed lines correspond to results calculated with n = 2 while diamond symbols
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represent points calculated with n = 1 (only for Le = 0.9). One can see again, as in Fig. 1,
that the influence of the parameter n in the flame propagation velocity or the bifurcation point is
relatively small.

Figure 8 shows that with the decreasing of Le below one the bifurcation point mc shifts to
smaller (negative) values and therefore the region where non-symmetric flames appear becomes
significantly wider. Notice also that non-symmetric flames are observed even for Lewis numbers
larger than one, as shown in Fig. 8 for the case with Le = 1.05. Nevertheless, it should be
emphasized that as Le is increased above one the critical flow rate mc is offset to the right,
so that non-symmetric flames can exist only for very large values of the flow rate m. The
dependence of mc with the Lewis number Le is given in Fig. 9 for two values of the channel
width a and for β = 10, q = 5 and n = 2.

All bifurcations from symmetric to non-symmetric solutions described in the preceding sec-
tions and corresponding to Le = 1 were found to be supercritical. We show now that, apparently,
subcritical bifurcations occur for lower Lewis numbers. Figure 10 presents the flame velocity
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uf (left plot) and the symmetry indicator S (right plot) calculated for Le = 0.7, β = 10, q = 5,
n = 2 and several values of a in adiabatic channels. The dashed-line curves represent the non-
symmetric solutions and the solid-line curves the symmetric ones. The symmetric solutions have
very close values of uf below some value of m, becoming practically indistinguishable.

One can see in Fig. 10 that moving along a dashed-line curve toward lower values of m the
non-symmetric solution suddenly jumps to the symmetric one at the points marked with open
circles, with a significant and abrupt change in uf . It is safe to suggest that there should exist
a middle branch (with certainty unstable) which connects the dashed and solid curves at some
point. Unfortunately the numerical methods used in the present study did not permit to calculate
this middle branch.

The conditions of upstream flame propagation, known in the literature as the flashback effect,
occur for m < mflb, where mflb is a critical point determined by uf = 0. In other words, for
the flow rate m ≈ mflb the flame does not move (or, practically does not move) with respect
to the wall. This stationary condition is very useful in experiments to visualize easily the flame
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and study its structure. It is also of great practical consequence in many combustion devices
from a safety point of view. Investigation of this condition has received a notable attention in
the literature, see [31] as a recent example.

Figures 1, 4, 6 and 8 put in evidebce the importance of properly taking into account the
possible symmetry breaking when determining the flashback conditions. The critical flashback
flow rates, mflb, calculated imposing symmetric conditions (that is, computed in a half channel)
result to be significantly lower than those predicted when symmetry is not imposed. But in
reality, the physically relevant flash-back point in Figs 1, 4, 6 and 8 is unique in the majority of
cases, because when the non-symmetric solution exists for the same set of parameters, then the
symmetric one is unstable.

An interesting situation can be observed in Fig. 10 for a narrow channel with a = 2.5. One
can see that moving from the right to the left along the corresponding dashed curve it crosses
the axis uf = 0 at mflb ≈ 3.193, below which uf becomes positive. For further decreasing in
m, at the left of the subcritical bifurcation point marked with an open circle, the flame jumps
to the solid line and becomes symmetric, propagating then with negative uf . This line crosses
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again the axis uf = 0 at mflb ≈ 1.033. These two flash-back points are indicated in Fig. 10 with
black circles and the corresponding temperature, reaction rate, mass fraction and streamlines are
shown in Fig. 11. Both of these flash-back solutions, one non-symmetric and one symmetric, are
stable, as may be inferred from the results of unsteady simulations presented in the next section.

5 Unsteady results

The use of the diffusive-thermal model or the diffusive-thermal model used in [13, 14] provided
a significant advantage in order to get a clear physical insight on the stability properties of sym-
metric and non-symmetric solutions, because the simplification in hydrodynamics made global
stability analysis feasible. In the general case of variable density the difficulties in the stability
analysis become formidable. This is why in the present study the stability of the solutions is
determined by carrying out direct numerical time-dependent simulations.

Figure 12 shows the time histories of the flame velocity, uf , and the symmetry indicator, S,
calculated for the flow rates m = 1 and m = −1 in the channel with a = 6 width, all curves
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reaction iso-levels and mass fraction isolines (white lines).

obtained for β = 10 and q = 5. For the case m = 1, when symmetric and non-symmetric flames
exist simultaneously (see Fig. 1), two types of initial conditions were used. The first initial
conditions, corresponding to a solid curve in Fig. 1, were visibly non-symmetric and the second
initial conditions, corresponding to a dashed curve in Fig. 1, were approximately symmetric with
weak perturbations. One can see that for both types of initial conditions the solutions approach
a non-symmetric profile (S ̸= 0) after a transient time, showing therefore that the stable solution
corresponding to the flow rate m = 1 is the non-symmetric flame. It should be noted that the
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intensity of the weak perturbations applied in the second case does affect the transient time and
for extremely weak perturbations this time may be very long. Obviously this time depends also
on the intrinsic accuracy (e.g the numerical mesh size) of the code.

For the case m = −1 shown in Fig. 12 only a symmetric solution exists. The initial condi-
tions applied in this case were non-symmetric and the time dependent evolution, indicated with
a dash-dotted line, brought the flame to a symmetric profile (S ≈ 0).

Similar patterns were observed for other sets of parameters. These time-dependent results
confirm those reported in [13, 14, 16] obtained by global stability analysis: when the non-
symmetric flames exist simultaneously with symmetric ones, the non-symmetric flames are sta-
ble and the symmetric flames are unstable.

Figure 13 illustrates the unsteady behavior near the multiple flash-back points found for
a = 2.5, Le = 0.7, β = 10, q = 5 and n = 2 (see Fig. 10) with a plot of the time history of
the dimensionless velocity, uf . One can see that, starting from different initial conditions and
imposing values of m close to the flash-back values, the flame evolves to the states with uf ≈ 0

in both cases.
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These results of time dependent simulations permit, firstly, to validate the conclusion that the
two flash-back states shown in Fig.10 are stable and therefore both can be physically realized.
Secondly, they indicate that the flame can be stabilized with respect to the wall at two different
flow rates, which is an important warning for the design of experiments.

6 Conclusions

Even if the existence of non-symmetric solutions in the free propagation of flames in narrow
channels is apparently well known, since non-symmetric flame shapes have been shown in var-
ious publications, little attention has been paid to the determination of the critical conditions
for their emergence. The case in point is the situation when both the governing equations and
the corresponding boundary conditions are symmetric about the midplane in two-dimensional
channels or axisymmetrically invariant in the cases of circular channels but, in spite of this
fact, the flame shape is not symmetric. The present investigation tries to throw light upon this
phenomenon.

The exception is the studies carried out in the frame of the constant density model. In this
case the hydrodynamic part of the governing equations is simplified, reducing the flow field to
a parabolic Poiseuille velocity profile not affected by the flame. These studies revealed that for
a certain parametric range symmetric and non-symmetric solutions coexist. Besides, when this
is the case, the symmetric solutions are unstable. This fact was established by means of global
stability analysis, facilitated significantly by the constant density simplifications.

Within the constant density framework only symmetric solutions were found if the Lewis
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number was exactly equal to one. Nevertheless, it was demonstrated that for Lewis numbers
below one, even just slightly below, there is always a critical channel width above which the
non-symmetric solutions appear, see [13].

The results of the present work show that the incorporation of thermal expansion into the
problem greatly enriches the phenomenon of flame symmetry-breaking. We have found that
even for Le = 1 the flame becomes non-symmetric in adiabatic channels with widths and flow
rates above some critical values, ac and mc, respectively.

We have also shown that as the parameter governing thermal expansion, q, decreases, the
critical flow rate, mc, above which non-symmetric flames appear, shifts to larger values. Pre-
sumably, this critical flow rate, mc, tends to infinity as q → 0, in agreement with the results
obtained in the framework of the constant density model.

Summing up the above results one can conclude that at least two different kinds of instabili-
ties/effects contribute simultaneously to the emergence of non-symmetric flames in narrow chan-
nels. The first one is the differential-diffusion instability and the second is the Darrieus-Landau
instability. Fortunately, they can be switched off/on considering the constant-density model
(the Darrieus-Landau instability is suppressed) or the unity Lewis number case (the differential-
diffusion instability is absent). Obviously these phenomena can not be separated in the general
case of variable density and Le < 1.

Our results also show that the emergence of non-symmetric flames is notably sensitive to
heat losses. As a general trend one can conclude that the increase in heat losses brings stability
to the symmetric flame. All these results affect the flash-back conditions or, what is equivalent,
the reactant flow rate for which the flame is stationary with respect to the wall, a condition often
studied in experiments on flame propagation in ducts.

Results of numerical calculations carried out for Le < 1 are also aligned with those obtained
within the constant density model. We found that the critical channel width above which non-
symmetric flames exist decreases as Le decreases. It was also demonstrated that for a sufficiently
low Lewis number the symmetric/non-symmetric bifurcation becomes subcritical. In particular,
a case with multiple flash-back conditions, one corresponding to a symmetric flame and the
other to with a non-symmetric flame, was found. This example highlights the difficulties that
can appear in experiments, where the flash-back critical condition is often the preferred operating
point in order to study the flame structure in channels.
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