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Abstract

The influence of heat-losses on the flame dynamics in narrow samples of energetic ma-
terial is investigated numerically. The model is reduced to a one-dimensional form with the
flame-sheet approximation applied for the reaction rate. Both the steady-state solutions and
its linear stability analysis are treated analytically. A typical C-shaped response curve is
found for the dependence of the flame-propagation velocity on the heat-loss parameter, with
solutions along the lower branch of slower flames being always unstable. It is found that a
part of the upper branch of the C-shaped response curve is also unstable and the Poincaré-
Andronov-Hopf bifurcation takes place at a certain value of heat-loss intensity even if the
steady state solution is stable under the corresponding adiabatic conditions.

The numerical simulations show that an increase in heat-losses induces, for sufficiently
high Zeldovich numbers, the Feigenbaum’s cascade of period doubling bifurcations after
which a chaotic dynamics is setting in. The chaotic dynamics precedes the flame extinction
occurring for the further increase of the heat-loss parameter which, nevertheless, remains
significantly lower than the steady extinction limit dictated by the C-shaped response curve.
Apparently, the parametric dependence of the extinction time in these cases is also irregu-
lar with appreciable disparities in magnitude. Finally, the intermittency effect is detected
slightly below the extinction limit with irregular dynamics alternating by apparently peri-
odic stages. These results may be important for the flammability limits theory and practical
fire safety applications.

1 Introduction

The emergence of oscillatory (diffusive-thermal) instabilities due to the Poincaré-Andronov-
Hopf bifurcation (PAH below) is well known in combustion of solid fuels. One-dimensional pul-
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sations in the propagation of combustion waves were found in experiments on high-temperature
self propagating synthesis, combustion of thermites and gunpowders [1–3]. The onset of multi-
dimensional traveling instabilities may result in the formation of complex unsteady dynamical
structures such as spinning waves [4–9]. It was shown that an increase in heat-losses promotes
the flame instability for values of the Zel’dovich number lower than under the corresponding
adiabatic conditions [9].

It was established that as the parameters of the system are modified away from the neutral
stability boundary for the onset of pulsations the complex regimes of flame oscillations may de-
velop. The period doubling bifurcations were found in experiments on the burning of tantalum-
carbon mixtures [3]. These dynamical regimes were investigated numerically first in [10] within
the one-step model with the Arrhenius dependence of the reaction rate on the temperature.

It is well known that the onset of oscillations may lead to quenching. For laminar flames
it was found in experiments with burner-stabilized flames [11] that as the flammability limit is
approached the dynamics of combustion resembles chaotic and, then, at certain stage the flame
is extinguished. It is remarkable that flame can extinguish long before the steady extinction limit
is reached in the parametric space [12]. A hypothesis was proposed that the extinction occurs
due to the crisis of chaotic attractor. This proposition was corroborated in numerical analysis of
the oscillatory dynamics of combustion waves in the model with chain-branching reactions [12].
Besides that for detonation waves [13] it was found that the development of pulsations may lead
to extinction without the chaotic regime route as the amplitude of oscillations grows beyond a
certain threshold value. The nature of dynamical quenching is still unclear and needs further
analysis.

The analytical study of complex unsteady one-dimensional pulsating regimes of combustion
wave propagation was carried out in [14] by means of a weak nonlinear analysis. Two models
for the propagation of adiabatic combustion waves were considered in [15]. One of the models
included melting of components of the solid fuel, while the other did not. In both cases the
increase of the activation energy of the reaction causes flame pulsations via the PAH bifurca-
tion. In the model without melting further increase of the bifurcation parameter results in the
subsequent emergence of the solutions of period two, four and eight. It was assumed (however
it was not proved rigorously) that the chaotic regime of flame oscillations appears as a result of
infinite sequence of period doubling bifurcations. In contrast to that in the model with melting
the solutions of period two were only detected. The solutions of period one and two sequentially
emerged and disappeared as the bifurcation parameter was increased. The model with melting
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was investigated also in [16] with attention on temporally resonant mode interactions.
In a number of papers [17–19] the free boundary models are employed in order to investigate

the diffusive-thermal stability of solid fuel combustion. Two scenarios for the onset of pulsations
were suggested depending on the choice of kinetic functions used in the models. The traveling
combustion waves lose stability either via the PAH bifurcation followed by the Feigenbaum’s
cascade of period doubling bifurcations or the stability is lost via the infinite period bifurcation
of the Shilnikov type. Both super- and subcritical PAH bifurcations as well as multiple cascades
of period doubling were found in [19].

It should be noted that in the majority of the above studies the influence of heat-losses on
the flame dynamics was not investigated. The effect of heat losses on the pulsating behavior of
combustion waves in solid fuels was studied in [20]. It was shown that a sequence of period
doubling bifurcations emerges leading to the formation of solutions of period two and four. The
possibility of the existence of the infinite cascade of period doubling bifurcations leading to
chaos was discussed. However, the numerical calculations presented in [20] showed that the
increase of bifurcation parameter results in the flame quenching without emergence of solutions
with period higher than four. Thus the mechanism of the dynamical flame quenching, emergence
of chaotic solutions and the role of chaos in the extinction of combustion waves are still unclear
even for the one-dimensional one-step models of flame propagation in solid fuels.

It must be admitted that the flame-sheet model, when considering unsteady propagation, is
a phenomenological one and can not be derived asymptotically in a rigorous way. In fact, it is
a result of truncation of the asymptotic series expansion [21]. It is not a case for non-adiabatic
flames with Lewis number close to unity investigated in the pioneering work [22] where lin-
ear stability analysis of a planar flame with weak heat losses was carried out. Nevertheless,
the flame-sheet model is very often used in modeling of flame propagation in both solids and
gas mixtures elucidating many aspects of flame dynamics. A detailed discussion on the clo-
sure problem and ways to circumvent it can be found in [23], where, particularly, the effect of
incomplete fuel combustion was taken into account.

It has been recently demonstrated in [24] that the inclusion of highly heat conducting element
into the solid fuel samples allows the effective control of the dynamics of pulsating combustion
waves including the chaotic regimes. The direct and reverse cascades of period doubling bifur-
cations can be initiated by the proper choice of parameters.

In this work we consider the model where the reaction chemistry is single step reaction with
rate proportional to the concentration of fuel and Arrhenius type temperature dependence. Such
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approach is valid, for example, for mono-propellants or mixtures with a single limiting compo-
nent of the combustion reaction. We assume that the reaction is gasless and there is no filtration
processes involved as it occurs in the case of combustion of thermites. The model considers
mixture as marcoscopic homogeneous continuous media and all microscopic effects, e.g. gran-
ular structure of the mixture, local melting/recrystallization, melt flow dynamics and capillary
effects etc., are neglected. All physical properties of the solid media are constant and do not
depend on temperature and conversion of fresh mixture into products. Such approach has been
successfully employed in many papers on solid phase combustion to describe qualitatively the
flame speed, structure, stability and dynamics. In the current work we are focused on the specific
case of one dimensional pulsating dynamics of deflagration waves in solid fuel combustion. The
purpose of this work is to study how the heat-losses affect the mechanism of transition to chaos
and quenching of combustion waves in such systems.

2 The mathematical formulation

Consider a deflagration process in a narrow sample of energetic material at initial temperature
T0. Combustion is modeled by an irreversible reaction of the form F → P+Q, where F denotes
the combustible substance, P is the product, and Q is the heat released per unit mass of fuel. In
the present study we define the characteristic length and time using relations δT = α/SL and
tc = α/S2

L, where SL is the planar flame speed and α is the (constant) thermal diffusivity; δT
denotes the thermal flame thickness. The mass fraction is normalized below with respect to its
upstream value, Y0, and the non-dimensional temperature, θ = (T − T0)/(Ta − T0), is based on
the adiabatic flame temperature Ta = T0 +QY0/c being c the (constant) specific heat capacity.

The non-dimensional governing equations, written in the reference frame attached to the
flame front, and the boundary conditions upstream and downstream, take the form

∂θ

∂t
+ uf

∂θ

∂x
=

∂2θ

∂x2
+ ω − kθ , (1)

∂Y

∂t
+ uf

∂Y

∂x
= −ω , (2)

x → −∞ : θ = Y − 1 = 0; x → ∞ : ∂2θ/∂x2 = 0, (3)

where uf is the flame velocity measured with SL. The fuel mass fraction equation contains only
the first spatial derivative and no outlet boundary condition is required. This mild downstream
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temperature condition replaces a more severe zero-temperature condition which should be im-
posed at x → ∞ when the heat losses are not negligible. Notice that it is valid also for the
adiabatic case k = 0. The numerical simulations reported below showed that the influence of
the downstream boundary condition becomes negligible, as it should be, if the size of a compu-
tational domain is reasonably large.

In the present study the well-known flame-sheet model, which can be traced back to [25], is
applied. It consists in approximation of the chemical reaction by a concentrated heat source at
the front

ω = F (θf )δ(x), with F (θf ) = exp

{
β

2

θf − 1

[1 + γ(θf − 1)]

}
, (4)

where θf ≡ θ(0, t) is the non-dimensional flame temperature and δ(x) is the Dirac delta-
function.

It is remarkable that the above formulation has only three parameters : β = E(Ta−T0)/RT 2
a ,

the Zeldovich number, where E is the activation energy and R is the universal gas constant,
γ = (Ta − T0)/Ta, the heat release parameter, and k which measures the heat-loss intensity. In
all calculations presented below γ = 0.7 was fixed as a representative value. The influence of γ
on the results will be reported elsewhere.

Assuming outside the flame sheet Y = 1 for x < 0 and Y = 0 for x > 0, integration of the
mass fraction equation (2) around x = 0 provides

uf = F (θf ) = exp

{
β

2

θf − 1

[1 + γ(θf − 1)]

}
. (5)

It should be stressed that complete consumption of the reactant has been assumed in Eq. (5), as
differentiated from that in [23] where fuel leakage was allowed. Thus, the flame dynamics is
described by the only equation

∂θ

∂t
+ F (θf )

∂θ

∂x
=

∂2θ

∂x2
− kθ, (6)

to be solved separately in each of the regions x < 0 and x > 0, with the boundary conditions
(3), subject to the following jump conditions at the flame front x = 0,

[θ] = 0,

[
∂θ

∂x

]
+ F (θf ) = 0, where θf = θ(0, t). (7)

Here [f ] ≡ f(0+) − f(0−) denotes the jump of quantity f across the front. For the adiabatic
case, k = 0, the steady-state solution of Eqs. (6)-(7) reads

θa0(x) =

{
ex, x < 0;

1, x > 0,
(8)
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providing θf = 1 and uf = 1. It is worth noting that the above formulation is completely
identical to that explored in [14, 17] with the only exception of the heat-loss term added to the
right-hand side of Eq. (6). Anticipating the results presented below the influence of this term on
the flame dynamics becomes crucial.

3 The basic solution and its stability

In what follows the steady-state variables are denoted by subindex ”0”. It is well known that the
heat-losses can cause multiplicity of solutions when for the same set of parameters more than
one steady-states exist. It is convenient to use the steady-state flame velocity, uf0, as a parameter
to describe the steady-state. Let us introduce the following quantities

a1 =
uf0 −

√
u2
f0 + 4k

2
, a2 =

uf0 +
√

u2
f0 + 4k

2
. (9)

Using the first jump condition (7), the steady-state solution of Eqs. (6) takes the form

θ0 =

{
θf0 exp(a1x), x > 0,

θf0 exp(a2x), x < 0,
(10)

where
θf0 =

β − (2γ − 2) ln uf0

β − 2γ ln uf0

follows from Eq. (5). Substituting Eq. (10) into the second jump condition (7) leads to

k =
[(2γ − 1) ln uf0 − β]

[2(γ − 1) ln uf0 − β]2
u2
f0 ln uf0. (11)

This dependence is plotted in Fig. 1 for γ = 0.7 and various β showing a typical C-shaped
response curve.

The above steady-state solution is perturbed now as usual with small perturbations

θ = θ0(x) + ϵeλtΦ(x), (12)

where λ is a complex number the real part of which gives the growth rate and ϵ ≪ 1 is the
perturbation amplitude. The linearized eigenvalue problem obtained when substituting Eq. (12)
into Eqs. (6)-(7) reduces to finding the non-trivial solutions of the following system

λΦ+ uf0Φ
′ + uf1Φ(0)θ

′
0 = Φ′′ − kΦ, (13)
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Figure 1: Steady state flame velocity uf as a function of k plotted for various β; gradient symbols
indicate the turning points; open circles - the points where the complex conjugate eigenvalues
becomes real; diamond symbols - the extinction values.

[Φ] = 0, [Φ′] + uf1Φ(0) = 0, x → ±∞ : |Φ| = 0, (14)

where
uf1 = dF (θf0)/dθf0 =

β

2[1 + γ(θf0 − 1)]2
exp

{
β

2

θf0 − 1

[1 + γ(θf0 − 1)]

}

In the following the eigenfunction is normalized by Φ(0) = 1 without loss of generality.
To determine whether a basic state is unstable we seek conditions under which Re(λ) is

nonnegative. The general solution of Eqs. (13)-(14) takes the form

Φ(x) =

{
−λ−1uf1θf0a1ea1x + c1eµ1x, x > 0;

−λ−1uf1θf0a2ea2x + c2eµ2x, x < 0;
(15)

where

µ1 =
uf0 −

√
u2
f0 + 4(λ+ k)

2
, µ2 =

uf0 +
√
u2
f0 + 4(λ+ k)

2
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Figure 2: The growth rate λR (left) and the frequency of oscillations λI (right) as a function
of β calculated for k = 0, 0.01 and k = 0.02 along the upper branches of the response curves
shown in Fig. 1; γ = 0.7 for all curves. In the left figure solid lines show complex conjugated
eigenvalues and dashed lines show real eigenvalues; gradient symbols correspond to the turning
points shown with the same symbols in Fig. 1.

The above solution is valid for λR > −k − λ2
I/u

2
f0 where Re(µ1) < 0. Substituting Eq. (15)

into the jump conditions (14) provides the solvability condition to find the eigenvalues

(uf0uf1θf0 + 2λ)
√

u2
f0 + 4λ+ 4k − uf0uf1θf0

√
u2
f0 + 4k − 2λuf1 = 0 (16)

Although this leads to an analytical expression for roots, writing it down has been not provided
due to its long length. The real and imaginary parts of λ are plotted as functions of β for k = 0,
0.01 and 0.02 in Fig. 2 evaluated along the upper branch of the C-shaped curve uf0 versus k.
The solid lines represent to the complex eigenvalues and the dashed lines show the real ones.
The adiabatic case, k = 0 (for which uf1 = β/2), was investigated in [14] where the critical
Zeldovich number βc = 2(2 +

√
5) ≈ 8.472 (re-written in terms of the present variables) above

which the steady-state solution is unstable was found. It is indicated with a dark circle in Fig. 2
(left). Notice, that for a fixed non-zero value of k the steady solution exists only up to a finite
value of β corresponding to the turning points indicated with gradient symbols in Fig. 1. These
points are also indicated with gradient symbols in Fig. 2 (left).
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Figure 3: The growth rate λR (left) and the frequency of oscillations λI (right) as a function of k
calculated for β = 7, 8 and 9; all curves for γ = 0.7. In the left figure solid lines show complex
conjugated eigenvalues and dashed lines show real eigenvalues; gradient symbols correspond to
the turning points shown with the same symbols in Fig. 1; diamond symbols indicate extinction
values.

The real and imaginary parts of λ evaluated along both the upper and lower branches of the
response curve are plotted in Fig. 3 as functions of k for three values of β and γ = 0.7. The
solid lines correspond to the complex eigenvalues and the dashed lines are used to plot the real
eigenvalues.

The steady solutions corresponding to the lower branch of the response curve are always
unconditionally unstable with one positive (above the upper gradient symbol) and other negative
(below the lower gradient symbol) eigenvalues. One can see that along the upper branch increas-
ing heat-losses promote instability of the traveling wave solution which becomes unstable above
a critical value even if the steady-state is stable for k = 0, as shown in the cases with β = 7

and 8. Open circles show the points where two complex conjugate eigenvalues merge becoming
real. Gradient symbols indicate the turning points of the response curves plotted in Fig. 1.

The stability results are summarized in Fig. 4 showing the curves k versus β plotted for
γ = 0.7. The steady-state solutions exist below the dash-dotted line corresponding to the turning
points (gradient symbols) in Fig. 1. Below the solid line indicating the PAH bifurcation the
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Figure 4: The stability map k versus β plotted for γ = 0.7; the steady-state solutions exist
below the dash-dotted line; the solid line shows the PAH bifurcation; above the dashed line the
eigenvalues are real; the dashed line with diamonds shows the extinction values.

upper branch steady solutions are stable. Between the solid and dashed lines the eigenvalues
are complex while above the dashed line they are real. Anticipating the results of numerical
simulations, we show in Fig. 4 with a long-dash line and diamond symbols the extinction values
above which the flame does not survive. These values are also shown with diamond symbols in
Figs. 1 and 3 (left).

4 Numerical results

4.1 Numerical treatment

Time-dependent simulations of Eq. (6) were carried out in a finite domain, xmin < x < xmax

with the typical values xmin = −20 and xmax = 20. The spatial derivatives were disretized on a
uniform grid using second order three-point central differences and an explicit, first order, time
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marching procedure was used with the typical time step τ = 2 ·10−5. The typical number of grid
points was 2001. The number of grid points was doubled in some cases and τ was halved without
any significant differences in the results. The domain size was also extended to xmin = −60

and xmax = 60. The explicit in time procedure allowed to write the jump condition for the
temperature derivatives given by Eq. (14) in the form of a non-linear equation for θf further
resolved iteratively at every time step with accuracy 10−15. It should be noted that in the frame
of the flame sheet model the size the reaction zone is infinitely small and, thus, the requirement
for the mesh size requiring a certain number of grid points inside the reaction region becomes
of no importance.

The initial condition for time dependent simulations was used in the form

t = 0 : θ = θa0(x) + θhe
−x2

, (17)

where θa0(x) is given by Eq. (8). In the following, the amplitude of perturbation θh was zero
unless otherwise specified.

4.2 Adiabatic case

Consider first the adiabatic case imposing k = 0 in Eq. (6). Figure 5 shows the time-histories of
uf calculated for various values of β below and above the critical value βc = 8.4721 obtained
from the linear stability analysis. The case β = 8 was calculated using θh = 0.1 in the initial
condition (17). One can see that for β < βc the initial perturbations decay in accordance with
the stability curves plotted in Fig. 2. For β > βc the time-periodic behavior is formed and the
unique period doubling bifurcation occurs at β ≈ 9.47. For further increasing β no more period
doubling bifurcations were observed. The relaxation dynamics comes into particular prominence
for large β illustrated with the case β = 12 where very sharp peaks of the flame velocity are
alternated by extensive intervals with quasi-steady very slow motion. Figure 2 shows that in
the adiabatic case, k = 0, the eigenvalues become real for β > β∗ = 11.65 marked here with
an open circle. It should be particularly emphasized that no chaotic behavior was observed for
k = 0 up to β = 12. The result obtained for k = 0 indicates the lack of the Feigenbaum’s
cascade of period doubling bifurcations, at least for γ = 0.7 fixed in the present study. The
similar results were reported in [17].
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Figure 5: Time histories of the flame velocity calculated for the adiabatic sample (k = 0) for
γ = 0.7 and several β; θh = 0.1 was used for β = 8.

4.3 Non-adiabatic samples: chaotic behavior and extinction

Figure 6 shows the time-histories of uf calculated for β = 7 and various k. The corresponding
critical heat-loss parameter obtained from the linear stability analysis above which the flame be-
comes unstable is kc ≈ 0.02589. Numerical simulations show the flame dynamics in accordance
with the linear stability analysis. For values of k = 0.025 < kc the flame approaches after a
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Figure 6: Time histories of the flame velocity calculated for β = 7, γ = 0.7 and various k.

transient stage of behavior a stable steady state while for k > kc the oscillatory dynamics was
observed. The growing amplitude of oscillations was detected for increasing values of k leading
finally to extinction at k ≈ 0.02643556. The figure shows that no period doubling bifurcations
occur for β = 7 up to the extinction event. It should be noted that the exact value of k cor-
responding to extinction can be determined only with some uncertainty (estimated below 1%)
because apparently this value depends slightly on initial conditions. One can see in Fig. 1 that
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Figure 7: Examples of time history of the flame velocity calculated for β = 8, γ = 0.7 and
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these extinction points (diamond symbols) are significantly lower than both the steady extinction
limits given by the turning points (gradient symbols) and the values above which the growth rate
λ become real (open circles).

For β = 8 the critical value of k above which the steady-state becomes unstable is kc ≈
0.01095. Figure 7 illustrates the flame dynamics for β = 8 and k > kc. One can see that with
increasing values of k the flame dynamics changes from merely oscillatory, as shown with the
k = 0.015 case, through the period doubling route illustrated for k = 0.0177, to the chaotic
behavior demonstrated for k = 0.01787. The solutions with period doubling higher then four
are not plotted. The last case shows that the chaotic regime is sustained perpetually without
extinction.
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Figure 8: Examples of instantaneous temperature distributions (upper plot) and the time history
of the flame velocity (lower plot) calculated for β = 8, γ = 0.7 and k = 0.01781; corresponding
instants are shown with open circles.

Instantaneous temperature distributions illustrating a typical chaotic dynamics are plotted
in Fig. 8 (upper plot) together with the corresponding time-history (lower plot) calculated for
k = 0.01781 where the instants are marked with open circles.

Variations of the flame dynamics are illustrated with the first return map technique. Using the
dependence of the flame velocity versus time the series of the local maxima of uf are identified,
{ufn, n = 1, 2, . . . }, where n is the maximum number. The dependence uf(n+1) versus ufn

is plotted in Fig. 9 for β = 8 and various k. These plots were created using n > 100 after
the starting of simulations, in order to allow the flame dynamics to approach the corresponding
attractor.

The numerical simulations indicate that the Feigenbaum’s cascade of period doubling bi-
furcations is produced after the initial PAH bifurcation leading finally to the chaotic regimes
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[26, 27]. The case k = 0.0177 in Fig. 9 shows the flame dynamics after the first period doubling
bifurcation when uf has two different maximums. The second and third period doubling bifur-
cations are illustrated by plots with k = 0.01777 and 0.01780. For k = 0.01781 the first return
map consists of four continuous segments. For k = 0.01785 the number of continuous segments
become equal to two and for k = 0.01787 the gap between two segments shrinks and the first
return map becomes whole continuous. The similar sequence was reported in [24] where the
chaotic dynamics was found for the flame propagation in a composite energetic material.

The further increase of heat-losses produces extinction. Figure 10 shows the flame dynamics
calculated for three very close values of k. One can see that extinction occurs after a long period
of a chaotic behavior and the extinction time does not depend on k monotonously. All cases in
this figure were calculated starting from the same initial condition given by Eq. (17) with θh = 0

but the extinction times are significantly different despite infinitesimal variations of k.
The same sensibility manifests also for very small variations of the initial conditions, as

shown in Fig. 11 for k = 0.017875. One can see that the variations of θh of order 10−7 lead to
significant changes in the extinction time. The first return map preceding extinction is shown in
Fig. 12. It is interesting that this plot appears as fuzzy in comparison with the return maps in
Fig. 9.

This sensibility effect persists also for higher values of β. Figure 13 shows the time histories
of uf calculated for β = 9 and two very close values of k. The first case shows the chaotic
dynamics without extinction while in the second one the extinction occurs after a long stage
of chaotic behavior. One can see that the amplitude of chaotic oscillations grows with β. The
sequence of the first return maps illustrating the chaotic dynamics is shown in Fig. 14. It is
interesting that for k close to extinction an additional line indicated with an arrow appears in the
first return map plot.

The approximate extinction values of k plotted as a function of β in Fig. 4 show high sensi-
tivity of the combustion wave on the heat-loss intensity for large β. Apparently this dependence
approaches zero. It means that even very week heat-losses causes extinction for high values of
the Zeldovich number.

4.4 Intermittency

Intermittency is well known as the irregular alternation of phases of apparently periodic and
chaotic dynamics, see [28]. Intermittent behavior was observed in fluid flows that are turbulent
or near the transition to turbulence [29]. This phenomenon was found for the combustion waves
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investigated in the present study. Figure 15 shows the different intervals of the time-history of uf

calculated for β = 8 and k = 0.017872. This case is positioned slightly below extinction. The
phases of apparently periodic behavior are indicated with dashed-line circles. It is interesting
that intermittency effect was detected only for values of k close to extinction and not at any k
for which the chaotic dynamics was observed.

5 Concluding remarks

The present study investigates the influence of heat-losses on the combustion wave propagation
in narrow samples of energetic materials. For the sake of simplicity, the flame-sheet model
is adopted and the heat-loss term is linearized with respect to the temperature field. These
simplifications allow to write the steady-state solutions in an analytic form and to carry out, also
analytically, the linear stability analysis. It was shown that the increase in heat-losses causes
the PAH bifurcation even if the steady-state solution is stable under the corresponding adiabatic
conditions. This trend was discovered first in [22] where the role of heat-losses on the stability
was investigated for non-adiabatic flame with Lewis number close to unity.

The further increase in heat-losses leads to extinction and two different scenarios were ob-
served. The first one occurs when the Zeldovich number is relatively low. In this case the
amplitude of oscillations increases with increasing values of the heat-loss coefficient and the
flame extinguishes after reaching the critical amplitude without suffering any period doubling
bifurcations. The second scenario was observed when the Zeldovich number is sufficiently high.
In this case the Feigenbaum’s cascade of period doubling bifurcations is produced after the ini-
tial PAH bifurcation leading finally to the chaotic regime. It is found that there exists a range of
the heat-loss parameter where the chaotic dynamics can persist infinite time without extinction.
But further increase in heat-losses over a limiting value produces extinction. It is interesting
that the extinction time can attain a significant magnitude varying also in a stochastic manner
near the extinction limit. In reality, this characteristic can be hardly predicted numerically with
high accuracy near extinction due to its stochastic nature. This uncertainty is assumed to affect
experimental metering of the extinction conditions.

It should be noted that all previous studies of the combustion waves propagation with the
chaotic regimes detected were carried out for adiabatic samples. The corresponding Zeldovich
numbers chosen as a bifurcation parameter was found very high in these cases. In fact, the
chaotic regimes were found in a parametric region corresponding to relaxation oscillations,
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namely where the corresponding linear growth rate of the steady-state perturbations is purely
real. This regimes are characterized by very sharp peaks of the flame velocity alternated by
extensive intervals with quasi-steady very slow motion. Apparently, including even very small
heat-losses in these cases may cause extinction.

In contrast to this, the results presented in the current work show that heat-losses promote the
chaotic dynamics which appears for significantly lower values of the Zeldovich number looking
much more realistic. It is conceivable that precisely the heat-loss effect becomes the veritable
cause of the chaotic behavior observed for flame propagation in narrow solid energetic samples.

Acknowledgments
VNK acknowledges the support of SpanishMEC under Project #ENE2015-65852-C2-2-R. VVG
acknowledles the support of the Russian Foundation for Basic Research grants #16-03-00758
and #17-01-00070.

References

[1] A.F. Belyaev, L.D. Komkova, Dependence of burning velocity of thermites on pressure,
Zh. Fiz. Khim 24 (1950) 1302-1311.

[2] L.B. Maksimov, Issledovanie pulsatsii svecheniya pri gorenii nitroglitserinovih porohov,
Zh. Fiz. Khim 37 (1963) 1129-1332.

[3] V.M. Shkiro, G.A. Nersisyan, Structure of fluctuations occurring in the burn- ing of
tantalum-carbon mixtures, Combust. Explos. Shock Waves 14 (1978) 121-122.

[4] A.G. Merzhanov, A .K. Filonenko, I.P. Borovinskaya, New phenomena during combustion
of condensed systems, Dokl. Akad. Nauk SSSR, Seriya Khimiya 208 (1973) 892-894.

[5] Y.M. Maksimov, A.G. Merzhanov, A.T. Pak, M.N. Kuchkin, Unstable combustion modes
of gasless systems, Combust. Explos. Shock Waves 17 (1981) 393-400

[6] T.P. Ivleva, A.G. Merzhanov, Structure and variability of spinning reaction waves in three-
dimensional excitable media Phys. Rev. E 64 (2001) 036218.

[7] T.P. Ivleva, A.G. Merzhanov, Three-dimensional modes of unsteady solid-flame combus-
tion Chaos 13 (2003) 80-86.



December 26, 2017 19

[8] T.P. Ivleva, A.G. Merzhanov, Three-dimensional unsteady solid flame combustion under
nonadiabatic Conditions Combust. Explos. Shock Waves 39 (2003) 300-3008.
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Figure 9: The first return maps of the relative maximums of uf plotted for β = 8, γ = 0.7 and
various k.
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Figure 10: Examples of the chaotic flame dynamics calculated for β = 8 and three very close
values of k showing irregular dependence of the extinction time on the heat loss intensity.
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Figure 11: High sensitivity effect of the initial conditions on the extinction time calculated for
β = 8 and k = 0.017875; the case with θh = 0 is shown in Fig. 10.
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Figure 12: Chaotic first return map preceding extinction, for β = 8 and k = 0.017875.
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Figure 13: Time histories of the flame velocity versus time calculated for β = 9 and two values
of k below and above the extinction value.
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Figure 14: The first return maps calculated for β = 9 and various k.
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Figure 15: Intermittency effect in the combustion wave: the phases of apparently periodic dy-
namics are indicated with dash-lines circles, for β = 8 and k = 0.017872.


