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Abstract

The flame propagation in a solid composite energetic sample comprised of a solid ener-
getic annulus surrounding a highly conductive core is investigated using one-step Arrhenius
reaction mechanism. The steady-state solutions, its linear stability analysis and the results
of direct numerical simulations of non-stationary problem are presented. It was found that
the flame dynamics is highly subject to variation in the presence of the conductive core
leading in some cases to a chaotic flame behavior or to stabilization of the flame propa-
gation. It was demonstrated that for given combustion properties of the energetic material
the kind of flame dynamics observed in the composite sample can be controlled by an ap-
propriate choice of the experimental parameters such as the thickness of the fuel annulus
deposited or the diameter of the heat conductive core.

1 Introduction

The onset of pulsations quite often accompanies the propagation of combustion waves in solid
combustion fuels. One of the first experimental observation was reported in [1]. In the latter
experimental papers [2, 3] it was demonstrated that pulsations are of auto-oscillatory nature and
that complex temporal regimes can emerge as the bifurcation parameters (mixture dilution) are
modified. Besides planar one-dimensional oscillations in cylindrical solid fuel samples multidi-
mensional regimes of flame propagation such as spinning waves were found while conducting
the self-propagating high temperature synthesis [4, 5]. More detailed description of the variety
of spatio-temporal wave patterns observed in combustion of solid fuels can be found in reviews
[6–8].
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Systematic mathematical analysis of oscillatory flame propagation regimes began with the
publication of the results in [9], where it was demonstrated by means of numerical modeling
that the planar flame pulsations are of diffusional-thermal nature and can be described within the
models which take into consideration heat release occurring in course of fuel consumption and
heat diffusion from hot products to the fresh mixture. Further advances in the analysis of flame
pulsations came from the employment of the asymptotic analysis [10]. It was demonstrated
that the planar combustion wave loses stability due to the Hopf bifurcation and the critical
parameter values for the onset of oscillations and characteristics of these oscillating regimes
were determined. These findings were later confirmed in numerical analysis in [11, 12].

In the case of the cylindrical geometry it was shown [13] that as the diameter of the sample
is increased either traveling or one-dimensional pulsating instabilities occur, which can result in
the emergence of spinning or pulsating regimes of combustion wave propagation. The results
of the stability and bifurcation asymptotic analysis in the limit of the large activation energy are
summarized in [14]. Extensive numerical results of combustion wave propagation in cylindri-
cal samples were presented in [15–19] where the emergence of different nonstationary and/or
multidimensional regimes of flame propagation was reported. In [20] the numerical stability
analysis of combustion wave propagation in cylindrical fuel sample was undertaken and the
formation of different modes of spinning waves was directly related with the global stability
characteristics of two-dimensional traveling wave solutions.

Initiated by the works in [21, 22] the idea to develop the solid nanostructured composite
energetic materials is actively discussed. These materials structurally are comprised of the
solid fuel shell which provides the heat due to the chemical reaction and inert core with high
thermal conductivity, which serves as a thermal conduit to recuperate heat from hot products
of the reaction to the fresh fuel mixture. The core can be made of carbon nanotubes [22],
metal/metal-oxide nanowires [23] or carbon fibers [24], while standard energetic materials such
as nitrocellulose are used in shell of the composite.

In [25, 26] we have employed a one-dimensional model in order to investigate the properties
of combustion waves in such systems. The flame speed enhancement is estimated by using
asymptotic and numerical analysis and it is demonstrated that the optimal design of composite
material can result in significant stabilization of combustion waves. The aim of this work is to
extend our previous analysis to investigate the complex dynamical regimes, which emerge as
the traveling combustion wave becomes unstable with respect to flame oscillations. To this end,
in Section 2 we give the general formulation and asymptotic assumptions used in the study;
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the numerical treatment is briefly described in Section 3; the numerical results describing the
steady-state traveling wave solutions are presented in Section 4; the linear stability analysis
formulation is given in Section 5; the linear stability results are presented in Section 6; the
results of direct numerical calculations are given in Section 7, with the results of calculations
of the Lyapunov characteristic exponent in Section 8. Finally, conclusions are drawn in the last
section.

2 General formulation

Consider an annulus of energetic material capable of exothermic decomposition surrounding a
thin cylinder of high thermal conductivity (e.g. a carbon nanotube), both mediums are at initial
temperature T0. A sketch of the geometry is shown in Fig. 1. In what follows we assume that the
heat capacities, c1 and c2, the heat conductivities, λ1 and λ2, and the densities, ρ1 and ρ2, are all
constant, where indexes 1 and 2 correspond to the energetic annulus and the core, respectively.
We suppose that the heat losses from the outer surface of the sample are negligible while the
heat exchange between the annulus and the core obeys a linear law, q = K(T1 − T2), where q
is the heat flux through the surface separating the core and the annulus, per unit area, and K is
an effective heat-exchange coefficient. Following [25, 26] we assume that the temperature of
the shell and core can be effectively averaged across the corresponding regions, namely both
temperatures are functions of x and t only. The heat-exchange coefficient K can be calculated,
for example, supposing that the core and the annulus are separated by a thin membrane. Then,
K = λw/hw, where λw and hw are the mambrane conductivity and its thickness, respectively.

The combustion process is modeled by an irreversible reaction of the form F → P + Q,
where F denotes the combustible substance, P is the product, andQ is the heat released per unit
mass of fuel. The combustion rate, Ω, defined as the mass of fuel consumed per unit volume
and unit time, is assumed to follow an Arrhenius law of the form

Ω = ρ1BY exp(−E/RT1),

where B, Y , E and R represent, respectively, the pre-exponential factor, the mass fraction of
combustible substance, the activation energy and the universal gas constant.

In order to describe the flame propagation a reference frame attached to the flame is used.
Following the temperature distribution along the energetic material, T1(x, t), starting from the
unburned side, we choose a point x = x∗ (the first point if there are more than one) where
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Figure 1: Sketch of the problem

the temperature is equal to some value T1 = T∗ (the reference temperature below). In the
following, the reference frame is attached to this point. In the case of steady flame propagation
it moves as an invariable structure with a constant velocity equal to Uf independent on T∗. In the
general case the velocity Uf of this point as a function of time characterizes the time-dependent
development of the combustion process. The value of Uf is determined by the condition

T1(x∗, t) = T∗ (1)

Evidently, T∗ must be chosen judiciously, less than the maximum temperature seen during the
process, and greater than the minimum temperature T0. For the unsteady flame dynamics, the
flame does not move as an intact structure and the specific form of Uf depends on the choice
of the reference temperature T∗. Anticipating the numerical results presented below the level of
randomness (the Lyapunov characteristic exponent) becomes affected by the choice of T∗ in the
cases of stochastically propagating flames.

Under above simplifications, the dimensional balance equations describing conservations of
mass of fuel and energy in both mediums take the form

S1

{
ρ1

∂Y

∂t
+ ρ1Uf

∂Y

∂x
− Ω

}
= 0, (2)

S1

{
ρ1c1

∂T1

∂t
+ ρ1c1Uf

∂T1

∂x
− λ1

∂2T1

∂x2
−QΩ

}
= −PK(T1 − T2), (3)

S2

{
ρ2c2

∂T2

∂t
+ ρ2c2Uf

∂T2

∂x
− λ2

∂2T2

∂x2

}
= PK(T1 − T2), (4)
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where S1, S2 are the areas of the solid combustible and pure conductive sections, respectively,
and P is the perimeter of the intermediate surface.

The mass fraction is normalized below with respect to its upstream value, Y0, and non-
dimensional temperatures θ1 = (T1−T0)/(Ta−T0) and θ2 = (T2−T0)/(Ta−T0) are based on
the adiabatic flame temperature Ta = T0+QY0/c1 corresponding to a planar flame propagation
in the pure energetic material. Let us define the characteristic time and length using the relations

tc = βB−1 exp(E/RTa), lc =
√
tcα1, (5)

where β = γE/RTa is the Zel’dovich number and γ = (Ta − T0)/Ta is the heat release
parameter. The non-dimensional governing equations take the form

∂Y

∂t
+ uf

∂Y

∂x
= −ω. (6)

∂θ1
∂t

+ uf
∂θ1
∂x

=
∂2θ1
∂x2

+ ω − ξ · (θ1 − θ2), (7)

∂θ2
∂t

+ uf
∂θ2
∂x

= α
∂2θ2
∂x2

+ s · ξ · (θ1 − θ2), (8)

The parameters appearing in the above equations are

ξ =
KPβ exp(E/RTa)

ρ1c1S1B
, α =

α2

α1
, s =

ρ1c1S1

ρ2c2S2
, (9)

where α1 = λ1/ρ1c1 and α2 = λ2/ρ2c2 are the thermal diffusivities. It is noteworthy that the
parameter s can be easily changed in experiments by varying the cross-section of the conductive
core or deposited mass of the energetic material in the annulus. In the limit ξ → 0 Eqs. (6)-(7)
become identical to those describing a standard one-dimensional combustion wave propagating
in the pure energetic sample [9].

In the following we assume that that the cross-section of the conductive core is small com-
pared with that of the solid combustible, S2 ≪ S1, and, simultaneously, it has a very high
thermal conductivity compared with that of the energetic annulus, namely λ2 ≫ λ1. In term of
the non-dimensional parameters it means that s ≫ 1 and α ≫ 1. It is convenient to introduce a
parameter µ defined as

µ =
α

s
=

λ2

λ1
· S2

S1
. (10)

Always supposing that µ = O(1), Eq. (8) takes in the limit s → ∞ the following quasi-steady
form

0 = µ
∂2θ2
∂x2

+ ξ · (θ1 − θ2). (11)
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This approximation describes conductive cores of negligible heat capacity with non-negligible
heat transfer effect. This situation corresponds to an experimental setup where the single carbon
nanotube form the heat conducting core of the composite material [22].

The dimensionless reaction rate ω appearing in Eqs. (6)-(7) is given by

ω = βY exp

{
β(θ1 − 1)

1 + γ(θ1 − 1)

}
(12)

The factor β appearing in Eq. (12) provides that uf → 1 for the steady combustion wave in the
pure energetic material in the limit β → ∞.

The instantaneous values of uf (t) = tcUf/lc are determined by the additional condition

θ1(x∗, t) = θ∗, (13)

where θ∗ = (T∗ − T0)/(Ta − T0) is the non-dimensional reference temperature. Evidently, all
results should be independent on x∗ due to translation invariance along the direction of motion,
x → x+ const.

Appropriate boundary conditions corresponding the configuration depicted in Fig. 1 are

x → −∞ : θ1 = θ2 = Y − 1 = 0,

x → +∞ : ∂Y/∂x = ∂θ1/∂x = ∂θ2/∂x = 0.
(14)

Finally, the problem of the flame propagation in the composite energetic sample is reduced to
solve Eqs. (6)-(7) and (11) subject to the boundary conditions given by Eq. (14).

3 Numerical treatment

Steady as well as time-dependent computations were carries out in a finite domains, xmin <

x < xmax. The typical values were xmin = −20 and xmax = 20. The spatial derivatives
were disretized on a uniform grid using second order three-point central differences for the
temperature in Eq. (7) and three-point upwind differences for the convection term of Eq. (6).
The typical number of grid points was 2001. For time-dependent computations an explicit
marching procedure was used in time with the typical time step τ = 10−4. The number of grid
points was doubled in some cases and τ was halved without any significant differences in the
results. In order to determine steady solutions (but not necessary stable), the steady counterpart
(∂/∂t ≡ 0) of Eqs. (6)-(7) were solved together with Eq. (11) using a Gauss-Seidel method
with over-relaxation.
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Figure 2: Typical steady mass fraction and temperatures profiles computed using the reduced
model given by Eqs. (7), (6) and (11).

4 Steady-state solutions

Consider first the steadily propagating flames imposing ∂/∂t = 0 in Eqs. (6), (7) which were
solved together with Eqs. (11) and (14). The system has the first integral,

uf (θ1 + Y − 1) =
dθ1
dx

+ µ
dθ2
dx

, (15)

indicating, together with Eq. (11), that θ1 → 1 and θ2 → 1 behind the flame where the fuel
mass fraction and temperature gradients approach to zero value.

Figure 2 illustrates the typical distributions of the mass fraction and temperatures plotted
for µ = 5, ξ = 5, β = 8 and γ = 0.7. The distinctive characteristic of the temperature profile
in the energetic material is the existence of a local maximum appearing just after the reaction
zone with the super-adiabatic temperature, θ1max > 1.

The dimensionless steady velocity uf is shown in Fig. 3 (left plot) together with the tem-
perature maximum, θ1max (right plot), as functions of µ for various ξ, all curves calculated for
β = 8 and γ = 0.7. It can be seen in Fig. 3 that the temperature in the annulus can be more than
30% higher than the adiabatic flame temperature in pure solid fuel, while the flame speed can
increase in more than five times. The figure shows also that for small values of µ the maximum
temperature θ1max approaches to unity and the flame velocity becomes uf ≈ 1.02 calculated
for β = 8, γ = 0.7 and µ = 0. It can be explained by the fact that the effect of the conductive
core becomes negligible not only for ξ → 0, as it was mentioned above, but also for µ → 0

when θ1 ≈ θ2.
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Figure 3: Computed steady flame velocity uf (left) and maximum of the temperature θ1 (right)
as a function of µ; for β = 8, γ = 0.7 and several values of ξ.

5 Linear stability analysis formulation

Stability analysis of the steady-state flames presented in the previous section has been carried
out using the method described in detail in [27]. The distributions of the steady-state temper-
atures, mass fraction and the flame propagation velocity, all now denoted by subindex ”0”, are
perturbed as usual with small perturbations

θi = θi0(x) + ϵΦi(x) exp(λt), i = 1, 2,

Y = Y0(x) + ϵΨ(x) exp(λt),

uf = uf0 + ϵuf1 exp(λt),

(16)

where λ is a complex number, the real part of which represents of the growth rate, and ϵ is a
small amplitude. The linearized eigenvalue problem obtained when substituting Eqs. (16) into
Eqs. (6),(7) and (11) reduces to find non-trivial solutions of the system

λΨ+ uf1Y
I
0 + uf0Ψ

I = −AΦ1 − BΨ, (17)

λΦ1 + uf1θ
I
0 + uf0Φ

I
1 = ΦII

1 + AΦ1 +BΨ− ξ(Φ1 − Φ2), (18)

0 = µΦII
2 + ξ(Φ1 − Φ2). (19)
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Here ”I” denotes the differentiation with respect to x and

A =
β2Y0

[1 + γ(θ10 − 1)]2
exp

{
β(θ10 − 1)

1 + γ(θ10 − 1)

}
, B = β exp

{
β(θ10 − 1)

1 + γ(θ10 − 1)

}

are both functions of x. The constraint following from Eq. (13) becomes

Φ1(x∗) = 0 (20)

The solution of Eqs. (17-19) is sought in the form

(Ψ,Φ1,Φ2) = (Ψh,Φ1h,Φ2h) + c · (dY0/dx, dθ01/dx, dθ02/dx), (21)

where (Ψh,Φ1h,Φ2h) is the solution of homogeneous system obtained from Eqs. (17-19) by
imposing uf1 = 0 and c is a constant. The values of uf1 and c can be found by substituting (21)
into Eqs. (17)-(19) and (20). It leads to

c = −{Φ1h/θ
I
0}|x=x∗ , uf1 = −λc.

Finally, the eigenvalue λ can be calculated by solving the homogeneous counterpart (imposing
uf1 = 0) of Eqs. (17)-(19)with constraint (20) omitted without loss of generality. In what
follows subindex ”h” denoting the homogeneous solution will not be applied.

It should be noted that the steady-state solutions in the form of traveling waves are always
invariant with respect to a shift x → x + const. It leads to existence of the eigenvalue λ = 0

with the corresponding eigenfunction given by (Ψ,Φ1,Φ2) = (dY0/dx, dθ10/dx, dθ20/dx). The
method applied in this study is able to calculate the eigenvalue with the largest real part, see
[27]. Then, the eigenvalue λ = 0 can be obtained as a result (within numerical accuracy) in the
case of a stable combustion wave.

6 Linear stability results

In order to compare the stability properties of the combustion wave in the composite sample
with those in the pure energetic one we plot in Fig. 4 the growth rate λR calculated for ξ = 0 (the
conductive core is absent) as a function of β for different values of the heat release parameter
γ. In fact, these results presented here for the sake of completeness are equivalent to those for
the stability of a planar flame front in an unbounded environment for k = 0, see [20], where k
is the transverse wavenumber of perturbations. The critical values of the Zeldovich number βc
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Figure 4: The growth rate λR plotted as a function of β for various γ corresponding to the pure
energetic material case; the traveling wave solution becomes unstable for β > βc shown with a
open circles.

above which the flame becomes unstable are indicated in Fig. 4 with open circles. In particular,
the critical Zeldovich number for γ = 0.7 is βc ≈ 7.25 .

Consider the case when the flame propagation in the pure energetic sample is stable taking
β = 7.2 < βc for γ = 0.7. The dependencies of the growth rate λR and the frequency of
oscillations on the parameter µ are plotted in Fig. 5 for various ξ. The left figure shows that with
increasing values of ξ an interval of µ appears where λR comes to be positive. It is remarkable
that the combustion wave recovers its stability for sufficiently small and sufficiently large values
of µ. On the other hand, the parameters µ and ξ have little effect on the frequency of oscillations
λI .

Figure 6 illustrates the case with β = 8 > βc when the combustion wave is already unstable
in the pure energetic sample showing the dependence of the growth rate λR on the parameter
µ for several values of ξ. All curves originate at µ = 0 from the same point indicated with a
dark circle corresponding to the growth rate of the (unstable) one-dimensional combustion wave
in the pure energetic sample. One can see in Fig. 6 that λR initially increases with increasing
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Figure 5: The growth rate λR (left) the frequency of oscillation λI (right) as a function of µ
calculated for β = 7.2, γ = 0.7 and various ξ. The critical values of µ are indicated with open
circles; open triangles in the left figure correspond to the numerical cases shown in Fig. 7 for
ξ = 5; an open triangle in the right figure shows the frequency of oscillations computed from
the direct numerical simulations for ξ = 5 and µ = 1.

values of µ, peaks and thereafter decreases turning to be negative. The critical values of µ above
which the flame propagation becomes stable (λR < 0) are marked with open circles.

7 Unsteady flame dynamics

In the present section the results of the linear stability analysis are contrasted with the nonlinear
flame dynamics. The time-dependent problem given by Eqs. (6)-(7) and (11) was solved nu-
merically. Consider first the case β = 7.2 for which the combustion wave is stable (the flame
velocity is a constant in time) in the pure energetic sample. Figure 7 shows the time-histories of
uf calculated for ξ = 5 and three values of µ marked with triangles in Fig. 5. This plot demon-
strates that for µ = 0.1 and µ = 2.5 the flame approaches after a transient stage of behavior
a stable steady state. For µ = 1, on the other hand, the solution evolves to a time-periodic
state, with the flame velocity uf oscillating with constant frequency and amplitude. Thus, for
relatively low µ the flame propagation remains stable as well as in the pure energetic sample.
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It becomes unstable undergoing periodic oscillations when µ is increased above the first criti-
cal value µ∗, but a further increase in µ above the second critical value µ∗∗ leads eventually to
re-stabilization of the flame propagation.

The direct numerical simulations themselves can be used to evaluate the flame stability
properties, see [28]. We show in Fig. 5 (right) with an open triangle the frequency of oscillations
λI obtained from the time-dependent code computed for µ = 1 and ξ = 5. One can see a good
fit of this result to the linear stability analysis.

The flame dynamics becomes much more complex for higher values of the Zeldovich num-
ber. Consider the case β = 8 and γ = 0.7 when the combustion wave is already unstable in
the pure energetic sample. In Fig. 8 we show the time-history of uf for various values of µ.
All cases were calculated for ξ = 5 and the reference temperature was fixed at θ∗ = 0.5. One
can see that with increasing values of µ the flame dynamics suffers important changes evolving
from merely oscillatory, as shown by the µ = 0.1 case, through the period-doubling route, the
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Figure 7: Time histories of the flame velocity calculated for β = 7.2, γ = 0.7, ξ = 5 and
several values of µ corresponding open triangles in Fig. 5; the reference temperature is fixed at
θ∗ = 0.5 for all cases.

cases µ = 1 and 2.2, to the chaotic behavior illustrated with µ = 2.5 and µ = 3. It is notable that
further increase in µ produces the inverse period doubling cascade illustrated with the µ = 4

case, and, finally, leads to stabilization of the flame propagation shown for µ = 5.
The chaotic flame dynamics found for µ = 3 is compared with the simple oscillatory behav-

ior observed for µ = 0.1 in Fig. 9 where the dependence of the temperature maximum θ1max is
plotted versus the flame velocity uf .

The simplest tool to illustrate variations in the flame dynamics is the first return map tech-
nics. Using the dependence of uf as a function of time the series of the local maximum of
the flame velocity are identified, {uf n, n = 1, 2, . . . }, where n is the maximum number. The
dependence of uf (n+1) versus uf n is plotted in Fig. 10 for various µ. These pictures display the
evolution of the flame dynamics with increasing values of µ.
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Figure 8: Time histories of the flame velocity calculated for β = 8, γ = 0.7, ξ = 5 and several
values of µ; the reference temperature is fixed at θ∗ = 0.5 for all cases.

The case µ = 0.1 illustrates a simple oscillatory behavior with the only maximum of uf

during the period: the first return map consists of a single point. The first return maps for µ = 1

and µ = 2.2 contain two and four points, respectively, indicating the typical period doubling
cascade. The further increase in µ produces the first return map to be continuous evidencing the
chaotic behavior of uf on time. It is interesting to see in Fig. 10 that for µ = 2.5 the first return
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Figure 9: The dependence of θ1max versus uf for the mere oscillatory dynamics (left plot) and
the chaotic regime (right plot).

map consists of various separated continuous parts which merge later for higher values of µ, as
shown for µ = 3. Thereafter, with further increase of µ, the first return map is split again into
various parts, as shown for µ = 3.42. Finally, the inverse doubling cascade are observed, as
shown for µ = 3.5, 3.7 and 4.

8 Lyapunov characteristic exponent

Evidently, the flame dynamics considered as a whole should be independent on the reference
frame used to describe the process. In the present study we use the reference frame attached
to a point with a fixed temperature, θ = θ∗. For the steady propagation the flame moves as
a rigid structure and the (constant) flame velocity uf is independent on θ∗ due to invariance
with respect to a shift along the direction of motion, x → x + const. In the case of unsteady
flame dynamics the flame does not move as a rigid structure, because each point of the flame
moves with own velocity. Consequently, the specific form of uf does depend on the choice of
the reference temperature θ∗. In a certain sense the specific value of θ∗ plays the role of an
observable parameter determined by the choice an experimentalist.

Figure 11 shows the first return maps calculated for the same set of the physical parameters
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Figure 10: The first return maps of the relative maximum of uf plotted for β = 8, γ = 0.7,
ξ = 5 and various µ.

and different values of the reference temperature θ∗ in the case of the chaotic flame dynamics.
The figure shows that the maps are qualitatively similar, as one would expect, but the amplitude
of chaotic oscillations is affected significantly by the choice of θ∗.

The level of randomness of time series can be characterized by the Lyapunov characteristic
exponent [29]. In order that such calculations to be made the first return maps from Fig. 11 were
approximated using tenth order interpolating polynomial. The Lyapunov exponent defined in
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values of the reference temperature θ∗.

the ordinary way,

λL = lim
N→∞

1

N
ln

∣∣∣∣
N∏

i=1

f ′(uf i)

∣∣∣∣, (22)

where f(z) is the interpolating polynomial, was calculated for finite N . It was verified that for
N above 104 the influence of the total number of iterations on λL becomes negligible. Figure 12
shows the variations of λL with θ∗. One can see that the choice of the reference temperature
affects perceptibly the level of randomness of the stochastic dynamics.
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9 Conclusions

The model describing the propagation of combustion waves in composite energetic material
having a structure of the reactive shell-inert core type is derived and investigated for practically
important case of large thermal conductivity and small cross sectional area of the inert core.
This situation is encountered, for example, in the case of carbon nanotubes used as a thermal
conducting element of the composite.

It is demonstrated that characteristics of flame propagation such as speed and the type of
dynamical regime can be effectively controlled and manipulated, for fixed chemical properties,
by varying the experimental parameters of the material i.e. the thickness of the fuel annulus de-
posited and the diameter of the heat conducting core. The different types of dynamical regimes
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include traveling, pulsating and chaotic waves. It is shown that the variation of the control
parameter allow to modify the velocity of combustion wave propagation from the value corre-
sponding to the adiabatic combustion wave in pure solid fuel to the values which are more then
5 times faster. Besides that the maximum temperature in the energetic annulus can be adjusted
from the adiabatic flame temperature of pure solid fuel to the value exceeding it over 30 %
and more. This can be very important and beneficial for combustion wave synthesis of solid
materials and realization of the concept of chemical furnace.

Complex dynamics of flame propagation are investigated. It is demonstrated that the chaotic
regime of combustion can be realized. The level of stochasticity of the process measured by the
Lyapunov exponent is also shown to be controlled by the experimentally adjustable geometric
parameters of the material. It is interesting to note that for such distributed active system as
combustion wave in solid composite fuel the Lyapunov exponent depends on the choice of
observable variables. This can be important for possible experimental diagnostics of chaotic
flames.

From point of view of practical applications the emergence of transient and chaotic regimes
with strong relaxation behavior, as demonstrated numerically in [15], can be undesirable due
to effectiveness and safely issues. The former is due to the fact that the onset of oscillations
may result in the incomplete conversion or even flame quenching. Whereas the latter may have
implications to safety, since in the relaxation mode of oscillations there periodically appear
bursts-like temperature peaks which are hard to predict and which may cause thermal runaways
and local overheating. This motivates the study of complex dynamical regimes in such mate-
rials. In the nearest future we plan to undertake an experimental investigation of combustion
dynamics of the shell-core energetic system made of thin metal wires and solid fuel. In such
configuration the flame oscillations may be detected and analyzed with high-speed imaging and
oscillations of luminosity.
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