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Abstract

In the pool of cloud providers that are currently available there is a lack of standardised APIs and brokering tools to effectively

distribute high throughput calculations among them. Moreover, the current middleware tools are not able to straightforwardly

provision the ephemeral and specific environments that certain codes and simulations require. These facts prevent the massive

portability of legacy applications to cloud environments. Such an issue can be overcome by effectively scheduling the distributed

calculations using the basic capacities offered by cloud federations. In this work, a framework achieving such a goal is presented:

a pilot system (GWpilot) that has been improved with cloud computing capabilities (GWcloud). This framework profits from the

expertise acquired in grid federations and provides interesting features that make it more efficient, flexible and usable than other

approaches. Thus, decentralisation, middleware independence, dynamic brokering, on-demand provisioning of specific virtual

images, compatibility with legacy applications, and the efficient accomplishment of short tasks, among other features, are achieved.

Not only this, the new framework is multi-user and multi-application, dynamically instantiating virtual machines depending on the

available and demanded resources, i.e. allowing users to consolidate their own resource provisioning. Results presented in this work

demonstrate these features by efficiently executing several legacy applications with very different requirements on the FedCloud

infrastructure at the same time.
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1. Introduction

One of the main achievement of grid research was the estab-

lishment of a service oriented architecture (SOA) [1] for high-

throughput computing (HTC) that was widely accepted by the

whole community. This fact allowed the federation of large

volume of resources across the world, but also implied a long

process of testing and standardisation. One of the outcomes

was the creation of a set of APIs for highly distributed comput-

ing [2], as well as the establishment of protocols to interface

with the computational services offered.

However, grid has not properly addressed several problems.

One of them is the rigidity of configurations that are present in

the federations. Besides, one of the major issues in grid com-

puting is still the efficiency of the submitted jobs. Such effi-

ciency can be considered from different perspectives [3], but

always bearing in mind that the final users want their calcula-

tions ended in the shortest possible time. For this purpose, it

is mandatory to count on scheduling mechanisms that properly

build and distribute these jobs among available providers. Sev-

eral strategies have been followed, such as the dynamic alloca-

tion of jobs depending on the infrastructure status and capacity

at any time [4], but pilot job systems provide low overheads and

great flexibility [5].

Cloud paradigm covers much more computational needs than

the ones required for an HTC platform, like resource elastic-

ity, service consolidation, or cost reduction. In the case of

distributed computations, cloud promises to be more simple,

flexible, usable and available than grid. Nevertheless, the lat-

ter affirmation is far away from being a reality in many cases

by now. In first place, the diverse sponsor institutions, funded

projects, infrastructure providers, and manufactures have dif-

ferent views, and propose different models on how the cloud

federation should be. A good introduction of this matter can

be found in [6]. Due to this diversity, the result is an increased

complexity of the current cloud platforms from the user point

of view. On the other hand, although the flexibility is increased,

users not always can run their applications exactly on the vir-

tual environment that they require and resources are effectively

limited for every user.

To reduce the final makespan of any calculation, the devel-

oper should take account of localisation and performance of the

available resources, but it also requires some abstraction mech-

anisms. For this purpose, he should rely on brokers in the first

instance. However, in cloud computing, these basic brokering

capabilities are still far from being provided and they usually

lack of APIs similar to the ones available for HTC or grid.

As commented above, there is a strong heterogeneity of cloud

providers that can be explored by means of a cloud brokering

approach [7]. As a result, optimising the placement of virtual

machines across multiple clouds, and also abstracting the de-

ployment and management of components of the virtual infras-

tructure created are complex. Such plethora of solutions were

surveyed and classified by a proposed taxonomy by Grozev and

Buyya [8], but the creation of federations is the first step to re-

duce this complexity. The common services deployed in feder-

ations allow users to obtain a unified and abstracted view of the
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cloud architecture as a whole, which subsequently gives them

the opportunity to target specific providers for their needs.

However, calculating the best match between a set of com-

putational requirements and resources in an effectively charac-

terised infrastructure is, by definition, an NP-complete prob-

lem [9], and only sub-optimal schedules can be found. Fur-

thermore, cloud federations will be more dynamic than grids

because more parameters are taken into account for schedul-

ing [10, 11]. Nevertheless, that information is far from being

provided by the services currently deployed. In this sense, the

experience with grid is clear: in a large collaborative federation,

the deployment of those complex algorithms was quite limited

in production due to this persistent lack of resource characteri-

sation.

Therefore, cloud communities can benefit from the grid ex-

pertise following two approaches whose suitability was demon-

strated in grid environments: (i) specific scheduling algo-

rithms devoted to improve certain calculations, such as self-

schedulers; and (ii) late-binding techniques, where pilot jobs

consolidate the characterisation through the resource provision-

ing. Combining these approaches will be very useful. Never-

theless, most of pilot systems and similar approaches lack the

needed adaptability and compatibility to achieve this goal.

To tackle these issues, a new general-purpose framework de-

voted to efficiently schedule distributed calculations in cloud

federations is presented in this work. The approach is based

on pilot jobs and inherits the long expertise acquired with grid

computing through last years. Unlike other frameworks, the so-

lution allows users the arbitrary characterisation of resources

without modifying the pilot code or their legacy applications.

This feature enables the customised provisioning guiding and

the straightforwardly incorporation of their own scheduling al-

gorithms devoted to their specific calculations. Thus, apart from

a complete view of the architecture and the advantages provided

by the new framework, the objective is to focus on the features

which are not accomplished yet by other systems.

To demonstrate these features, real calculations have been

performed on the EGI FedCloud using three applications with

different requirements for their virtual environments.

2. IaaS cloud federations

2.1. Basic provisioning in clouds

The need of specific interfaces that abstract the common op-

erations with VMs (creation, booting, stopping, halting, de-

struction, etc.) has driven the appearance of several propos-

als and implementations since 2006 (such as Globus VWS,

Nimbus, Eucalyptus [12]). However, Amazon Web Services1

(AWS) was the first large IaaS provider and many deployments

were based on its interfaces, because it was considered as de-

facto standard for the industry. Lately, the Open Grid Forum

(OGF) standardisation group proposed the Open Cloud Com-

puting Interface (OCCI [13]), which is supported by a wide set

1http://aws.amazon.com

of current virtual infrastructure managers (VIMs) such as Open-

Nebula2, OpenStack3, or Synnefo4.

Other issue is the need of instantiating VMs with a certain

configuration. The initial approach is to upload the customised

disk images of the VM to the provider. Nevertheless transfers

are too expensive due to the size of images. Therefore, it is

more efficient the support of generic VM templates at every

provider. Thus, the contextualisation is the procedure to pre-

configure a VM at boot time. In this sense, several technologies

have been developed, many of those tightly dependent on a con-

crete VIM. Finally, Cloud-Init5 is prevailing around the current

IaaS providers.

The approach presented in this work follows OCCI and

Cloud-Init specifications, because of their widespread adoption.

Nevertheless, the interfaces and contextualisation tools are not

enough to completely manage a virtual environment. Other ser-

vices and systems are needed, especially when multiple cloud

providers are available.

2.2. Multiple providers versus federations

There is a conceptual differentiation between a simple group

of providers and the ones making a federation that has impor-

tant implications on the feasible scheduling to be performed.

Following several definitions in the related work [8, 14], when

a client (or service) uses multiple, but independent, and not re-

lated grid or cloud providers, it is working on a multi-grid or

multi-cloud environment. Therefore, it is the client (or ser-

vice) who must completely manage the compatibility among

interfaces, monitor every provider, and handle its authorised

accounts because it is working on different configuration and

security domains. This entails a huge developing work that lim-

its the scheduling capacity of the client system. In consequence,

the distribution of the calculation among providers will scale on

the order of few orders of magnitude, although these providers

can supply a great amount of resources (e. g. AWS).

These difficulties are widely studied in the related work, and

they are usually presented as an interoperation [2] issue among

grid or cloud infrastructures. For example, the interoperation

of grid islands [15] (or multi-grid [14] environments) has been

managed through tools such as workflow managers, brokers

and scientific gateways. Additionally, the multi-cloud [8] ap-

proach is currently too common due to the multiplicity of cloud

conceptions and commercial providers. Interoperation among

clouds can be faced with similar tools as grid, but entails the

same drawbacks that result in poor scalability.

To enable scheduling systems for managing providers on the

order of thousands, these systems should work on federated

infrastructures. Federations voluntarily associate providers,

which even share their resources among each other, but com-

pletely following the SOA model [16]. In this sense, the weak-

nesses of multi-grid and multi-cloud approaches are not related

2http://opennebula.org
3http://www.openstack.org
4http://www.synnefo.org
5http://cloudinit.readthedocs.org
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to deal with the interoperability issues that SOA tackles. Thus,

it is not enough to offer services as the ones described in previ-

ous Subsection 2.1. These services must accomplish common

visibility, governance, security, orchestration and monitoring

properties among others. Therefore, it does not simply imply

the agreement to use certain protocols; it also includes the es-

tablishment of common services as:

• Information systems (IS): they are indexation locations

where the rest of services are dynamically described. They

constitute the starting point from which any client (i.e. the

scheduler) can discover the resources belonging to the fed-

eration. The development efforts to characterise interest-

ing aspects of the infrastructure should be focused on this

service.

• Authentication and authorisation infrastructure (AAI): it

stands for the group of services, authorities and procedures

that enable the security governance in federated environ-

ments, which are usually based on encryption and tem-

poral tokens. They work together as an overlapped and

independent infrastructure that allows the management of

users and projects within, or even crossing federations, i.e.

it allows the establishment of virtual organisations (VOs).

Through AAI, the clients or groups of clients are granted

to use certain amount of resources by setting quotas for

them in providers according to signed contracts.

• Accounting, monitoring and incident systems: they com-

pile the performance, throughput and failures of every

provider and every user through the time. Therefore, they

offer a detailed measurement of the current QoS of the

whole infrastructure that can be useful for scheduling, not

only to check the compliance with the SLA contracts sub-

scripted by providers. In this sense, the information should

be also summarised in IS for further benefit. Addition-

ally they include the procedures of notification and solving

from the issues detected.

2.3. Federations established

During the last five years, several projects have dealt with

the complexity of making up an IaaS cloud federation. The

advances obtained are more related to the expertise acquired

than the corresponding small-sized test-beds[17, 18] set up to

demonstrate some achievements. For example the RESER-

VOIR project[19] advised to follow an architecture based on

loose-coupled providers and the needed of counting on in-

formation and accounting services similar to the grid ones,

but improved for the SLA accomplishment. In this sense,

CONTRAIL[20] focuses efforts on the requirements to con-

struct an AAI compatible with a set of proposed REST cloud

interfaces, besides the verification of SLA adherences. On the

other hand, the use of common middleware releases was exten-

sively used in grid to tackle the inter-operation, authentication

and deployment issues within a federation. StratusLab6 offered

6http:// http://www.stratuslab.eu

a distributable Toolkit [21] to easily deploy IaaS providers with

the support of the AAI established for grid. Although Helix-

Nebula7 project made use of this distribution, it just provided

two centralised black-box interfaces (the Blue-Box)) [22] based

on two brokers in order to profit from a small set of commercial

providers [18].

Some public clouds, like AWS, support other kind of AAI for

delegated access, allowing several external identities to use the

same account. External identities can come from different iden-

tity providers supporting OpenID Connect (OIDC). This could

be used to access different clouds if the identity is previously

mapped in each provider. However, although the mechanism

makes easier the management of the AAI, allowing the cre-

ation of private VOs on-demand, the multi-cloud heterogeneity

is maintained.

One of the largest federation of resource providers is the Eu-

ropean Grid Infrastructure8 (EGI) and its association with Open

Science Grid9 (OSG), as well as with other infrastructures such

as NorduGrid. Together, they build up a multi-propose platform

counting on more than 530,000 processors and 500 PBs of stor-

age, distributed among hundred providers, and opened to any

scientific area. In this sense, the EGI FedCloud initiative is tak-

ing advantage of grid experience to deploy grid-style services

to enable its cloud federation10 [23]. The goal was achieved by

deploying common services with the properties described in the

previous subsection:

• The top Berkeley Database Information Indexes (BDIIs)

as IS. They are LDAP servers that compile the char-

acterisation of providers structured following the GLUE

schema. Several can co-exist in an infrastructure. They

can also be hierarchically organised, filtering the informa-

tion of BDIIs bounding sub-infrastructures.

• The establishment of an AAI based on signed X.509 cer-

tificates, distributed certification authorities (CAs), tem-

poral and delegated proxies, and the Virtual Organisation

Membership Service (VOMS) as authorisation service.

• The deployment of monitoring systems to regionally and

globally test the infrastructure, which trigger several no-

tification and tracking actions. Currently, SAM tests are

managed with Nagios, and incidents are tackled with the

GGUS ticket system. Accounting is performed through

APEL.

Therefore, as cloud sites fully support the EGI AAI based on

X.509 and VOMS, sharing the same VOs already established

for grid. Providers must be compatible, at least, with OCCI,

but also expose their characteristics by LDAP to be compiled

by top BDIIs. This last aspect is very important to establish a

real federation. OCCI shows information about VM templates,

allowed resources, etc. However, to perform the discovering

7http:// www.helix-nebula.eu
8http://www.egi.eu
9http://www.opensciencegrid.org

10https://www.egi.eu/infrastructure/cloud/
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of new cloud sites or to facilitate their monitoring, any system

should have access to an IS. In the same way, the accounting,

monitoring and incident tracking was managed with the same

tools than EGI, but adapted to the cloud environment.

Other issue is the essence of the association in a federation,

which determines the policy for resource provisioning. Pub-

lic clouds are usually homogeneous, their configuration seldom

change (they are composed of a fixed number of regions with

identical instance types), and dynamic discovery would not be

needed. Thus, clients of commercial providers are usually more

concerned about their budget and their resource scheduling will

then be focused on decreasing costs. Monitoring the perfor-

mance obtained is mainly used to verify the compliance of the

supply contract signed. On the other hand, SLAs are much less

restrictive in infrastructures based on the voluntary sharing of

resources, such as FedCloud. Providers can modify arbitrar-

ily their amount and the performance of the resources offered.

Consequently, the scheduling among providers should be ori-

ented to guarantee a minimum QoS in order to make feasible

some calculation.

2.4. Brokering approaches

To be considered a cloud broker, a system must perform

at least: the dynamic discovering and monitoring of cloud

providers; the selection of every provider based on a set of

requirements; and, the automatic management of provisioned

VMs. In this sense, based on the OCCI standard, several cloud

brokering solutions have been developed [24, 25, 26, 27].

However, many of them work on a multi-cloud environment

that does not allow the automatic discovery of providers. Ad-

ditionally, it must be clarified when the IaaS providers are

statically ranked or selected in a simpler way such as round-

robin, without taking into account neither of requirements set

for diverse applications nor of the changes in IaaS statuses,

the selection performed cannot be considered really broker-

ing or scheduling either. In this work, these tools are de-

noted as suppliers. They repeatedly appear through the related

work [28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

However, due to the limited number of IaaS providers, bro-

kers were successfully fulfilled by suppliers through years. Ad-

ditionally, VIMs can act as a kind of broker when making use of

external providers to grow their own resources. To be stackable,

VIMs must expose an IaaS interface such as OCCI or AWS.

Nevertheless, these protocols are not directly usable by legacy

HTC applications [2]. For this purpose, a hybrid API such as

DRMAA-OCCI [25] was proposed to enable a direct execution

of jobs on the VMs managed by a cloud broker.

Perhaps the earliest approach that schedule jobs among re-

mote resources as they were cloud providers can be found

in [38]. In this paper, a mechanism that makes use of the exis-

tent grid middleware to schedule VMs that contain some soft-

ware in remote sites is proposed. GridWay takes account of the

state and characteristics of sites to submit a wrapper encapsu-

lated into a regular grid job that is able to boot a virtual ma-

chine. OS images were directly uploaded to sites or to storage

elements through protocols such as GridFTP. Obviously, this

approach does not exploit all the advantages that virtualisation

offers, and only was justified by the absence of cloud interfaces

and middleware.

With the appearing of first cloud federations, more spe-

cialised systems were deployed, but they cannot be considered

as VIMs. For example, following the same idea of direct exe-

cution, the PMES broker [24] offers the OGSA-BES interface

to allow instantiating a single VM per each computational task

formatted with the JSDL specification. In any case, this type

of approaches is limited to the execution of long jobs that com-

pensate for the VM instantiating time. In explanation, the effec-

tive execution time has to be longer enough to make up for all

generated overheads: scheduling the suitable provider, protocol

operations, booting the VM, contextualising, install software,

and transferring data. For example, if the minimum overhead

achieved is five minutes, to maintain these overhead under the

ten percent threshold, the duration of the job must be longer

than forty five minutes.

However, the majority of new approaches are oriented to con-

solidate complex services on demand, not to offer compatibility

with legacy applications. For example, SlipStream11 was tested

in the Helix-Nebula project, although it can work in a multi-

cloud environment. It performs VM image management and

contextualisation, with virtual cluster automated deployments.

It makes use of CPU/Disk/Memory metrics in its scheduling,

but it does not inspect the requirements of applications. In con-

trast, QBROKAGE [26] is an interesting solution recently pro-

posed that focuses the brokering mechanism on satisfying the

QoS requirements of applications. Other solutions overcome

the absence of federated services building their own ones. For

example, CompatibleOne12 [27] is a complete platform, with

its own user management, accounting and monitoring systems.

Nevertheless, neither exposes an OCCI service, nor standard

interfaces to execute jobs.

3. Network overlays

The issues set out through the last subsection suggest that

cloud provisioning is not enough to enable the efficient exe-

cution of distributed applications, so supplementary tools are

needed. The grid experience has demonstrated that pilot job

technique is the most suitable approach to perform calculations

in a highly distributed environment [39]. In addition, any pilot

system can be used in cloud environments if their pilot factory

is modified to instantiate VMs, directly accessing IaaS inter-

faces, using suppliers or brokers.

The utilisation of pilot systems implies the inheritance of

their benefits but also their drawbacks. In general, for the

most of those systems that demonstrated their suitability in

grid [28, 35, 36, 37, 5], the use of cloud resources will provide

the following advantages:

• Compatibility with applications previously adapted to

these systems, at least, preserving the achieved perfor-

mance or speedup.

11http://sixsq.com/products/slipstream.html
12http://www.compatibleone.org
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Table 1: Comparative of pilot systems used in cloud
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Application oriented Big-Job � ⊠ � � ⊠ ⊠

Grid scheduler
ServiceSs � � � ⊠ ⊠ �

GWpilot

P
u
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⊠ ⊠ ⊠ ⊠ ⊠ ⊠

LHC oriented DIRAC � � � ⊠ ⊠ ⊠

Volunteer Computing 3G-Bridge � � � ⊠ � ⊠

• Maintaining the characterisation required by the previ-

ously adapted applications.

• Concurrent use of clouds and grids (and other infrastruc-

tures such as local clusters or volunteer computing if sup-

ported by the system).

• Keeping the expertise acquired from grid, reducing the

user training-gap and the operational costs.

• Preserving the robustness of the system and the use of

complementary tools such as web browsers, monitoring

tools, etc.

The weaknesses are the consequence of their design, mainly if

the system adopts a pushing or pulling behaviour. The former

implies technical issues, while the latter strongly condition a

feasible scheduling [5]. Thus, this aspect will be used to per-

form the first differentiation among systems.

3.1. Pushing based systems

Elastic virtual sites and clusters

Independently of how the IaaS cloud is accessed (with sup-

pliers, brokers or directly), when the issue of the VM creation

is solved, the following main problem is to offer the new pro-

visioned cloud resources in a way compatible with the usual

execution of HTC applications. Therefore, many earlier ap-

proaches were based on the set-up of virtual clusters with some

specific services, or even a complete virtual grid site. The sim-

plest mechanism is to create virtual nodes at the cloud provider

to dynamically grow a private cluster [32, 40, 34, 33]. Other

solution is to increase the nodes of a local grid site [30] or even

completely place the site at the cloud provider [31]. In such a

case, the computational tasks can be directly scheduled by the

local resource management system (LRMS) of the cluster, or

by any grid scheduler, respectively.

The placement of cluster nodes in remote locations has mul-

tiple drawbacks anyway. First, the high latency of WANs will

prevent the normal behaviour of the cluster, or the achieve-

ment of some calculations. Besides the unfeasibility of these

networks to achieve tightly-coupled parallel applications, the

LRMS usually requires shared file systems that dramatically

decrease their performance in these environments. Therefore,

data and software locality is a great obstacle. Second, the ne-

cessity of bi-directional communication among nodes and mas-

ter implies either the assignation of public IPs for every node,

the use of Message Accumulators (MAs), or even setting up a

VPN among nodes. IPv4 pubic addressing is limited in cloud

providers and can have an associated cost. In addition, security

issues must be considered. The use of MAs or VPNs increases

the latency of communications.

On the other hand, to set several complete virtualised grid

sites implies the configuration of much middleware and their

subsequent management.

It is important to mention that several tools for automa-

tion and monitoring of deployments are currently available for

clouds [41], as well as several cloud brokers perform similar

procedures, and even VIMs such as OpenStack or OpenNebula

can be stacked to grow their resources [42]. However, although

the work needed to set up a virtual cluster or grid site has been

reduced, the performance loss and the complexity acquired, re-

spectively, cannot be justified when other solutions as pilot jobs

are available.

The main drawback of the pushing mechanism is the need of

direct access pilot services running in the VMs from the pilot

server. In general, this implies the assignment of public IPs to

every node, or the use of MAs. In this sense, the nodes that

elastically grow private clusters [32, 40, 34, 33] can be consid-

ered as this type of pilot jobs. However, by following more

strictly the definition of pilot system proposed in [5], a similar

approach with Condor can be found in glideinWMS [28].

Other possibility is to directly manage VMs as pilots through

SSH commands. For example, ServiceSs [24] is an extension

of COMPSs that makes uses of the aforementioned PMES bro-

ker to provision this type of VMs. Other example is the Ser-
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vice Manager [29], a cloud supplier that includes the moni-

tored VMs in the GridWay Host Pool. Subsequently, Grid-

Way can schedule tasks among these VMs and execute them

when it makes use of its SSH driver. A mixed mechanism is

the one used by Big-Job [35], where the Pilot-Agent is started

through SSH. Although, it runs independently, the communica-

tions with Manager is performed through a Coordination Ser-

vice that can be considered as a MA.

3.2. Pulling based systems

Nowadays, DIRAC (its VMDIRAC extension) is the best ex-

ponent of profiting cloud infrastructures in production with pi-

lot jobs. To perform cloud provisioning, a new VM Director

Agent is used instead of the Pilot Director. Thus, the archi-

tecture of DIRAC is maintained. Currently, the VM Director

Agent is a cloud supplier that simply dispatches VMs to a pool

of known providers [36]. However, it is expected that, follow-

ing the DIRAC design, the double-matching mechanism among

requirements of tasks and the discovery of cloud resources will

be applied as they were used with grid sites. Thus, its func-

tionality as grid broker will be preserved and users will be able

to continue submitting jobs through gLite commands. More-

over, its functionalities are extended with the advantages of the

different types of contextualisation that allow the specific con-

figuration for physicists (HEPiX) or external monitoring (e.g.

Ganglia).

The recent 3G-Bridge [37] implementations are able to main-

tain a BOINC server with Clients (the pilots) running in provi-

sioned VMs. The work is focused on the customisation and the

contextualisation needed to accomplish the common user-tasks

in the Clients. The scheduling among cloud sites is relegated.

As an example for grid users, a modified CREAM server can

rely on 3G-Bridge to dispatch their tasks.

Therefore, the JDL specification of every task should be

transferred to the scheduling mechanism of DIRAC or BOINC

and subsequently, the tasks should be executed as on a grid

node. Nevertheless, the constraints imposed by the Pilot Agent

and the Client software make users not really being able to

choice among virtual environments. Thus, every community

should build their common VM images before any deployment.

3.3. Discussion

The described approaches have some problems already ex-

plained that can prevent their deployment for certain calcula-

tions. However, the orientation of these systems is the reason

of going away from a general-purpose and user-oriented sched-

uler.

The approaches such as ServiseSs and DIRAC are propos-

ing themselves as a kind of Platform-as-a-Service (PaaS)

cloud [43]. The first one is focused on offering an IDE (an

Eclipse plug-in) and a new API based on code directives for the

automatic parallelization and orchestration of applications and

services in cloud. The approach is powerful and extensible, but

not standardised, and legacy applications will be incompatible

with it. Moreover, tasks cannot directly access to the required

data because these are usually stored in grid elements, which

protocols are not considered. Additionally, the disadvantages

of using an external scheduler with pilot jobs were explained

in [5], being more feasible to manage provisioning and task

scheduling in a box. On the other hand, VMDIRAC deals with

supporting the scientific communities already consolidated in

grid. In this sense, the scheduling policy of VMDIRAC will be

clear: improve the throughput of large jobs. Therefore, it will

not be a problem if the system sequentially provision one VM

per each pending task, as it is performed in grid; or either if

the VMs must be previously customised for every community.

The objective is the extension to cloud of the scientific produc-

tion maintaining the compatibility with previous grid services.

It is expected that glideinWMS will pursue the same objectives

and lack the same scheduling features. Other issues about their

difficulty of installation or performance can be found in [5].

The technologies added with 3G-Bridge are oriented to im-

prove the compatibility and interoperation among infrastruc-

tures, not to offer the necessary tools for customising schedul-

ing capabilities. Unlike, Big-Job provides a complete frame-

work to abstract the management of pilots and their provision-

ing as VMs. Nevertheless, developers must explicitly indicate

the provider where to execute the pilot, and the pilot to exe-

cute tasks. The objective is to maintain the freedom to im-

plement any scheduling policy at the application level. In this

sense, algorithms such as MapReduce have been developed on

cloud [44], but any legacy application should be rewritten to use

them.

4. Proposed solution

The standardisation process that makes possible the estab-

lishment of cloud federations also opens the door to a grid

meta-scheduler as GridWay [45] to directly make use of cloud

resources. In consequence, the advanced scheduling features

of GridWay, its usability and compatibility will really come

into cloud. For this purpose it is necessary to implement two

new Information and Execution drivers able to manage cloud

providers: the GWcloud IM and ED, respectively. The solu-

tion [46] differentiates from other approaches based on Grid-

Way cited through the related work [38, 30, 31, 29] in that it

actually brokers customised workspaces for distributed appli-

cations on current clouds, i.e. it does not use either suppliers or

outdated middleware. The GridWay Scheduler takes the deci-

sions of where VMs are started. Benefits include:

a) Automatic discovering and monitoring of providers that be-

long to several cloud federations.

b) Scheduling capabilities based on constraints, ranking, fair-

sharing, deadlines, etc., to instantiate VMs at providers with

certain characteristics, like:

• specific VM image (e.g. by the appdb.egi.eu identi-

fier);

• available hardware, with advanced reservations;

• associated costs and budgets, QoS, etc.
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c) Grid security standards and protocols are preserved to en-

able compatibility with external grid services.

d) Direct distribution and execution of jobs in VMs.

e) Minimal contextualisation, fully customisable by the user.

f) Compatibility with legacy applications.

However, time spent in every VM instantiation can represent

an excessive added overhead comparable to the waiting times in

LRMS queues at free grid sites. Therefore, the solution is only

suitable for long jobs such as bag of tasks (BoTs), ephemeral

services, or pilot jobs for resource provisioning. This last ap-

proach is the one followed in this work due to its benefits.

To do so, this work profits from GWpilot, a system that in-

cludes the advantages from pilot systems listed in the beginning

of Section 3, but also differentiates from other approaches used

in cloud environments in:

a) General-purpose pulling pilot system, stackable with other

scheduling tools.

b) Friendly interface (the GridWay CLI) and compatibility

with legacy applications (DRMAA and OGSA-BES).

c) Independent and easy configuration, lower overheads that

allow decentralised and local installations, even on the PC

of the user.

d) Parallel accounting of associated costs.

e) Personalised user-level scheduling of tasks and VMs that al-

lows:

• post-configuration of VMs on demand;

• customised monitoring of new configurations;

• personalised provisioning;

• efficient execution of very short jobs.

4.1. The GWcloud Information Driver (ID)

This new driver performs the discovery and monitoring of

cloud providers in federations. It looks up for cloud providers

in the IS (in top BDIIs for FedCloud) of one or multiple infras-

tructures). The user can configure the search to constraint the

matches to certain characteristics published by providers. Sub-

sequently, the driver filters the information to dynamically no-

tify GridWay about the characteristic of every provider in which

the user is authorised. Every provider found is included as an

independent resource in the Host Pool. Thus, the information

can be consulted by the user through the GridWay commands

and it is shown as:

• The URI contact endpoint, the protocol, hypervisor and

VIM release, the maximum number of available cores, etc.

• Every OS template name (the os tpl) and its appdb.egi.eu

image identifier are compiled in a list of pairs and included

as a new tag.

Figure 1: GridWay ecosystem architecture for cloud federations.

• Every resource template (resource tpl) is shown as a dif-

ferent queue, with its own characterisation: number of

cores, memory, etc.

To include resource templates as batch queues allows Grid-

Way Scheduler to deal with cloud providers as they were grid

sites to perform the VM brokering. For GridWay, a VM cre-

ation will be similar to a job execution.

Currently, the driver supports the EGI FedCloud IS, but it

can be modified to directly use OCCI or AWS EC2 interfaces

in order to work on a multi-cloud environment. The adaptation

should be straightforwardly performed for the former protocol,

because the characteristics taken into account by the driver are

based on the description of resources made by this standard, as

it was explained above. For EC2 the instance types are fixed,

but similar to OCCI resource templates (resource tpl), as well

as AMI is to os tpl. However, besides the proper translation, the

driver must manage the availability zones and regions allowed

to use, which should be addressed as different providers. When

a commercial service is used (AWS itself), the spot price can be

added as another characteristic of the queues.

4.2. The GWcloud Execution Driver (ED)

This driver enables the direct execution of a conventional grid

job in a VM exclusively instantiated for this purpose. The driver

can utilise the user’s proxy credentials because it runs in the

user-space mode. This allows using resources from federated

clouds based on X.509 and VOMS. Additionally, the proxy is

contextualised to be remotely used by jobs to access grid ser-

vices. To preserve its integrity, the contextualisation file is en-

crypted, restricting the access only to secure OCCI services. On

the other hand, the rOCCI-client [47] is used to perform the op-

erations against the providers. Therefore, when the Scheduler

chooses a cloud provider to execute the job, the driver performs

the following steps:

1. It gets and stores the match, i.e. the description of the job

and the URI of the OCCI service.
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2. It interprets the job description to obtain the inputs, outputs

and executable URIs, the os tpl, and the resource tpl.

3. Contextualisation: It makes a Cloud-Init file that includes:

(a) creation of a new user with sudo privileges;

(b) creation of a file with the temporal user proxy;

(c) inclusion of the EUGridPMA repositories;

(d) pre-installation of CA’s certificates and minimal grid

tools (globus-url-copy);

(e) shell lines needed to download inputs, execute the

job and store the outputs (i.e. through GridFTP or

the Globus GASS protocols).

4. It builds and performs an OCCI create operation that

includes the contextualisation file, the resource tpl, the

os tpl and the URI of the provider. Subsequently, the job

is considered in a PENDING state.

5. It waits for the VM starting to change the job state to AC-

TIVE. To make this periodically, it performs OCCI de-

scribe operations. If this circumstance does not happen

during the timeout set in the job description, the job is con-

sidered as FAILED.

6. When the VM is running, the driver waits for the VM be-

coming into inactive; subsequently, the job is considered

DONE. However, if other VM condition is reached, it re-

turns FAILED.

7. Finally, it deletes the VM.

Note that a DONE state just only implies that the job was ended.

It is the submitter (i.e. the user, some application or the pilot

factory) who should interpret the exit status code or the outputs

from the job.

The mechanism described is also feasible for AWS if the sup-

port of OIDC is implemented and OCCI operations are replaced

by EC2 actions. However, the compatibility with grid services

implies the use of X.509 proxies.

4.3. GWpilot and multi-level scheduling

The GWpilot framework counts on two main modules in ad-

dition to the pilots: the GWpilot Server and the Factory. The

behaviour of both is fully described in [5, 48] and it is main-

tained in this work. On the other hand, the implementation of

pilots is lightweight and without library dependencies, i.e. they

can run on any kind of Linux OS. So, no especial configura-

tions are needed to deploy the pilot overlay on cloud federa-

tions, allowing users to choose their virtual environment. This

distinguishing feature has not been achieved by the current pilot

systems that follow a pulling mechanism [36, 37].

According to the number and requirements of the tasks cre-

ated by any user or application, the Factory automatically builds

the necessary pilot jobs that will be executed in the VMs. More-

over, Factory takes account of the constraints and preferences

related to the creation of the virtual environment that users set

for these tasks. Those main ones are the:

• list of feasible image identifiers (e.g. appdb.egi.eu IDs for

FedCloud);

• minimum memory, virtual CPUs, and local storage;

This is so because users do not have to know either the os tpl

or the resource tpl of every provider, only what virtual environ-

ments can be used from the ones available at the cloud market-

place.

Factory only copies these requirements from task to pilots.

The Scheduler is the one that matches them with a concrete

os tpl and resource tpl at some provider. For this purpose,

GridWay Scheduler will use the information that dynamically

updates the GWcloud Information driver to select the most suit-

able cloud provider every time. Then, the management of the

VM creation and the pilot execution is delegated to the GW-

cloud Execution driver. Consequently, the pilots executed will

be enrolled to the GWpilot Server and the first level of schedul-

ing (the resource provisioning) is successfully completed.

Therefore, users can run their legacy codes on GridWay as

usual. The tasks created by these applications are scheduled

among the pilots enrolled and subsequently within the virtual

environment selected. This constitutes the second level of

scheduling (the task scheduling). Potentially, the combination

of levels allows advanced scheduling techniques [5], although,

this work will be focused on how the user can guide the provi-

sioning into a federated cloud.

To better understand how the task scheduling and resource

provisioning are coordinated in a cloud federation, the sequence

of steps is explained as follows and in Figure 2:

1. GWcloud ID periodically searches for cloud provider up-

dates in the IS ( top-BDIIs in FedCloud), which are in-

cluded into the Host Pool.

2. The GridWay Scheduler notices that some cloud provider

is free and fulfils the requirements of certain pilot waiting

in the Job Pool. Consequently, the S UBMIT operation is

sent to the GWcloud ED.

3. The GWcloud ED processes the operation as in Subsec-

tion 4.2, sending back a CALLBACK operation and perform-

ing the create operation against the OCCI service of the

provider.

4. The provider creates the VM following the provided os tpl

and resource tpl. Through the booting process, the Cloud-

Init contextualisation starts the pilot job.

5. The pilot advertises the PiS and updates their characteris-

tics. Therefore the provisioning phase is completed and

begins the task scheduling as usual. GridWay Scheduler

continuously dispatches tasks to the pilot if they are wait-

ing in the Job Pool.

6. When the pilot is idle during certain interval, it ends, and

as any other job, the VM automatically shuts down.
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Figure 2: Sequence of activities performed by the actors of the framework to accomplish any task. They correspond to the steps 1-7 described in Subsection 4.3.

7. The GWcloud ED periodically tests the VM state through

OCCI operations. If the VM shuts down, the driver per-

forms the deletion of the virtual workspace because the

pilot has ended its execution.

The basic configuration of the framework is similar to the

ones described in [5, 48] but with two exceptions. The ex-

istence of a contextualisation file, which is not needed to be

modified for a straightforward adaptation of any application,

and the meaning of the −w option, that is now related to the

maximum allowed time to boot the VM. With relation to the

later, the banning feature is the only way to currently know the

quotas set at cloud providers that share their resources, as will

be demonstrated through the experiments performed in the fol-

lowing section. This circumstance should not happen with com-

mercial providers, for which the first step should be focused on

detecting price changes rather than on their availability.

5. Experiments

The objective of this section is to show real use cases of prof-

iting from federated clouds. The proposed experiments will

demonstrate the capabilities of the solution that differentiates

from others approaches, in particular:

a) the decentralisation and on-demand provisioning: calcula-

tions and VMs will be completely managed in the personal

workstation of the user, or in a shared server of the institu-

tion for multiple corporate users;

b) customisation of cloud provision: any user in the system

will deploy VMs with arbitrary configurations and posteri-

orly he will perform post-configuration tasks on these VMs;

c) multi-environment and fair-share preservation: several users

can simultaneously run multiple applications that require

different types of VMs;
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Table 2: Requirements of the applications used in this work.

XMM-Newton SAS GAMOS FLUKA-64

Scope X-ray exploration radiotherapy matter interactions

Release 14.0.0 5.0.0 2011.2c

SO Requirements Ubuntu 14.04 Centos 6.x Linux 64-bits

Post-contextualisaton HEAsoft >= 6.16 GEANT = 4.9.6, ROOT = 5.34.10 gfortran >= 4.4

requirements xml/perl/curl/Xorg dev. libs. gcc-c++ gfal2

CDF files Xorg dev. libs.

Total distributable size (compressed) 1.5 GB 481 MB 148 MB

Installation size 2.6 GB 2.2 GB 605 MB

Input size (compressed) 173 MB 236 B 3.2 KB

Output size (compressed) 200 MB ∼1 MB 26 MB

Execution time 1 task (Xeon X5365) 31 m 1 h 3 m 289 s

Number of tasks 200 100 1000

Serial execution time (Xeon X5365) 4 d 7 h 20 m 4 d 9 h 1 m 3 d 8 h 16 m

d) dynamic and configurable IaaS brokering across multiple

providers: users will guide the provisioning and not only

the workload scheduling;

e) performance: calculations will be compound by short tasks

to show the low overheads that system introduces;

f) middleware independence: legacy grid services will be used

to demonstrate that the system does not require especial ser-

vices at IaaS providers, nor special VM images to be com-

patible with the established grid infrastructures;

g) compatibility with legacy applications: the codes used had

been adapted following the DRMAA standard.

For this purpose, three real applications were distributed and

executed on-demand across the FedCloud resources following

the several fair-sharing criteria. The framework worked on

customary hardware equivalent to a up-to-date personal com-

puter. Additionally, the idea is not to deploy pre-configured

VMs or VMs similar to the worker nodes used in the EGI grid

infrastructure, i.e. Scientific Linux with gLite/UMD middle-

ware. Therefore, a clean Debian-based and Red Hat-based tem-

plate images will be chosen from the appdb.egi.eu marketplace

repositories. Moreover, to demonstrate the compatibility with

legacy codes, the distribution of tasks is managed through DR-

MAA.

5.1. Applications, post-configuration and real calculations

The objective of the experiments performed is to evaluate

the suitability of the framework for legacy HTC applications.

Moreover, it is of interest to demonstrate that the advantage of

creating a personal virtualised environment is preserved. For

this reason, applications which excessive dependencies and in-

stallation size that are difficult to deploy in grid are the ones

selected for the experiments in cloud. The intention is to show

how users can easily set up the virtual environments needed by

these applications without dealing with contextualisation or up-

loading pre-configured virtual images. Furthermore, users only

should write a script that configures the application, which will

be submitted as a simple task to provisioned pilots.

Therefore, this subsection is focused on the requirements of

the selected applications as well as the description of the real

calculations performed to assure reproducibility. In this sense,

the needs and calculus are completely different, as are sum-

marised in Table 2.

5.1.1. FLUKA

FLUKA [49] is a general purpose tool for calculations of

particle transport and interactions with matter. FLUKA13 can

simulate with high accuracy the interaction and propagation in

matter of about 60 different particles and all the corresponding

antiparticles. Materials can be simple elements, compounds or

alloys.

In this work, up to a million particles have been simulated,

each taking less than a second, for making studies on radia-

tion interaction with matter. To be distributable, the division

of workload was fixed to 1,000 particles per task, i.e. 1,000

tasks that will spend less than 5 minutes in current processors.

On the other hand, FLUKA has not special requirements with

the exception of being executed on Linux 64-bits platforms, for

which it should be compiled before any calculation.

Therefore, this application will act as wild-card through per-

formed experiments, demonstrating that very short tasks can be

efficiently distributed in different customised virtual environ-

ments, following several scheduling policies.

5.1.2. GAMOS

The GEANT4-based Architecture for Medicine-Oriented

Simulations (GAMOS14) [50] is a framework based on

GEANT4 [51] specialized for the simulation of the radiation

with the body, i.e. medical applications in both fields of medi-

cal image (PET/SPECT) and radiation therapy (teletherapy and

brachytherapy). It also can simulate the needed doses to cali-

brate medial apparatus. The software can run on diverse Linux

13http://www.fluka.org
14http://fismed.ciemat.es/GAMOS/
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distributions but it is available only as source code and requires

certain releases of GEANT4 and ROOT [52]. The compilation

of them lasts more than one hour on current processors. Con-

sequently, unlike FLUKA, the complete framework has been

pre-compiled for CentOS 6.7 to be transferred during the con-

figuration phase of the virtual environment.

In every experiment performed a real calibration of the com-

mercial LINAC VARIAN 2100 C/D [53] was performed. The

calculation is composed by 100 tasks that calculate 34 millions

of histories of particles [54] each. Everyone is in charge of cal-

culating the particles’ phase-space out of the LINAC head and

posteriorly, of obtaining a dose deposition in a phantom by re-

cycling the particles previously obtained on the phase-space.

5.1.3. XMM-Newton Science Analysis System (SAS) software

XMM-Newton is the most sensitive X-ray satellite ever built

and the largest satellite ever launched by ESA. It has been

operating as an open observatory [55] since the beginning of

2000. The large amount of data collected by XMM-Newton

is due to its unprecedented effective area in the X-ray domain

in combination with the simultaneous operation of all its in-

struments. All the data taken by this satellite are kept in the

XMM-Newton Science Archive (XSA). The Scientific Analy-

sis System (SAS) [56] is a software suite for the analysis of all

these data. The execution of the SAS software on a grid has

been successfully studied in [57]. However, the deployment of

the new versions of the SAS software in grid infrastructures is

not trivial, and requires an important effort from the VO ad-

ministrators. This is so because developers of SAS only create

compiled versions for few OS releases.

The current SAS15 release (v14.0.0) has an installation size

of 1.8 GB, and additionally requires external software such

as HEAsoft16(v6.17, 202 MB). The only Linux appliance cur-

rently suitable in FedCloud is an Ubuntu 14. On the other hand,

besides to the observation data files (ODF, ∼600 MB), SAS

needs the current calibration files (CCF, another ∼ 600 MB).

The calculation considered in this work is composed of 200

tasks, every one of which contains a script that installs and

configures the SAS and HEAsoft software and then performs

a default complete analysis (camera, spectrometers and optical

monitor) based on the ODF provided. Obviously, ODF can be

directly downloaded from the XSA repository by the script, but

to preserve the comparison with other experiments and to show

the compatibility with grid protocols, all the files were trans-

ferred through GASS from the client host as it were any grid

storage element. SAS, HEAsoft and the CCF are downloaded

by the script only when the provisioned VM has not been pre-

viously configured, they take 1.5 GB compressed.

On the other hand, different ODF are the input of different

calculations and subsequently are always transferred in every

execution. (As the experiments are an example, only the obser-

vation number 0144090201 was used, but always is transferred

as if were different inputs). A task last 31 m on an X5365 pro-

cessor, and generates an output of 339MB. As ODF and output

15http://xmm.esac.esa.int/sas/
16http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/

are transferred compressed, every tasks moves 373MB in stag-

ing processes.

5.2. Deployment with fair-share rules

The objective is to show how the framework schedules differ-

ent virtual environments following the application requirements

and fair-share policies. For this purpose, the permeability from

task scheduling and provisioning levels must be automatically

performed, taking into account the possible limits/thresholds set

by a hypothetical administrator.

5.2.1. Task scheduling

Users should have to worry about in what environment the

applications will run. Thus, virtual SO images suitable for the

applications were selected among the available ones at the ap-

pdb.egi.eu marketplace. The Basic Ubuntu Server 14.04 LTS17

and the Centos 618 virtual appliances were used for the exe-

cution of XMM-Newton SAS and GAMOS respectively. This

election was performed considering that these appliances are

the most offered by cloud providers and they do not include

other software than the basic installation with exception to

Cloud-Init. Therefore, both applications included in their tasks

the corresponding appdb.egi.eu ID as requirement of execution.

On the other hand, FLUKA did not constraint the execution to

one of these appliances. It worked as an opportunistic applica-

tion that can use any free pilot at once.

Different initial priorities can be set for any application by

different ways, for example, setting certain one by every user

launching any application in the GridWay configuration. Addi-

tionally, initial priorities can be specified by including different

deadlines in the description of the tasks, i.e the longer deadline,

the smallerpriority. With their combination, several scheduling

policies have been implemented through the experiments.

Moreover, the hardware templates (resource tpl) are con-

strained to the ones offering one core and a minimum of 1GB of

RAM. Note that driver automatically filters providers support-

ing the 1.1 release of OCCI offered through an encrypted end-

point. Then, it subsequently includes their hardware templates

as available batch queues into the resource pool of GridWay.

Therefore, users only have to specify these queues as any other

requirement during the task submission.

5.2.2. Guided provisioning and configuration limits

The scheduling parameters concerned to pilots have been set

as those of the first experiments in [5], except those related to

cloud provisioning. In this sense, the Factory is allowed for

managing a maximum of 50 pilots (running on VMs), but the

Scheduler only will wait 600 s for the creation of every VM.

On the other hand, the dispatching chunk, i.e. the number of

tasks and VMs managed during a scheduling cycle of 10 s, is

set to 20. However, the submission is also limited to dispatch

17https://appdb.egi.eu/store/vo/image/de355bfb-5781-5b0c-9ccd-

9bd3d0d2be06
18https://appdb.egi.eu/store/vo/image/e009209f-b62b-552e-b26c-

eef351264f58
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Table 3: FedCloud IaaS providers used in experiments. Sites that do not accomplish minimal requirements (image, OCCI 1.1, encrypted endpoint) are omitted.

Additionally, the technology used in every resource is also shown.

Provider os tpl# resource tpl# Max.

(OCCI endpoint) Ubuntu CentOS ID GB Cores VIM

https://carach5.ics.muni.cz:11443 ⊠ ⊠ small 2 715 OpenNebula

https://cloud.cesga.es:3202 ⊠ � small 2 432 OpenNebula

https://controller.ceta-ciemat.es:8787 ⊠ ⊠ m1-small 2 224 OpenStack

https://egi-cloud.pd.infn.it:8787 ⊠ ⊠ m1-small 2 285 OpenStack

https://fc-one.i3m.upv.es:11443 ⊠ ⊠ small 1 16 OpenNebula

https://fsd-cloud.zam.kfa-juelich.de:8707 ⊠ � small 1 447 OpenStack

https://occi.nebula.finki.ukim.mk:443 ⊠ � small 1 360 OpenNebula

https://prisma-cloud.ba.infn.it:8787 ⊠ ⊠ small 1 600 OpenStack

https://sbgcloud.in2p3.fr:8787 ⊠ ⊠ m1-small 2 384 OpenStack

https://stack-server-01.ct.infn.it:8787 ⊠ � small 1 66 OpenStack

one VM per suitable provider in every cycle. In addition, the

resource banning feature of GridWay is enabled, so whenever a

resource fails it is banned for a variable period of time. This last

option will be of importance in experiments, because, currently

the only real accurate way to know the quotas established at

providers belonging to FedCloud is by continuously testing the

creation of VMs [46].

However, to take into account the virtual appliances needed

by every application is essential for cloud brokering. In this

sense, the main interest in GWpilot Factory is its capacity to

perform a guided provisioning based on the description and sta-

tus of every task. In general, the requirements of pending tasks

with biggest priorities are used first in provisioning. Addition-

ally, the running tasks increase the weight of certain require-

ments to avoid starvation if the remote resource fails. Con-

sequently, Factory automatically manages the creation of cer-

tain types of VMs following the fair-share permeated from task

scheduling.

Moreover, Factory allows forcing to break this fair-share

by configuring a default weight to certain characteristics of

providers. With this feature, administrators usually prioritise

some resources over others, and improve some types of calcu-

lations.

In any case, any unskilled user can easily reproduce this con-

figuration by modifying gwd.conf and sched.conf files.

5.2.3. Test proposed

Priorities allow task scheduling policies such as shortest task

first (STF) and longest task first (LTF). Moreover, their influ-

ence on the guided provisioning can be controlled by config-

uring the GWpilot Factory to force the selection of some re-

sources over others. In this sense, five experiments were per-

formed in this work:

(1) Fair-sharing based on avoiding the task starvation: tasks

only get more priority when their waiting time WT in-

creases.

(2) The longest tasks are prioritised (LTF): the priority order is

GAMOS, XMM-Newton SAS and FLUKA (e.g. the GXM

policy).

(3) Shortest tasks are executed first (STF): the priority order is

FLUKA, XMM-Newton and GAMOS (FXG).

(4) An arbitrary priority is set to provisioning: despite prece-

dence in task scheduling (XGF), the environments suitable

for running XMM-Newton are always prioritised, i.e. the

creation of VM based on Ubuntu (XGF.p).

(5) Other arbitrary priority is set to provisioning: the opposite

of last experiment, GAMOS is prioritised in task schedul-

ing and its suitable environment (CentOS) in provisioning

(GFX.p).

Every application only managed 50 tasks at same time and

the three were simultaneously started in every experiment. The

intention is to simulate a usual situation in an institution, where

the resources are limited and fair-sharing rules are a must.

5.3. Test-bed

Experiments should be managed on the current hardware

usually available for the corporate workplaces. Therefore, a

machine with one i3-530 (2 cores, 2.93GHz) and 4GB of RAM

was configured with GridWay, GWpilot and GWcloud drivers.

Additionally, to avoid the necessity of host certificates, the sys-

tem will use the Global Access to Secondary Storage (GASS)

from Globus middleware as transference protocol.

The EGI FedCloud infrastructure will be used to perform the

tests. As that of July 2015, the infrastructure is considered in

production and it counts on more than 40 providers, which offer

more than 15,000 cores under the fedcloud.egi.eu virtual organ-

isation.

5.4. Results

First impression is the noteworthy limitation of the amount

of available resources (see Table 3). The number of theoreti-

cally suitable providers (10) was around the half of the avail-

able ones (24) in FedCloud. This is mainly due to the fact that

the required os tpl templates were not deployed in every site.

Moreover, the number of reliable providers is really smaller

(4), as it is shown in Tables 4 and 5. These results demonstrate

the two affirmations done in this work: as grid sites, federated

cloud providers are not immune from errors produced by the

middleware, network outages, or misconfigurations; the other

issue is the illusion of the fully availability of the resources, be-

cause user quotas are not currently shown in information sys-

tems. Therefore, experiments demonstrate the suitability of the
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(b) Certain OS is weighted in provisioning.

Figure 3: Accumulated VM creation attempts through the experiments with different task scheduling and provisioning policy.

proposed provisioning based on continuously checking the real

availability and reliability of every resource. Scheduler always

dispatches a VM to providers until it gets a failure from the

GWcloud Execution driver. Consequently it bans the provider

during (1 − e∆t/260) · 600 s, i.e. according to the elapsed time

∆t from last failure, the banning time can be set to a maximum

of one hour. These are the reasons for the number of failed cre-

ations in every reliable resource as they stand for the times that

the driver has failed to create a VM because any quota has been

reached. This circumstance does not necessarily imply that

SLA contracts are being broken, but simply that these providers

are full or they already supplied the maximum amount of re-

sources guaranteed to this VO. However, in the case of unreli-

able resources, this number really means the number of failed

VM creations and OCCI errors. This behaviour is usual in in-

frastructures focused on sharing resources that recently become

in production [58], but it completely unacceptable with com-

mercial providers.

The jagged shape of lines in Figures 3-(a,b) are also conse-

quence of the provisioning procedure. Both describe the evo-

lution of the accumulated creation attempts of the two kinds of

VMs considered: Ubuntu and CentOS. Due to the effective lim-

itation of resources by configuration (50 pilots) and by the reli-

ability of the infrastructure, this kind of figure is more suitable
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Table 4: Number of VM instances successfully set up and failed during the experiments in which only the requirement of certain virtual appliance is considered for

provisioning.

WT GXF(=LTF) FXG(=STF)

Ubuntu CentOS Ubuntu CentOS Ubuntu CentOS

Provider up fail up fail up fail up fail up fail up fail

https://carach5.ics.muni.cz:11443 10 41 10 54 10 42 10 55 10 39 10 47

V
M

p
ro

v
is

io
n

in
g

https://cloud.cesga.es:3202 0 34 - - 0 37 - - 0 34 - -

https://controller.ceta-ciemat.es:8787 9 30 9 53 8 31 10 55 8 33 10 51

https://egi-cloud.pd.infn.it:8787 1 19 0 47 1 21 0 50 0 21 0 44

https://fc-one.i3m.upv.es:11443 0 25 0 70 0 28 0 73 4 27 9 56

https://fsd-cloud.zam.kfa-juelich.de:8707 0 41 - - 0 49 - - 0 40 - -

https://occi.nebula.finki.ukim.mk:443 0 34 - - 0 35 - - 0 33 - -

https://prisma-cloud.ba.infn.it:8787 0 35 0 52 0 37 0 66 0 34 0 49

https://sbgcloud.in2p3.fr:8787 0 30 0 49 0 32 0 49 0 33 0 45

https://stack-server-01.ct.infn.it:8787 0 28 - - 0 27 - - 0 28 - -

Failures due to exceeding quotas 90 154 94 160 99 154

Failures due to unreliable providers 227 171 245 188 223 138

FLUKA 07 h 56 m 23 s 08 h 14 m 29 s 07 h 25 m 20 s

MakespanGAMOS 07 h 13 m 24 s 07 h 14 m 45 s 07 h 03 m 54 s

XMM-Newton SAS 05 h 12 m 49 s 05 h 39 m 59 s 06 h 05 m 02 s

Table 5: Number of VM instances successfully set up and failed in the experiments where the priority was also considered for provisioning.

XGF.p GFX.p

Ubuntu CentOS Ubuntu CentOS

Provider up fail up fail up fail up fail

https://carach5.ics.muni.cz:11443 12 38 9 54 10 38 10 50

V
M

p
ro

v
is

io
n

in
g

https://cloud.cesga.es:3202 0 33 - - 0 32 - -

https://controller.ceta-ciemat.es:8787 10 23 8 52 8 32 10 50

https://egi-cloud.pd.infn.it:8787 2 15 0 48 0 23 0 47

https://fc-one.i3m.upv.es:11443 7 21 6 46 4 28 8 48

https://fsd-cloud.zam.kfa-juelich.de:8707 0 27 - - 0 42 - -

https://occi.nebula.finki.ukim.mk:443 0 28 - - 0 30 - -

https://prisma-cloud.ba.infn.it:8787 0 18 0 47 0 35 0 48

https://sbgcloud.in2p3.fr:8787 0 22 0 47 0 26 0 46

https://stack-server-01.ct.infn.it:8787 0 19 - - 0 31 - -

Failures due to exceeding quotas - 97 - 200 - 98 - 148

Failures due to unreliable providers - 147 - 94 - 219 - 141

FLUKA 06 h 40 m 11 s 07 h 14 m 36 s

MakespanGAMOS 11 h 42 m 17 s 07 h 52 m 10 s

XMM-Newton SAS 05 h 22 m 57 s 06 h 10 m 19 s

for evaluating the policy implemented in every experiment than

to simply show the VMs provisioned through the time [46].

In the case where no prioritisation is forced in provisioning

(Figure 3-(a)), it can be seen that experiments initially require

more VMs with Ubuntu than with CentOS, which is a conse-

quence of the higher number of providers offering the former

OS. From one hour on, Factory performs a similar number of

creation attempts for Ubuntu and CentOS as time goes by. Cor-

respondingly, the small number of providers supporting Cen-

tOS causes a straight shape. When the XMM-Newton code

does not require more VMs (marked with big dots) due to all

remaining tasks are already running, it can be seen how the

Factory performs some creation attempts for Ubuntu because

these tasks retain some influence on provisioning as well as

FLUKA can also benefit from these resources. The behaviour

is repeated when GAMOS is close to end (diamonds). As com-

mented before, this scheduling is performed to avoid starvation

of XMM-Newton or GAMOS last tasks if some VM fail, which

can increase dramatically their makespan. Independently from

that, whenever the VMs creation attempts by XMM (dots) and

by GAMOS (diamonds) are reached, the new attempts are only

due to FLUKA as it is the one that can be executed on both

Ubuntu and Centos. For this reason, provisioning is balanced

between both OSs at the end of the WT and GXF experiments.

In the case of FXG, where FLUKA are always prioritised, its

shorter makespan avoid seeing this behaviour. On the other

hand, Factory stops doing attempts for Ubuntu till the GAMOS

code also stops requiring more CentOS (see again the WT and

GXF experiments). This is due to Factory tries to progressively

replace Ubuntu VMs by CentOS only if possible.

Regarding the experiment in which weighted provisioning is

done (Figure 3-(b)), again there are more Ubuntu VMs cre-

ation attempts during the first hour due to the higher number

of cloud providers supporting this OS. However, it can be also

seen how the weighted provisioning influences the behaviour

of the framework when the creation of VMs based on Ubuntu

is always prioritised. In this sense, for the pair of solid lines it

can been seen that the Factory with less attempts can boot more

Ubuntu VMs (see XGF.p experiment in Table 5). As XMM-

Newton has a higher weight, the framework processes XMM-

Newton tasks prior to FLUKA ones, but both calculations end

earlier. Obviously, this policy is detrimental to GAMOS ex-
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ecution. On the opposite, for the dash lines, where GAMOS

running only in CentOS has a higher weight, a much higher

value of Ubuntu creation attempts is performed by the Factory

as reliable providers become saturated of CentOS and reached

their quotas.

Last but not least, looking to Table 5 it is demonstrated that

weighted provisioning is worth performed for the application

with longer task execution time. Being FLUKA the applica-

tion with shorter task execution time, its makespan varies an

8% between being XMM or GAMOS the application with a

higher weighted provisioning, so its influence is low. Nonethe-

less, GAMOS makespan is reduced to a 0.67 ratio if it has a

higher weighted provisioning instead of XMM as the latter only

increases its makespan to a 1.15 ratio.

The experiments performed demonstrate the points a)-b)

stated at the beginning of this section. However, the scheduling

implemented is focused on exploiting the behaviour of a feder-

ation based on the resource sharing. However, the mechanism

to constraint resources and the fair-share policies are of impor-

tance to properly select commercial providers. Users can force

some of their applications to use only the cheaper resources and

allow others to progressively request VMs more expensive. For

this purpose, they only need to set the corresponding require-

ment or ranking statement in every task description. Moreover,

administrators can configure the Factory to force the use of cer-

tain cloud providers with favourable agreements. Combinations

of the features provided by the framework are suitable for im-

plementing a wide range of scheduling suitable for any kind of

federation or multi-cloud environment.

6. Conclusions and future work

A generic framework for performing massive distributed

calculations in federated clouds has been presented in this

work. Unlike other approaches, the system supports multi-

environments and fair-sharing, so several users can simulta-

neously run multiple legacy applications that require different

types of VMs. It is able to perform a dynamic, configurable, au-

tomatic, and efficient IaaS brokering based on the current status

of the cloud federations and also allows the decentralisation and

on-demand provisioning of customised virtual environments in

cloud. All the previous capabilities clearly differentiate it from

other approaches.

The suitability of the framework has been successfully

demonstrated by effectively running three applications on the

European FedCloud at the same time. Applications require dif-

ferent customised virtual environments, which have been de-

ployed following several scheduling policies based on permeat-

ing the requirements of tasks.

The design of the framework also allows preserving these

features in a multi-cloud environment. However, the use of

public providers implies the development of strategies based

on costs and budgets, different to the ones suitable for a fed-

eration of resources. The explanations, implementations and

subsequent tests give room to perform new contributions of this

research within future works.
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[36] R. Graciani, A. Casajús, A. Carmona, T. Fifield, M. Sevior, Belle-DIRAC

Setup for Using Amazon Elastic Compute Cloud, Journal of Grid Com-

puting 9 (1) (2011) 65–79. doi:10.1007/s10723-010-9175-7.
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