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Abstract. A variety of properties characterizes the execution of scien-
tific applications on HPC environments (CPU, I/O or memory-bounded,
execution time, degree of parallelism, dedicated computational resources,
strong- and weak-scaling behaviour, to cite some). This situation causes
scheduling decisions to have a great influence on the performance of the
applications, making difficult to achieve an optimal exploitation with
cost-effective strategies of the HPC resources. In this work the NAS Par-
allel Benchmarks have been executed in a systematic way in a modern
state-of-the-art and an older cluster, to identify dependencies between
MPI tasks mapping and the speedup or resource occupation. A full char-
acterization with micro-benchmarks has been performed. Then, an ex-
amination on how different task grouping strategies and cluster setups
affect the execution time of jobs and infrastructure throughput. As a
result, criteria for cluster setup arise linked to maximize performance of
individual jobs, total cluster throughput or achieving better scheduling.
It is expected that this work will be of interest on the design of scheduling
policies and useful to HPC administrators.
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1 Introduction

The evolution in processors during the last decade has been oriented towards an
increasing degree of parallelism and this fact has deeply impacted all levels of
computing hardware and software. The design of clusters and supercomputers
is also following this path. For example, the number of cores according to the
TOP500 list [1] has grown exponentially since 1993. Current trends include the
use of many-core processors, driving the number of computing units even further.
An obvious way of getting the most of this is the usage of highly parallel applica-
tions. MPI and OpenMP continue being instrumental to create highly scalable
applications suitable for this environment. Applications can be classified into
CPU, I/O or memory-bounded depending on which factor limits its execution
speed. Other common issues regarding requirements are execution time, degree



of parallelism and required computational resources, to cite some. This leads
to many questions and specific scheduling decisions. Probably the first is what
should we do with partially-filled multi-core processors? When a given job is
only using some of the CPUs of a node, or just some of the cores of a CPU, what
is the most efficient decision? On one side, executing some other job at the same
time would lead to a most intensive usage of the resources; on the other, sharing
the resources (namely memory at different levels and I/O) may force both jobs
to compete for them and slow down, having in fact a negative impact on the
total execution time. The problem is complex and have extra dimensions, and
the scope of this work aims to shed some light on performance issues.

2 Related Work

Impact of MPI task locality has been investigated in [2] with three kernels of
NPB and application codes running in a cluster of 32 CPUs. They show that
an execution time saving of up to 25% is possible. Their number of used CPUs
is small and the authors plan to extend the experiments to large-scale machines
since it seems necessary to be conclusive about what happens in situations of
many processors. In [3] it is summarized the results of mapping MPI tasks onto
sockets, taking into account the machine topology. Results show that it is bene-
ficial to map tasks onto as many sockets per node as possible (the bigger savings
in execution time, up to 30%, are obtained precisely for those cases). Similar
experiments are done in [4], reporting an improvement of about 15%. In partic-
ular, research dealing with multicore architectures has been focused in the last
years. To this regard, [5] presents the gain in computational efficiency of a MPI-
based production application that exhibits a performance peak improvement of
about 9% (with averaged performance improvement of 6%), attributed to a bet-
ter use of cache-sharing at the same node and to the high intra- to internode
communication ratio of the cluster. Although it is a modest speedup, it is no-
ticed that it is obtained with minor source code modifications. The work in [6]
points to the same direction by evaluating the impact of multicore architectures
in a set of benchmarks; but on the contrary, they conduct a non-straightforward
adaptation of the original application. Their characterization of the inter- to
intranode communications ratio throws a figure of 4 to 5 in the worst case.
This kind of node mappings is an area where little to moderate efforts are re-
quired for significant gains in application performance. The impact of inter- and
intranode latency is analyzed in [7] using a parallel scientific application with
MPI tasks mapped onto the CPUs of an infiniband-based cluster of 14 nodes.
With the objective of improving the computational efficiency, [8] analyzes how
many cores per node should be used for applications execution. Here, both NPB
and a large-scale scientific application code are executed in three single-socket-
per-node clusters. They identify that task mapping is an important factor on
performance degradation, being the memory bandwidth per core the primary
source of performance drop when increasing the number of cores per node that
participate in the computation. Something similar concludes [9], showing a high



sensitivity of the attained NAS kernels performance to the multi-core machines.
In [10] it is detected that NPB exhibit high sensitivity to the cluster architecture.
Also, MPI tasks mapping reveals that distributing them over the nodes is better
from a computational standpoint in most cases. According to their experiments,
an up to 120% speedup is attained for most of the NAS kernels. They explain
this behaviour because by distributing the tasks they do not have to compete
for node local resources, a scenario that seems to occur when running tasks are
sharing a slot or are located in slot of the same node. In [11] a semi-empirical
predictive model is formulated and tested with a large-scale scientific applica-
tion code, which provides good results for weak scalability cases and show that
it can lead to a 5% increase of the execution time. The study conducted in [12]
on mapping MPI tasks to cores using micro-benchmarks and NPB, shows that
it may affect significantly the performance of intranode communication, which
is closely related to the inter- to intranode communication ratio.

These previous investigations point out to the large sensitivity of the execu-
tion time to the task mapping. The impact of grouping or not MPI tasks outside
of the box (out of the same node), over sockets or cores within the node is high
as it is seen that execution time varies significantly. Also the lack of understand-
ing of how to proceed in a systematic manner with an application in a specific
cluster remains and further clarifications are needed to improve the cluster effi-
ciency and usage. The present investigation summarizes the results of mapping
MPI tasks onto cores in two different infiniband-based clusters at CIEMAT.

Then, processor mapping combinations have been tested to explore the im-
pact on cluster throughput and hence, to build usage criteria aiming at feeding
better scheduling strategies to support the scientific groups.

Hence, the present work explores the behaviour of different sci-kernels on
modern infrastructures and the impact on clusters throughput. An analysis on
how task location, network traffic and resource sharing affect their execution time
has been carried out to infer a generalization of their behavior. This information
can then be useful to improve scheduling algorithms and cluster setups. In the
text, a job is composed by one or more tasks. The assignation of those tasks
to computational resources (mapping) determining when and where to run each
job constitutes the scheduling process.

3 Characterization of HPC facilities

3.1 Benchmarking

The chosen applications for systematic benchmarking can be divided in two
groups. The first one is system benchmarks, to measure the raw performance
of the components of our clusters. The second one is application benchmarks
(NPB), to test the behavior of the infrastructure when running real applications.

STREAM benchmark [13] measures sustainable memory bandwidth and tests
the communication bandwidth between the socket and its RAM. In multicore
sockets an OpenMP flag is set for building one thread/core during compilation.



Fig. 1. Major architecture and communications for clusters ACME and EULER (band-
widths are approximate best cases sustained values).

OSU micro-benchmark [14] measures the latency and bandwidth of MPI
libraries and interconnects. It implements a set of routines with various commu-
nication patterns. It measures intra- and internode communication bandwidths.

Bonnie++ [15] is a small yet powerful benchmark to measure disk perfor-
mance. It provides a number of tests of hard drive and file system performance.

Intel Memory Latency Checker 3.1 [16] allows accessing memory chunks lo-
cated in the elements of the memory hierarchy, measuring the latency time.

All together, these benchmarks allow characterizing the cluster raw perfor-
mance. Hence, a better understanding of the results gathered with a set of sci-
kernels is intended. The NAS Parallel Benchmarks (in short NPB) [17] is de-
veloped at the Numerical Aerodynamic Simulation (NAS) program at NASA.
It has evolved as a group of kernels, set for a variety of problem sizes (classes)
of increasing computing cost. All together are representative of algorith- mic
building blocks found in the aforementioned scientific.Among them are exam-
ples of memory-bound and CPU- bound, or weak- and strong-scaling kernels.
The present investigation uses NPB v2.0, which includes seven portable ker-
nels (Fortran90, MPI parallelised) whose acronyms cor- responds to: BT- Block
Tridiagonal solver; CG- Conju- gate Gradient; EP- Embarrassingly Parallel; FT-
Discrete fast Fourier Transform; IS- Integer Sort; LU- Lower-Upper Gauss-Seidel
solver; MG- MultiGrid on a sequence of grids.

3.2 Infrastructure characterization

Two computing facilities of different generations based at CIEMAT have been
employed. The first one, EULER, is a production HPC shared among the sci-
groups. It consists on 480 Xeon R©5450 quadcore@3.0 GHz, 2GB RAM/core,
mounted on Dell PowerEdge M610 blades. When EULER was installed in Au-
tumn 2008, its performance according to LINPACK (23 TFlops peak) would
have ranked it around position 300 of TOP500.

Because it is under full usage, the experiments have been done while sharing
the resource and the restriction of accessing to a reserved set of 8 nodes within



Fig. 2. Latency of a core accessing increasingly larger data blocks in ACME, corre-
sponding to cache, RAM and disk. ’Same slot’ and ‘Remote slot’ refer to the location
of the processor to which the accessed memory is connected in the NUMA system.

a limited timeframe (this matches with how the analyzed applications behave in
real environments). The second one, ACME, is a smaller, state-of-the-art HPC
for research purposes and fully devoted to this project, which counts with 10
nodes (8 of them are computing nodes): 2 Bull R424-E4 chassis with 4 nodes
each, plus another two devoted to host accelerators and fast network storage.
Each node consists on a Supermicro X10DRT-P motherboard with two 8-core
Xeon R©E5-2640 v3@2.60. Each node counts with 32 GB DDR4 RAM memory
@2133 MHz, in the form of 4 x 8 GB modules. Two of these modules are con-
nected to each processor (NUMA). Each core accesses to half the memory with
rather smaller access time than to the other half, as show in Fig. 2. Network is
provided by Infiniband FDR. The MPI library mvapich2-2.2b is installed in both.
Figure 1 displays the hardware of ACME and EULER nodes. It includes some
performance metrics obtained with the benchmarks and from the official docu-
mentation. It is worth noticing that most the results match their counterparts
provided by the hardware vendors. ACME has higher intranode communication
bandwidth (3 to 4 times higher than EULERs); 2.5 times larger shared L3 cache;
and 3 times higher infiniband bandwidth. Both clusters have a ratio of intra- to
internode bandwidth within 3 to 3.5.

Table 1. Total execution time of NAS kernels in ACME with different cluster setups
(time ratio is referred to the Dedicated Network setup)

Setup Execution time (s) Time ratio (%)

Dedicated Nodes 36533 32.6
Dedicated Cores 19442 17.5
Dedicated Sockets 28989 25.8



3.3 Influence of node sharing on memory access time

In multi-core CPUs and in multi-CPUs nodes, there is a decision concerning
whether it is better or not to share the resources among pending jobs, or should
a sole application be executed at the same time. Hence, it is necessary to under-
stand how the different memory layers interact with the type of application.

Table 2. Submitted jobs of all NAS kernels partitioned per degree of parallelism.

Degree of parallelism 1 2 4 8 16 32 64 128
Number of jobs 210 360 630 720 840 540 400 170
Percentage of jobs (%) 5.4 9.3 16.3 18.6 21.7 14 10.3 4.4

Figure 2 shows latency in ACME when a given core is accessing to memory.
As expected, L1 cache is the fastest one but only stores up to 32 KB of data;
then comes L2 with 128 KB, L3 with 20 MB, and after that the RAM mem-
ory. In this case, as pointed out before, there is a significant difference (60%)
between accessing the modules connected to the same processor and those con-
nected to the other one in the other slot of the same motherboard. The last
step corresponds to the sizes between 32 and 64 GB, where both RAM modules
are accessed to store/read. The last step of the memory hierarchy is represented
by the persistent storage. It counts with a SSD (240GB) for the OS, thus not
having influence on these experiments; a HD (1TB) for scratch and temporary
files; and network storage for the users home directory and the non-OS appli-
cations (scientific codes). Bonnie++ returns a latency of 1.5ms for the HD and
7.35ms for the network storage, being an order of magnitude larger than RAM
latencies. It can be inferred that sharing a node between two or more jobs may
increase RAM misses, as the available memory is shared between the running
jobs, so they have less space for data and executable. This same issue happens
when sharing a multi-core CPU, leading to an increased number of misses in
L3 cache. Given than a miss implies accessing an upper layer of the memory
hierarchy with a penalization of roughly an order of magnitude in latency, it is
not obvious how this sharing would impact the execution time.

4 Results

4.1 Cluster performance

The experiments with NPB have been repeated under four Slurm setups:
- Dedicated Cores: one-to-one assignment of cores to MPI tasks of the parallel

job (a core executes only one MPI task of that job; set in ACME and EULER).
- Dedicated Sockets: a socket may only execute MPI tasks of the same job.

Once the socket is occupied by at least one MPI task of a job, no other part of
another job may be executed on it in the meanwhile (set in ACME).



- Dedicated Nodes: an entire node is assigned to execute MPI tasks of the
same job (set in both ACME and EULER).

- Dedicated Network (reference case): the whole cluster executes only one
parallel job at the same time, thus avoiding any overhead due to network con-
gestion (set in ACME). This is a scenario devoted to obtain reference execution
times. Table 1 compares the total execution time of a set of NAS kernels. To
mimic real-life workloads, all jobs corresponding to different kernel classes (sizes
of computed problems) and degrees of parallelism (about 4,000 jobs sent for
each cluster setup) were submitted at the same time, letting Slurm scheduler
to decide where and when to execute them using 8 nodes (16 cores/node) in
ACME and 16 nodes (8 cores/node) in EULER. There was no indication of any
job maximum execution time, thus no preemption techniques were employed.
Table 2 shows the jobs according to their degree of parallelism; note that 128 is
the number of cores in the cluster ACME. This way, the impact of MPI tasks
location inside the clusters has been analysed under the Slurm setups. It is noted
that the Dedicated Sockets setup is the 2nd more efficient after the Dedicated
Cores setup (about 30% of the jobs counts for 8 or even less MPI tasks), which
is able to allocate more than one job at the same time.

4.2 NAS Benchmarking

The number of nodes (nN) x number of MPI tasks per node (nT), in short nNxnT
(see Fig. 3), defines the configuration of each experiment (say, a definite kernel
of a given class, executed under a cluster setup) has been repeated 10 times,
with their average referred in what follows as a computed case. The experiments
conducted under Dedicated Network setup include the kernels of class D to
enlarge the population of computed cases. For the other cluster setups, only
experiments with the A, B and C classes of the kernels have been conducted to
guarantee that the running MPI processes fit into the RAM memory as well as
to bound the workload computing time. All exhibit standard deviation < 1%.

Fig. 3. Example of 1x4 and 2x2 MPI tasks mapping in cluster ACME.



4.3 Dedicated Nodes cluster setup

Bearing in mind that the Dedicated Cores setup is a realistic scenario of produc-
tion clusters, a general trend can be stated out of Fig. 4, which depict the nondi-
mensional execution time for ACME (referred to the execution time obtained in
the cluster configuration of the fewest number of nodes, which corresponds to
the circles centers). Fig. 4 shows that most computed cases takes more execution
time as far as more nodes are involved. Hence, it can be said that grouping MPI
tasks within as few nodes as possible is good to achieve shorter execution times.
This seems a general rule inferred out of the plot after examining the behaviour
of the kernels as a whole. But two points must be made. On one hand, a case by
case examination revels that there are exceptions to this rule, as it is the case of
the LU kernel (class B - 8 tasks); IS kernel (class C - 32 tasks); and others. So
awareness of non consistent tendencies of the kernels has to be considered. And
on the other hand, non monotone behaviour occurs in several computed cases.
Some of these may be explained by the kernel requirements (CPU- or memory
intensive,...), but also it is suggested that the execution is affected by the MPI
tasks of rather different behaving kernels located in neighboring cores by the
scheduler, which compete for resources (RAM and traffic).

Fig. 4. Relative execution time for the Dedicated Cores setup in ACME. Nondimen-
sional computing time is referred to the case of all processes running in one node.



However, it is interesting to notice such a pattern (and criterium) related to
grouping MPI tasks in fewer nodes, which seems to be more effective in saving
execution time as the degree of parallelism and size (class) increase. On the con-
trary, computed cases of low number of tasks (see row of 4 MPI tasks in Fig. 4)
show a small variation of the execution time (within 5-10%) with the number of
nodes. This general trend observed in ACME, it is not so definite in EULER,
which shows greater sensitiveness of the execution time. The number of com-
puted cases in EULER with some speedup when the MPI tasks are distributed
among nodes dominates. Hence, EULER shows a somehow opposite behaviour
compared to ACME (due to extension restrictions, its execution time plots are
not included). As a result, how to proceed in EULER to speedup kernels execu-
tion is unclear and a more in depth kernel-by-kernel analysis seems necessary. A
comparison of the different behaviour found in ACME and EULER in terms of
the execution time for the two MG and EP kernels (memory- and CPU-intensive,
respectively) is depicted in Fig. 5 for Dedicated Nodes setup. The plots for the
MG kernel with classes B and C show that the speedup increases with monotone
trend as more nodes are involved in the nN x nT configuration (nT = 4, 8, 16
and 32). And it is seen that this speedup is significantly greater in EULER,
which can be explained because EULER nodes are more memory-bounded than
ACME’s. The EP kernel in ACME exhibits also a rather small speedup when
tasks are distributed over nodes. But on the contrary, EULER shows that the
EP kernel runs slower when it is taken ”out of the box” (that is, when the tasks
are partially migrated from all being grouped in one node). It is visible in Fig. 5
that a big jump in execution time occurs as the EP kernel goes from 1 x nT to
2 x nT (with nT= 4 and 8). It is noticed that the computed cases in EULER
corresponding to nT=16 and nT=32 start at configurations 2x8 and 4x8, respec-
tively, thus it is not possible to have evidence of the ”out of the box” effect in
these cases (but it is plausible that the wavy pattern observed in these be similar
to the wavy one observed for nT=8 from the 2x4 configuration on). In resume,
the rule derived for the EP kernel in EULER is that MPI task grouping makes
sense as the execution time drops. And besides, the reversed behaviour seen in
ACME for the EP kernel can be justified because of the much higher internode
bandwidth, which compensate the ”out of the box” effect observed in EULER.

4.4 Sensitivity to the clusters setup

The performance of kernels MG and EP is plotted in Fig. 6 corresponding to 8
MPI tasks and the four clusters setups analysed (classes A, B and C). This plot
is relevant because it provides four nN x nT configurations that start at 1 x 8
in both clusters, so the ”out of the box” effect can be focused, if any. For both
kernels, Dedicated Network and Dedicated Nodes setups provide very similar
execution time, showing a monotone, quasi-linear drop with the number of nodes,
which suggests the benefit (but small) of adding nodes to the computation. The
plot for Dedicated Sockets is similar, but even it is seen a smaller drop of the
execution time. This pattern is observed for the MG and EP kernels with all
classes (it is noted that Dedicated Network and Dedicated Sockets setups are



included only for ACME since EULER is a production cluster and only a portion
of it was assigned to this research). Again, for the MG kernel in EULER under
Dedicated Nodes, it is observed a higher speedup with the number of nodes,
compared to ACME. In particular, for the execution of the EP kernel in EULER,
it is visible the out-of-the-box effect under both setups: a large increase of the
execution time when the EP kernel goes from 1x8 to a 2x4 configuration, followed
by a saturation of the drop when additional nodes are included. A different
conclusion is derived for EULER: while for the memory-bounded MG kernel
is beneficial to distribute the MPI tasks over so many nodes as possible (the
smaller host memory of its sockets may explain the significant improvement),
the CPU-bounded EP kernel demands to group them into one node to attain
the best performance. In resume, the MG and EP kernels under Dedicated cores
setup in ACME, points out to the dominance of a performance drop (but not
monotone) when additional nodes are added to the computation (the execution
time shows a pattern of either a moderate increase of up to 20%, or a slight drop
in some cases). Comparison of the speedup obtained with the Dedicated Nodes
and Dedicated Cores setups for the whole set of experiments conducted in ACME
and EULER is given in Figs. 7 and 8, respectively. The plotted boundary lines
indicate the unused portion of the cluster due to the Slurm setup itself, which
serves to build criterium about how much speedup is possible and which is the
extra cost due to not using a portion of the machine (e.g.: say an ACME 2x4
configuration with Dedicated Nodes setup. This implies 4 tasks running on a
socket of 8 cores. Since each node has 2 sockets, the occupation reads 4 of a
total of 8+8=16 cores, which means a 75% of unused cores).

Fig. 5. Relative execution time for the Dedicated Nodes setup. NAS kernels MG (upper
row) and EP (lower row) are shown for clusters ACME and EULER.



The vertical scales in the plots relate speedup and % of unused cores (i.e.
speedup of 2 corresponds to a 50% of unused cores; speedup of 4 to a 75% of
unused cores; and so on). This criterium remarks the importance of searching
for a balance between significant speedups and not having too many unused
cores. Obviously, it is a matter of settling a sweet point for users and cluster
administrators. But under the Dedicated Nodes setup, it is seen that few points
are over the boundary lines. Only in the Dedicated Cores setup, all boundary
lines collapse into the 0%-unused cores situation (full occupation).

Fig. 6. Impact of cluster setup on the relative execution time for MG (memory-
intensive) and EP (CPU-intensive) kernels with 8 MPI tasks in clusters.

5 Conclusions

The NAS Parallel Benchmarks have been executed in a systematic way on two
clusters with rather different internode and intranode bandwidth properties, to
identify dependencies between MPI tasks mapping and execution time speedup
or resource occupation. The study comprises jobs up to 128 MPI tasks, bounded
accordingly to our clusters size and usage constraints, as well as justified by the
limited strong-scaling properties of NAS kernels.

The findings can be related to two scenarios. When the clusters are config-
ured to run parallel jobs in exclusivity, the results show that in most cases the
execution time drops as the MPI tasks are distributed over the nodes (this agrees
with previous investigations) and it seems efficient to distribute a given parallel
job over cores located in different nodes. However, the other important scenario
found in production HPC clusters corresponds to the need of sharing resources
among set of jobs, such that the socket cores execute MPI tasks of different jobs.



Fig. 7. Map of speedup VS. usage of computational resources for NAS under the Dedi-
cated Nodes setup (locus of % of unused cores is plotted for each number of MPI tasks.
Line color corresponds to the symbols), depicted for clusters ACME and EULER.

Fig. 8. Map of speedup VS. usage of computational resources for NAS under the Ded-
icated Cores setup depicted for clusters ACME and EULER.



In this situation, a rather different behaviour is observed, much more sensitive to
the type of cluster. In our state-of-the-art cluster ACME, many of the carried out
experiments show a speedup when MPI tasks run in the fewest number of nodes.
This is opposite to what is found in our older cluster EULER, where execution
time trends are more sensitive to the algorithm properties and part of the exper-
iments points out to task distribution over nodes to shorten the execution time.
This major result found in ACME feeds the discussion about possible compu-
tational efficiency benefits by tailoring live tasks migration and scheduling poli-
cies in modern clusters. In production clusters which share a significant load of
serial jobs while running parallel jobs (a 7-year analysis of the executed tasks
in our cluster EULER showed that more than half were serial), the question of
to which extent serial tasks may act as perturbations to the execution of paral-
lel jobs arises and deserves consideration to clarify the best live task migration
policies within the context of optimizing clusters occupation. Other interesting
aspect is how different the results would be in the case of hybrid MPI/OpenMP
tasks. These open issues are part of the ongoing research within our group.
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