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Electron Cyclotron Waves Polarization in the TJII Stellarator

 Cappa, Á.; Martínez-Fernández, J.; Wagner, D.

40 pp. 29 g. 13 ref. 

Abstract:

This report describes the theoretical calculations related with the electron cyclotron (EC) waves
polarization control in the TJII stellarator. Two main aspects will be distinguished: the 
determination of the vacuum polarization that the wave must exhibit if a given propagation 
mode in a cold plasma is desired and the calculation of the behavior of the grooved polarizers 
and other transmission systems used to launch the vacuum wave with the required polarization.

Polarización de Ondas Electrónicas Ciclotrónicas en el Stellarator TJII

 Cappa, Á.; Martínez-Fernández, J.; Wagner, D.

40 pp. 29 g. 13 ref.  

Resumen:

Este informe describe los cálculos teóricos implicados en el control de polarización de ondas 
electrónicas ciclotrónicas (EC) en el stellarator TJII. Se distinguirán dos aspectos principales: la
determinación de la polarización que la onda ha de exhibir en vacío si se desea un determinado
modo de propagación en un plasma frío y el cálculo del comportamiento de los polarizadores 
ranurados y otros sistemas de transmisión utilizados para emitir la onda en vacío con la 
polarización requerida.
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1 Introduction

In the TJ�II stellarator, plasmas are created and heated by two 53.2 GHz gyrotrons, each of them
delivering up to 300 kW of power. This power is transmitted from the gyrotrons to the plasma by
means of two quasi-optical transmission lines (QTL1 and QTL2) located at stellarator symmetric
positions (ports A6 and B3, see �gure 1) [1].
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Figure 1: Launching con�guration of the 53.2 GHz ECRH system. The magnetic axis (thick line) and the

direction of the main magnetic �eld are shown on the left (α = 8.4◦, ϕ1 = 25.5◦ and ϕ2 = 64.5◦). On the

right, the magnetic �ux surfaces and the constant �eld contours are plotted for both launchers (L1 is located

in the B sector of the device, at ϕ = ϕ1, and L2 is located in the A sector at ϕ = ϕ2). The beam path lies

in a non toroidal plane and thus the trajectories plotted in the right panels are the projection of each beam

path in the corresponding toroidal planes, given by ϕ1 and ϕ2. Vectors X, Y, and Z de�ne the general TJ�II

reference system. Note that the initial launching direction di�ers from the radial direction (α 6= 0).

The launcher of each line is a steerable mirror which is located inside the vacuum vessel. Each
of these internal mirrors allows us to launch the power at di�erent locations along the magnetic axis
and also to reach di�erent o�-axis positions independently (see �gure 1) [2]. In addition, a 28 GHz
ECRH heating system [3], designed for electron Bernstein waves excitation by the O�X�B mode
conversion technique [4], and also equipped with an internal steerable mirror, is presently installed
in the TJ�II D6 sector (see �gure 2). For both systems, a complete control of the polarization of
the launched waves is needed. In the case of the 53.2 GHz system (the main heating system), which
can perform perpendicular and oblique injection with each launcher, good coupling of the quasi-
extraordinary mode (QX) is desirable, particularly during ECCD on-axis experiments. Moreover,
to reach an optimum Bernstein mode excitation, it is also mandatory to couple a pure QO�mode
under oblique injection. Finally, an EBW emission diagnostic [5] is installed in the uppert part of
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the D6 sector and a knowledge of the theoretical polarization of the emitted wave at the detection
antenna is needed for a proper interpretation of the results. To set-up the proper polarization, each
transmission system is equipped with grooved mirror polarizers. In the case of QTL1 and the 28
GHz heating system, the polarization is controlled by a universal polarizer (two independent grooved
mirrors with di�erent corrugation depths) that allow us to convert the linear horizontal polarization
produced by the gyrotrons into any desired elliptical polarization. The second transmission line is
only equipped with one grooved mirror and therefore the available space of wave polarizations is
restricted. Figures 3 and 4 show the setup of the polarizers in each case.
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Figure 2: Launching con�guration of the 28 GHz ECRH system. Since TJ�II has four periods, the A6 and

D6 ports are equivalent (ϕ3 = ϕ2) and therefore the 53.2 GHz and the 28 GHz systems have similar launching

con�gurations. Nevertheless, in this case, the EC power is initially injected along the radial direction. An

EBW ray tracing calculation using the code TRUBA [6] is shown in the right viewgraph to illustrate the

wave trajectory in the plasma. The projection of the launched, re�ected and transmitted rays on the toroidal

plane where O�X conversion occurs is shown, as well as the power deposition pro�le and a side view of the

rays trajectories. The O-mode cuto� layer and the upper hybrid resonant layer are also shown.

The report is divided in three sections. In Section 2, a short review of the basic physics regarding
wave polarization in cold plasmas is given. Section 3 presents a general calculation of the angles
that de�ne the desired polarization ellipse in a reference system suitable for the experiments. Next,
in section 4, the theoretical analysis of the in�uence of grooved mirrors on wave polarization is
presented. Moreover, the changes in the wave polarization induced by the bends of the 28 GHz
waveguide are discussed. Then, the �nal dependence of the launched wave polarization on the
rotation angles of the polarizers is given in the reference system introduced in the previous section.
Appendix A summarizes the movement of the internal mirrors of the 53.2 GHz system and its relation
with their positioning angles while appendix B presents the values of the polarization angles that
are needed to couple a QX�mode in a wide range of launching directions. Finally, appendix C
includes the dependence of the 28 GHz polarizers performance for di�erent incidence angles.
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Figure 3: Grooved mirrors setup for QTL1 (left) and QTL2 (right). In the QTL1 case the incidence angle

is Θi = 15◦ while in the QTL2 case we have Θi = 45◦.
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Figure 4: Grooved mirrors setup in the EBW heating system. Here, Θi = 30◦.
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2 EC waves polarization in cold magnetized plasmas

In the Stix reference frame (B along z and k in the xz plane (see �gure 5a), the components of the
wave equation N×N×E+¯̄εE = 0, for plane waves (E ≡ E ei(k·r−ωt)) in a uniform cold magnetized
electron plasma, are

(S −N2 cos2 θ)Ex − iDEy +N2 cos θ sin θEz = 0

iDEx + (S −N2)Ey = 0 (1)

N2 cos θ sin θEx + (P −N2 sin2 θ)Ez = 0

where N ≡ kc/ω. The quantities S, P and D are given by

S = 1− ωp
2

ω2 − ωc2

D = −ωc
ω

[
ωp

2

ω2 − ωc2

]
(2)

P = 1− ωp
2

ω2

and ωp, ωc, ω are the electron plasma frequency, the electron cyclotron frequency and the frequency
of the considered wave respectively [7]. The angle θ is the wave propagation angle (angle between
k and B) and N2 is the squared refraction index.
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Figure 5: Stix frame (x, y, z) and wave reference system (ξ, η, ζ). The rotation sense of the right-handed

(R) polarization (iEξ/Eη > 0) in respect to k is shown on the left. Also, the QO�mode and QX�mode

polarization ellipses in the wave reference system for oblique propagation with θ > π/2 are represented on

the right. In the case represented on the left, for which θ < π/2, the QO�mode is left handed (L).

In vacuum, the electromagnetic �eld of a plane wave is transverse to the propagation direction
k. To investigate the coupling of the vacuum wave to the EC plasma wave it is convenient, in
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order to get an appropriate description of the EC wave polarization in the plasma, to de�ne a new
coordinates system � the wave reference system � that in this case is obtained from a rotation of
angle θ in respect to the y direction (see �gure 5a). The electric �eld components in the new frame
are given by EξEη

Eζ

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

ExEy
Ez

 (3)

Note that Eη ≡ Ey and that Eζ is the new longitudinal part of the �eld that develops in a magnetized
plasma. Thus, using (1) together with the coordinates transformation, it is easily seen that

iEξ
Eη

=
iEx
Ey

[
cos θ − Ez

Ex
sin θ

]
=
N2 − S
D

[
P cos θ

P −N2 sin2 θ

]
(4)

The left term of (4) is real and therefore the transverse polarization ellipses (projection of the
general ellipses in the ξη plane) of both modes have their main axis directed along the ξ and the
η directions respectively. The ratio iEξ/Eη de�nes the ellipticity angle where its sign de�nes the
polarization rotation sense. Thus, in the wave system, we get four di�erent cases

iEξ
Eη

= 0 → Vertical linear polarization

iEξ
Eη

=∞ → Horizontal linear polarization

iEξ
Eη

> 0 → Right-handed polarization in respect to k(R)

iEξ
Eη

< 0 → Left-handed polarization in respect to k(L)

(5)

The solvability condition of (1) is of the type AN4 + BN2 + C = 0, which, for propagation with
Nx 6= 0, leads to two electromagnetic solutions (the Appleton-Hartree solutions) usually referred
as the quasi ordinary (QO) and the quasi extraordinary (QX) modes1. Introducing the refractive
index of both electromagnetic solutions in (4) and taking the zero density limit (ωp → 0) it can be
demonstrated that

lim
ωp→0

Eξ
Eη

=
2 cos θ

ic(sin2 θ ± ρ)
=
ic(sin2 θ ∓ ρ)

2 cos θ
(6)

where ρ is given by

ρ2 = sin4 θ +
4

c2
cos2 θ (7)

and c ≡ ωc/ω. The upper sign in both expressions appearing in (6) corresponds to the QX�mode
while the lower one refers to the QO�mode. Using (6) it can be shown that both modes are
orthogonal (EQX ·EQO

∗ = 0). We de�ne the ellipticity angle of each mode (γQO and γQX) as

1

tan γQO
=
iEξ(QO)

Eη(QO)
=

2 cos θ

c(sin2 θ − ρ)
(8)

1

tan γQX
=
iEξ(QX)

Eη(QX)
=

2 cos θ

c(sin2 θ + ρ)
(9)

1Strictly speaking, the propagation modes are termed ordinary (O) and extraordinary (X) only for perpendicular
propagation (Nz = 0). An electrostatic solution, not considered here, is also found for propagation along the magnetic
�eld (Landau plasma oscillations).
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Since both modes are orthogonal (tan γQO ≡ −(tan γQX)−1), they have opposite polarization sense
and inverse ellipticity and thus, only one ellipticity angle is needed. We choose this angle to be
γ ≡ γQO with −π/4 6 γ 6 π/4. We see from (8) that the sign of γ and therefore the polarization
rotation sense of the QO�mode in respect to k is inverted when θ goes from θ < π/2 to θ > π/2. In
this way, the rotation sense in respect to the magnetic �eld direction is the same independently of
the value of θ. The same statement is valid for the QX�mode. With the previous choice for γ, the
resultant rotation sense of each mode in respect to k is shown in table 1. The typical polarization
ellipses of both modes, for oblique propagation with θ > π/2, are represented in �gure 5b.

γ < 0⇔ θ < π
2 γ > 0⇔ θ > π

2

iEξ(QO)
Eη(QO)

< 0 (L)
iEξ(QO)
Eη(QO)

> 0 (R)

iEξ(QX)
Eη(QX)

> 0 (R)
iEξ(QX)
Eη(QX)

< 0 (L)

Table 1: Mode polarization in respect to k for θ < π/2 and θ > π/2.

No details about the longitudinal component of the wave that develops in a plasma will be
discussed here since it vanishes in the ωp → 0 limit, where the wave coupling to the plasma occurs.
Once a proper coupling is achieved, the quality of the mode remains approximately unchanged if
the WKB approximation holds along the wave propagation trajectory.
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3 Wave polarization in the launching reference system

In the wave reference system (ξ, η, ζ) introduced in the previous section the major axis of the
QO�mode transverse polarization ellipse is always parallel to the ξ direction, i.e. the �horizontal�
direction in the wave reference system. Similarly, the major axis of the QX�mode ellipse is always
parallel to the vertical direction of the wave reference system. For practical purposes, it is very
convenient to de�ne the wave polarization in the reference system de�ned by the vectors v, εw
and Z. This latter system is related to the orientation of the plane of the power injection window
in each sector since Z is the vertical direction and εw is a vector in the horizontal plane directed
perpendicularly to the beam launching direction (v) which therefore lies in the window plane (see
�gures 7 and 9a). In this system (from now on, the launching reference system), the major axis of
the polarization ellipse is no longer directed along the horizontal direction and an extra rotation
angle is needed to describe the wave polarization.

In general, the vacuum �eld complex amplitude of a plane wave can always be written as

E = a1 exp(iδ1)ε1 + a2 exp(iδ2)ε2 (10)

where a1, a2, δ1 and δ2 are real quantities and vector ε1 is perpendicular to vector ε2. The polar-
ization ellipse and the two angles ψ and χ that de�ne a general polarization state are represented
in �gure 6.

The relation between the parameters a1, a2, δ1, δ2 that appear in (10) and the angles ψ and χ is
given by (11).

χ

2ε

1

k

ψ

ε

Figure 6: General polarization ellipse (right-

handed case is represented in the �gure).

s1 =
1− r2

1 + r2
= cos 2χ cos 2ψ

s2 =
2r cos δ

1 + r2
= cos 2χ sin 2ψ (11)

s3 =
2r sin δ

1 + r2
= sin 2χ

where r ≡ a2/a1, δ ≡ δ2 − δ1 and s1, s2, s3 are the Stokes parameters of the polarization [8]. The
angle ψ is termed the azimuth of the polarization ellipse (0 6 ψ 6 π) and, as in the previous section,
χ is its ellipticity angle (−π/4 6 χ 6 π/4). As we have mentioned in the introduction, both heating
systems (ECRH & EBW) need an internal mirror to achieve the �nal launching direction. The
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wave polarization is changed by the re�ection on the mirror surface and this has to be taken into
account in the calculation of the �nal polarization angles. The re�ection at the mirror surface and
the relation between the di�erent reference systems used in the calculation of the azimuth and the
ellipticity angle is illustrated in �gure 7. The di�erent vectors represented in the �gure are given by

n ≡ u× v

|u× v|
B ≡ B−B‖ ≡ B− (u ·B)u

εi ≡ n× v

εr ≡ n× u

εw ≡ Z× v

(12)

where, as mentioned above, v is the launching direction, u is the beam direction after the re�ection
at the internal mirror surface and B is the magnetic �eld at the plasma boundary along the re�ected
beam direction. The vectors u and B depend on the mirror positioning angles (see Appendix A).
All vector components are referred to the main system (X,Y, Z) of the device. By de�nition, n is
perpendicular to the plane of incidence of the wave (P) and B⊥ and n are both perpendicular to
u.
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Figure 7: Wave re�ection at the internal mirror surface. The plane P is the incidence plane of the wave. Z

is the vertical direction. The de�nitions of the other vectors are given in the text.

According to (11), the change in the sign of the perpendicular amplitude 2 introduces a change in
the sign of r and therefore a sign reversal of the two last Stokes parameters that de�ne the re�ected
wave, sr2 and s

r
3. Therefore

sr2 = −si2 = − cos 2χi sin 2ψi = cos 2χr sin 2ψr (16)

sr3 = −si3 = − sin 2χi = sin 2χr (17)

and thus the relation between the polarization angles of the re�ected and the incident waves in the

2The complex amplitudes of both incident (i) and re�ected (r) �elds can be written in each local wave reference
system (εi,n,u and εr,n,v) as

Ei =ai1 exp(iδ
i
1)εi + ai2 exp(iδ

i
2)n (13)

Er =ar1 exp(iδ
r
1)εr + ar2 exp(iδ

r
2)n (14)

For of a perfect metallic conductor, only the component perpendicular to the incidence plane (that is, the component
along n) changes its sign (or changes its phase by a factor π) whereas the component of the wave �eld which is
parallel to P is not modi�ed [8]. That is

ar1 = ai1 ar2 = −ai2 (15)
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range de�ned for such angles is given by

χr = −χi (18)

ψr = π − ψi (19)

Note that the rotation sense of the polarization ellipse becomes the opposite whereas the sum of
both azimuths is always π.

εr

ψr

B

ψ i

εi

εw

n

u

(b) Reflected : QO (L)

v

n

(a) Incident : QO (R)

Z

Figure 8: QO�mode polarization ellipse before re�ection in the incident system (a) and after re�ection in

the re�ected wave reference system (b). In this particular case, θ < π/2. For θ > π/2, the QO�mode is

right-handed after the re�ection.

The e�ect of re�ection on wave polarization is illustrated in �gure 8. To determine the azimuth
of the QO�mode polarization ellipse in the launching system we need �rst the components of b⊥ ≡
B⊥/|B⊥| in the re�ected wave system and the components of Z and εw in the incident wave system.
These are given by

b̃ 1
⊥ ≡ b⊥ · εr Z̃ 1 ≡ Z · εi ε̃ 1

w ≡ εw · εi
b̃ 2
⊥ ≡ b⊥ · n Z̃ 2 ≡ Z · n ε̃ 2

w ≡ εw · n (20)

b̃ 3
⊥ ≡ 0 Z̃ 3 ≡ 0 ε̃ 3

w ≡ 0

To include the e�ect of re�ection in the determination of ψQO we note that the major axis of
the polarization ellipse before the re�ection must coincide with the direction given by the vector
b̃′⊥ ≡ (̃b 1

⊥ ,−b̃ 2
⊥ , 0). Actually, since only the direction of b̃′⊥, which determines the magnetic �eld

plane, is relevant, we may de�ne a new vector

b̂⊥ =

{
+b̃′⊥ if β > 0

−b̃′⊥ if β < 0
(21)

where β ≡ cos(Z̃ · b̃′⊥). With this de�nition, the projection of b̂⊥ along Z̃ is always positive and
the azimuth of the QO�mode polarization ellipse is simply given by

ψQO = arccos(ε̃w · b̂⊥) (22)

Since both the QO�mode and the QX�mode are orthogonal, the azimuth of the QX�mode polar-
ization ellipse is inmediately obtained

ψQX =

{
ψQO + π/2 if ψQO < π/2

ψQO − π/2 if ψQO > π/2
(23)
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The above calculation is valid for any v, u, B and Z provided that v ⊥ Z. In TJ�II, this last
condition is ful�lled by all the launched microwave beams.

The ellipticity angle is calculated using (8) and taking into account the change in the rotation
sense due to the re�ection at the mirror surface. From (8) we know that

tan γ =
c(sin2 θ − ρ)

2 cos θ
(24)

Using the identity sin2 γ + cos2 γ = 1 in (24) and using the result given by (6) we may write

cos γ =

√
ρ+ sin2 θ

2ρ
(25)

sin γ = sgn(θ − π

2
)

√
ρ− sin2 θ

2ρ
(26)

Finally, and considering now the re�ection at the mirror surface, we obtain

χQO = −γ χQX = +γ (27)

3.1 The 53.2 GHz ECRH system

As we mentioned in the introduction, both quasi-optical transmission lines are located at stellarator
symmetric positions3 and therefore the wave polarization in one line is directly related to the wave
polarization in the other line.
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Figure 9: Geometrical layout of the ECRH power launching in the QTL1 case (a). General polarization

ellipses of both orthogonal modes in the reference system de�ned by εw,Z and v (b).

Figure 9 shows the geometrical layout in the QTL1 case and the polarization ellipses of both
modes. All the variables represented in the �gure keep their previous meaning. The linkage between

3The stellator symmetry in TJ�II is such that ψ(r, π/4+ϕ, z) = ψ(r, π/4−ϕ,−z) where ψ stands for the magnetic
�ux (not to be confused with the azimuth of the polarization ellipse), and r, ϕ, z are the usual cylindrical coordinates.



The 53.2 GHz ECRH system 13

the QO and QX modes coupled to the plasma and the launched R and L modes depends on whether
the propagation angle θ is larger or smaller than π/2 and the result is modi�ed in respect to table
1 due to the re�ection at the mirror surface (see table 2). The polarization angles that are needed
to couple a QO or a QX�mode at the plasma boundary and their dependence on the launching
direction, for power injection on-axis, are represented in �gures 10 and 11. The propagation angle
(θ) and the �eld at the boundary are also shown. Due to the stellarator symmetric position of both
lines, ψQO at a given N‖ in one line is equal to ψQO at −N‖ in the other line. In respect to the
ellipticity angle, χQO at a given N‖ in one line is equal to −χQO at −N‖ in the other line. The
same is valid for the QX�mode polarization.
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Figure 10: Launched wave polarization angles needed to couple a QO�mode at the plasma boundary, for

di�erent injection positions along the magnetic axis. Both lines are represented (QTL1 on the left and QTL2

on the right).
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Figure 11: Dependence of the launched wave polarization angles on the launching direction for QX�mode

coupling at the plasma boundary.

In these �gures, the launching direction is determined by the TJ�II toroidal angle (ϕ) for which
the axis of the launched beam in vacuum intersects the magnetic axis and also by the value of
the parallel refraction index (N‖ = (c/ω|B|)k · B) in vacuum calculated along the magnetic axis.
The calculation has been performed for the standard 100_40_63 magnetic con�guration. Table 2
shows the polarization angles in each line for some values of N‖ on-axis. Note that for N‖ = 0, the
propagation angle at the boundary (θ) is not exactly 90◦ but 89.5◦ in QTL2 and 90.5◦ in QTL1.
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Figure 12: Dependence of the power coupled to the QX�mode on the launching direction given by ϕ (thin

line) and alternatively by N‖ (thick line). Note the non linear relationship between ϕ and N‖ because of the

3-D magnetic axis. Within the available range of the internal launchers, the minimum power coupled to the

X�mode in non matched conditions is of the order of 70%.

The dependence of the positioning angles of both internal mirrors on the TJ�II toroidal angle ϕ
and the parallel index N‖ is summarized in Appendix A.

QTL1 QTL2

N‖ θ ψQO χQO N‖ θ ψQO χQO

−0.4 110.3 144.1 −29.8 −0.4 109.0 152.6 −29.2

−0.2 100.3 146.2 −19.4 −0.2 99.1 150.3 −17.9

0.0 90.5 148.2 −1.2 0.0 89.5 148.2 +1.2

+0.2 80.9 150.3 +17.9 +0.2 79.7 146.2 +19.4

+0.4 71.0 152.6 +29.2 +0.4 69.7 144.1 +29.8

Table 2: QO�mode polarization and propagation angles for some values of N‖ on-axis. The values for

perpendicular injection are highlighted. Complete tables for both lines appear in Appendix B.

As shown in table 2, the nominal linear polarization for perpendicular injection is not the
appropriate one for ECCD and ECRH experiments with oblique injection. In this case, the optimum
QX�mode polarization is not linear and the use of a constant linear polarization precludes perfect
matching. If the nominal linear polarization is not modi�ed, the amount of power in the QX�mode
for non perpendicular injection along the axis is given by

ηQX =
1

2
(1 + sQX · sX) (28)

where sX is the Stokes vector of the linear X�mode polarization for perpendicular injection and
sQX is the Stokes vector of the elliptical QX�mode polarization. The dependence of ηQX on the
launching direction (ϕ and N‖ on�axis) in both lines is plotted in �gure 12.
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3.2 The 28 GHz EBW system

3.2.1 EBW heating system

The O�X�B mode conversion scenario needs a very precise injection angle in order to achieve the
full O�X conversion e�ciency of the QO�mode launched wave. The launching con�guration and
the corresponding v, u, and B vectors in this case appear in �gure 13. Also, in �gure 13 (a), the
polarization ellipse in the launching reference system, at the output of the 28 GHz power injection
waveguide, is represented. Using here the same method that was developed in section 3, we �nd
that the polarization angles for the optimum theoretical position are

ψQO = 176.2◦ χQO = −34.9◦ (29)

Because we are pursuing an O�X mode conversion, the optimum launching direction depends on
the density pro�le. The result presented in (29) has been obtained for ne = 1.7(1−ψ1.375)1.5× 1019

m−3 in a standard magnetic �eld con�guration (100_40_63). For these conditions, an optimum
theoretical direction was determined in [9]. This direction ensures an optimum parallel refraction
index (Nopt

|| =
√
Y/(1 + Y ), where Y ≡ ωc/ω) at the QO�mode cuto� layer (where ω2

p = ω2) and
therefore a maximum O�X conversion e�ciency. The values given by (29) are the ones needed to
couple the QO�mode at the plasma boundary for this launching direction. A deviation from the
optimum injection position (for given constant pro�les) causes a reduction of the O�X transmission
e�ciency and needs also a correction of the launched wave polarization to avoid further degradation
of the conversion e�ciency. The left panel of �gure 14 shows the O�X mode conversion e�ciency
when the launching direction is modi�ed. The dependence of the QO�mode polarization content on
the polarization angles of the injected radiation is also shown. For ψ = ψQO − 90◦ and χ = −χQO
all the power is launched in the X mode. In addition, �gure 15 shows the optimum polarization
angles for each launching direction. The spatial location of the QO�mode cuto� depends on the
density pro�le and therefore the magnetic �eld experienced by the wave at the QO�mode cuto� may
change. Thus, each density pro�le has its own optimum launching direction and its own optimal
wave polarization.

3.2.2 EBE detection system

Again, a similar calculation to the one performed above but using now v′ and Z′ (see �gure 13) allows
us to determine the polarization angles of the incident wave before the re�ection at the internal
elliptical mirror, as if it were launched from the detection antenna. Both vectors are obtained from
the former v and Z by a rotation of angle α = 20◦ around the εw axis and therefore v′ ⊥ Z′. This
value of α is the design value for which the radiation collected from the plasma, looking along the
optimum O�X conversion direction, is perfectly re�ected (in the Z direction) towards the detection
antenna. In this case, the polarization angles of the forward wave, represented in �gure 13 (b) are

ψ′QO = 9.9◦ χ′QO = −34.9◦ (30)

Obviously, χ′QO = χQO since u and B are always the same vectors corresponding to the optimum
O�X conversion.

If we now take into account the re�ection at the plane mirror of the detection system, the
polarization of the wave incident upon this mirror, given in the antenna detection system shown in
�gure 13 (c) is determined by applying (18) and (19) to (30)

ψ′′QO = 170.1◦ χ′′QO = +34.9◦ (31)
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Figure 13: Geometrical layout of the EBW launching (A) and detection (B) systems. The polarization

ellipses of the high power launched wave (a) and the polarization ellipse of the emitted wave at the detection

antenna (d) are shown. Intermediate steps of the detected wave polarization calculation are also shown ((b)

and (c).)

where now χ′′QO = −χ′QO since, as we have seen above, the re�ection changes the polarization
rotation sense.

These are the angles to couple a QO�mode wave if the power were to be launched through the
detection antenna. Since we are interested in the polarization of the emitted wave, we must take
into account that the propagation angle in respect to B changes from θ to π − θ and therefore the
sign of the ellipticity angle is reversed. The �nal polarization angles of the emitted wave detected
at the antenna in the reference system illustrated in �gure 13 (d) are

ψDQO = 99.9◦ χDQO = −34.9◦ (32)

EBE experiments were performed in NBI plasmas [10] making use of the detection antenna (a quad-
ridged dual polarized microwave horn). To this end, the horn was rotated around its axis Z′′. The
results obtained were consistent with the expected polarization of the B-X-O emitted wave.
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4 Wave polarization control

As it has been stated all along this document, launched waves should have a speci�c polarization
in order to obtain the desired results. Modern gyrotrons for ECRH applications in plasmas employ
an internal quasi-optical converter with a linearly polarized TEM00 (Gaussian) mode output. Thus,
to obtain the desired polarization for ECRH and ECCD experiments, the transmission systems are
generally equipped with a set of two corrugated polarizers mirrors which are able to provide any
desired output polarization from any given input one. In general, when considering low incident
angles, the �rst polarizer (�rst to receive the wave) has a corrugation depth around λ/8, where λ
is the wavelength (λ28 = 10.71 mm, λ53.2 = 5.64 mm) and varies the ellipticity of the polarization
ellipse whereas the second mirror uses a corrugation depth of approximately λ/4 and rotates the
major axis of the polarization ellipse. Additionally to this polarization control system, non desired
changes in the polarization may also be introduced by waveguide bends, particularly when the
output desired polarization is elliptical and several non coplanar bends are used in the transmission
system, as it occurs in TJ�II for the 28 GHz case. Therefore, all those additional e�ects should
be accounted for in order to provide an output polarization from the polarizers which leads to the
desired wave out from the waveguide.

In the following, the theoretical behaviour of polarizers mirrors and bends is brie�y outlined and
the results for the two TJ�II ECRH systems are presented.

4.1 Grooved mirror polarizers

The carving of grooves in the surface of plane mirrors makes the anisotropic re�ective surface of the
plane mirror become direction and polarization dependent. In order to make a rigorous analysis of
the re�ection from a grooved mirror the new boundary conditions have to be taken into account.
Fig. 16 (taken from [11] and similar to that of [12]) depicts a plane wave with wave vector k incident
upon a grooved mirror with its grooves along the z direction.

Figure 16: Grooved mirror reference system. k is the incident wave vector, ϕ is the angle between
k and its projection on the xy plane and θ is the angle between the projection and the x axis.
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The E �eld from that wave can be represented (assuming an exp (−iωt) temporal variation) as
a complex amplitude with an exp [i (α0x− β0y + γz)] variation with k2 = α2

0 + β20 + γ2 = ω2µε
being ω, µ and ε the radian frequency, the magnetic susceptibility and the electric permittivity
respectively. The electromagnetic �eld should be then decomposed into two orthogonal �elds: the
fast polarization �eld (Ef ), in which the Hz �eld component nulli�es, and the slow polarization
(Es) in which the Ez component is also zero. The reason behind this slow-fast notation arises from
the phase di�erence which each of the two orthogonal components su�ers after the re�ection on the
grooved mirror as it will be clear afterward.

Taking into account an exp (iγz) �eld variation along the z direction and source free Maxwell
equations

∇×E = iωµH (33a)

∇×H = −iωεE (33b)

the di�erent electromagnetic �eld components can be obtained as

Ex =
iγ ∂Ez
a2 ∂x

+
iωµ ∂Hz

a2 ∂y
(34a)

Ey =
iγ ∂Ez
a2 ∂y

− iωµ ∂Hz

a2 ∂x
(34b)

Hx =
iγ ∂Hz

a2 ∂x
− iωε ∂Ez

a2 ∂y
(34c)

Hy =
iγ ∂Hz

a2 ∂y
+
iωε ∂Ez
a2 ∂x

(34d)

where a2 = k2 − γ2 and which directly depend on the longitudinal components.
The next step is to obtain the solution for each one of the two orthogonal components of the

�eld. For this to be done, two regions can be recognized in the solution of the problem: the region
outside the grooves (y ≥ h) and the region inside the grooves (0 ≤ y ≤ h).

Beginning with the outer region, the �eld for fast and slow polarization components can be
obtained. Both �elds must satisfy the scalar wave equation, namely

∇2u+ k2u = 0 (35)

From [13] we know that the solution in the outer region can be written by means of the Rayleigh
expansion as

u (x, y, z) = exp [i (α0x− β0y + γz)] +

∞∑
n=−∞

rn exp [i (αnx+ βny + γz)] (36)

with rn being unknown coe�cients and

αn =α0 + 2π
n

d
(37a)

βn =
(
k2 − α2

n − γ2
) 1

2 (37b)
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In this expression the single term can be identi�ed as the incident �eld and the summation
represents the total re�ected and di�racted �eld after the mirror. Consequently, the z components
of the fast and slow �elds can be written as

Ezf (x, y, z) = Cf

{
exp [i (α0x− β0y + γz)] +

∞∑
n=−∞

rn exp [i (αnx+ βny + γz)]

}
(38a)

Hzf (x, y, z) = 0 (38b)

Ezs (x, y, z) = 0 (38c)

Hzs (x, y, z) = Cs

{
exp [i (α0x− β0y + γz)] +

∞∑
n=−∞

sn exp [i (αnx+ βny + γz)]

}
(38d)

being Cf and Cs two arbitrary complex constants and rn and sn being unknown coe�cients. With
these z components, the x and y components of the fast and slow polarizations can be obtained
using eqs. (34a),...,(34d).

After the outer �eld has been determined, the �eld inside the grooves must be derived. Consid-
ering the fast polarization, the scalar wave equation (35) must be solved and solutions must also
ful�ll the boundary conditions, i.e. Ez (x, y, z) = 0 at x = 0, x = c and y = 0, for the region between
grooves. In order to solve the wave equation, a modal expansion can be made which, taking into
account the boundary conditions, leads to the next equation:

Ez (x, y, z) =



∞∑
n=1

an sin
(
nπx
c

)
sin (Any) exp (izγ) 0 ≤ x ≤ c

0 c < x ≤ d

(39)

where A2
n = a2 − (nπ/c)2. The term sin (Any) is replaced by sinh

(
Any

)
if

a2 −
(nπ
c

)2
< 0, An =

[(nπ
c

)2
− a2

]1/2
(40)

Although the same wave equation is to be solved, the boundary conditions change for the slow
polarization problem when solving for Hz. In this case, the conducting walls impose ∂Hz/∂x = 0
at x = 0, x = c and ∂Hz/∂y = 0 at y = 0. Hence, taking into account these boundary conditions,
and performing a modal expansion as above, the solutions results:

Hz (x, y, z) =

∞∑
n=0

bn cos
(nπx

c

)
cos (Bny) exp (izγ) , 0 ≤ x ≤ c (41)

where B2
n = a2 − (nπ/c)2. The term cos (Bny) is replaced by cosh

(
Bny

)
if

a2 −
(nπ
c

)2
< 0, Bn =

[(nπ
c

)2
− a2

]1/2
(42)

Once the general expressions for the �elds have been obtained for the inner and outer regions, in
order to get the rn, sn, an and bn coe�cients, tangential �elds have to be matched at the interface
(y = h). Considering �rst the fast polarization case, (in which Hz = 0) the following conditions can
be imposed for the interface:
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a. Continuity for Ez (x, y, z)|y=h when 0 ≤ x ≤ d,

b. Continuity for Hx (x, y, z)|y=h when 0 ≤ x ≤ c.

As [12] details (specially in the appendix), if the nth Fourier coe�cients of the functions are
calculated and then equaled, these continuity conditions lead to two coupled equations which can
be solved to obtain the rn and an coe�cients:

a2

k2
[δn0 exp (−i2β0h) + rn] =

∞∑
m=1

am
d

sin (Amh) exp (−iβnh) Inm

(43a)
∞∑

m=−∞

a2

k2
[(−iβ0) δm0 exp (−iβ0h) + rm (iβm) exp (iβmh)] cn−m =

1

d

∞∑
m=1

amAm cos (Amh) Inm

(43b)

with

Inm =

ˆ c

0
sin
(mπx

c

)
exp (−iαnx) dx =



mπc
(cαn)

2−(mπ)2 [(−1)m exp (−iαnc)− 1] ,
(
mπ
c

)2 6= α2
n

−ic
2 , mπ

c = αn

ic
2 , −mπ

c = αn

(44)
and

cn =


1

i2πn

[
1− exp

(
−in2π cd

)]
n 6= 0

c
d n = 0

Similarly, in case of the slow polarization (Ez = 0), similar continuity conditions should be met:

a. Continuity for Hz (x, y, z)|y=h when 0 ≤ x ≤ c

b. Continuity for Ex (x, y, z)|y=h when 0 ≤ x ≤ d

which will also lead to another two coupled equations from which the sn and bn coe�cients can be
obtained:

∞∑
m=−∞

a2

k2
[δm0 exp (−iβ0h) + sm exp (iβmh)] cn−m =

1

d

∞∑
m=0

bm cos (Bmh) Jnm (45a)

a2

k2
[(−iβ0) δn0 exp (−i2β0h) + sn (iβn)] =

1

d

∞∑
m=0

(−bmBm) sin (Bmh) exp (−iβnh) Jnm (45b)
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with

Jnm =

ˆ c

0
cos
(mπx

c

)
exp (−iαnx) dx =


ic2αn

(cαn)
2−(mπ)2 [(−1)m exp (−iαnc)− 1] ,

(
mπ
c

)2 6= α2
n

c
2 ,

(
mπ
c

)2
= α2

n

(46)
Although these coe�cients can be obtained numerically by taking a high enough number of rn,

sn, an and bn coe�cients for the �eld to be well described and by solving using matrix arithmetic
as described in [12], it is of great importance to get an analytical solution for the usual operation
range.

From (37b) and (37a) βn can be evaluated. For a di�racted mode to be propagating, βn has to
be a real positive number. That is to say that the condition

α2
n < k2 − γ2 (47)

must be met. Keeping in mind that a2 = ω2µε − γ2 = k2 − γ2 = k2 cos2 ϕ, the previous condition
can be converted into ∣∣∣∣α0 + n

2π

d

∣∣∣∣ < |k cosϕ| (48)

which, if we realize that α0 = k cos θ cosϕ, leads to∣∣∣∣cos θ cosϕ+ n
λ

d

∣∣∣∣ < |cosϕ| (49)

with n∈ Z, 0 ≤ θ ≤ π/2 and −π/2 ≤ ϕ ≤ π/2. In the usual operation range, the primary concern
is the absence of di�racted modes, thus searching for α2

n ≥ k2 − γ2. Hence, n = ±1 modes must be
evaluated, which leads to the following conditions:

λ

d
≥ cosϕ (1− cos θ) ,n = 1, (50a)

λ

d
≥ cosϕ (1 + cos θ) ,n = −1. (50b)

As eq. (50b) is more restrictive than (50a) and for any incident angles, the general condition
for the absence of di�racted waves (thus leading to the only existence of r0 and s0) is:

λ

d
> 2 (51)

When evaluating the modal expansions inside the grooves it is important to realize that for
any particular n value, when the conditions (40) and (42) are met (for fast and slow polarizations
respectively), there is no propagation of the nth mode, which is instead at cuto� (or evanescent).
This can be easily seen if the sin θ = eiθ−e−iθ

2i and sinh θ = eθ−e−θ
2 trigonometric and hyperbolic

expressions and their cosine equivalents are taken into account. As was done before, it is important
to keep in mind that a2 = k2− γ2 = k2 cos2 ϕ; then, for both fast and slow polarizations, the cuto�
frequency under which each n mode is evanescent can be calculated as

fc =
1

2
√
µε

1

cosϕ

n

c
. (52)
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From this expression, it can be deduced that for n = 0 modes the cuto� frequency is 0. Ex-
pressions (39) and (41) show that there is no n = 0 mode (and therefore no a0 coe�cient) for the
fast polarization, as it is canceled, but it exists for the slow polarization. If the expressions for this
mode are evaluated:

Hz = + b0 cos (B0y) exp (izγ) , (53a)

Ex =− iωµ

a2
b0B0 sin (B0y) exp (izγ) , (53b)

Hy =− iγ

a2
b0B0 sin (B0y) exp (izγ) , (53c)

it can be deduced that they represent a TEM mode of a parallel plate waveguide which is consistent
with the 0 cuto� frequency.

The minimum cuto� frequency for higher order modes and for any incident angle appears when
γ = 0 and for n = 1 modes. In that case λ = 2c. Then, to ensure that no higher order modes are
propagating in the grooves, the condition

λ

c
> 2 (54)

should be met. Hence, if (54) is ful�lled, only the TEM mode and no higher order modes are
propagating inside the grooves. Therefore, the �eld can be su�ciently well described using the
n = 0 mode, which means only the b0 coe�cient will be taken into account.

Finally, this means that if (42) and (54) conditions are satis�ed, and therefore only r0, s0 and
b0 need to be included, then it is straightforward to evaluate the Rayleigh coe�cients as:

r0 = − exp (−2iβ0h) (55a)

s0 =
−a cd tan (ah) + iβ0

a cd tan (ah) + iβ0
exp (−2iβ0h) (55b)

Once this coe�cients have been obtained, it is time to study the change in the polarization
based upon them. Back to (38a), and for the fast polarization, the Ezf component of the outer �eld
(where subscript stands for fast polarization) can be expressed as:

Ezf = Cf [exp [i (α0x− β0y + γz)] + r0 exp [i (α0x+ β0y + γz)]] (56)

where the incident and re�ected waves can be identi�ed. In order to simplify the expressions and
gather similar x, y, z dependencies, the following notation will be used:

Ez+ =Cf exp [i (α0x+ β0y + γz)] (57a)

Ez− =Cf exp [i (α0x− β0y + γz)] (57b)

leading to

Ezf = Ez− + r0Ez+ (58)

where Cf is an arbitrary complex constant whose modulus represents the total z component of the
electric �eld as there is no Ezs component.
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The rest of the fast polarization components can be obtained using eqs. (34a),...,(34d) taking
into account Ez− and Ez+ dependencies for the partial derivatives, leading to:

Exf =− α0γ

a2
Ez− − r0

α0γ

a2
Ez+ (59a)

Eyf = +
β0γ

a2
Ez− − r0

β0γ

a2
Ez+ (59b)

Using the same equations and a similar idea for the slow polarization leads to:

Exs =
ωµβ0
a2

Hz− − s0
ωµβ0
a2

Hz+ (60a)

Eys =
ωµα0

a2
Hz− + s0

ωµα0

a2
Hz+ (60b)

Ezs =0 (60c)

From Maxwell's equations and taking into account the exp (−iωt) temporal variation, we know
that ∇×E = iωµH. Then, calculating for the z component we obtain:

∂Ey
∂x
− ∂Ex

∂y
= iωµHz (61)

where, as there is no Hz component for fast polarization, Hz = Hzs. If, similarly as in eqs. (57a) and
(57b), the total x and y �elds are decomposed in an arbitrary constant and their x, y, z variations,
the following notation can be used:

Ex+ =Cx+ exp [i (α0x+ β0y + γz)] (62a)

Ex− =Cx− exp [i (α0x− β0y + γz)] (62b)

Ey+ =Cy+ exp [i (α0x+ β0y + γz)] (63a)

Ey− =Cy− exp [i (α0x− β0y + γz)] (63b)

When imposing equation (61) over eqs. (60a)...(60c) using this notation, a new set of slow
polarization �eld equations can be obtained:

Exs =
β0α0

a2
Ey− +

β20
a2
Ex− − s0

β0α0

a2
Ey+ + s0

β20
a2
Ex+ (64a)

Eys =
α2
0

a2
Ey− +

α0β0
a2

Ex− + s0
α2
0

a2
Ey+ − s0

α0β0
a2

Ex+ (64b)

Ezs =0. (64c)

From the (57a), (57b) de�nitions and their Hz equivalents, we know that

Ez+ =Ez− exp (2iβ0y) (65a)

Hz+ =Hz− exp (2iβ0y) (65b)
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If aditionally equation (61) is used on (65b), the following relationships can be obtained:

Ex+ =− Ex− exp (2iβ0y) (66a)

Ey+ = + Ey− exp (2iβ0y) (66b)

Analyzing eqs. (58), (59a), (59b) and (64a)...(64c); incident and re�ected �elds can be extracted.
Then, writing in matrix form the re�ected �elds leads to:

Er =



s0
β2
0
a2

−s0 α0β0
a2

−r0 α0γ
a2

−s0 α0β0
a2

s0
α2
0
a2

−r0 β0γa2

0 0 r0





Ex+

Ey+

Ez+


(67)

equation which, if relationships (65a), (66a) and (66b) are used, can be expressed as

Er =



−s0
β2
0
a2
−s0 α0β0

a2
−r0 α0γ

a2

s0
α0β0
a2

s0
α2
0
a2

−r0 β0γa2

0 0 r0


exp (2iβ0y)Ei (68)

which �nally provides with the necessary relationship between re�ected and incident �elds (and
thus re�ected and incident polarizations) by means of the previously derived r0 and s0 Rayleigh
coe�cients.

Despite the analysis being made for rectangular grooves, it is very common for high power
transmission lines to use sinusoidal or other smoothed pro�le grooves in order to cope with the
possibility of arcing. The standard procedure in these cases is to make an initial design with the
rectangular grooves and make the smoothed pro�le directly from it. As this initial design will be
taken as a reference, the actual methodology for making the smoothed pro�le from the rectangular
one is of little interest. Then, this smoothed pro�le should be measured for it to be compared with
the canonical theory (i.e. the Rayleigh-modal expansion on rectangular grooves as seen above).
For this to be made, measurements should be �tted to results from canonical theory calculations
with the e�ective height (h) and the e�ective groove width (c) as parameters. Usually, the angular
o�set is taken as an extra parameter in order to take into account possible positioning inaccuracies.
On the other hand, the period (d) is often �xed as the periods from the smoothed and rectangular
pro�les are built the same. Once the optimization has taken place, the �tted parameters allow for an
identi�cation with the smoothed pro�le parameters (period and amplitude in case of a sinusoidal).
Finally, the ratio between the desired canonical parameters (i.e. those needed for the design) and
the ones obtained by �tting should also be applied to get the desired smoothed pro�le from the
measured one. This procedure is well described in [11].

In particular this methodology was applied to the QTL1 polarizer mirrors, being the rest (QTL2,
28GHz system) rectangular-grooved ones. Hence, when given across this document, values of QTL1
mirror grooves refer to the rectangular e�ective parameters.
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4.2 Polarization changes induced by waveguide bends

The two continuous curvature bends supplied by General Atomics (GA) and used in the 28 GHz
transmission waveguide modify the wave polarization since they introduce a phase di�erence between
the components of the electric �eld parallel and perpendicular to the curvature plane of the bend
(see �gure 17).

εi
k i k o

ε o

n
P

n

Figure 17: Calculating the wave polarization changes in a bend. The plane P is the curvature plane of the

bend, similar to the incidence plane of �gure 7.

As we have seen in section 3 the complex amplitudes of both incident (i) and output (o) wave
electric �elds can be written in each local wave reference system (εi,n,ki and εo,n,ko) as

Ei =ai1 exp(iδi1)εi + ai2 exp(iδi2)n

Eo =ao1 exp(iδo1)εo + ao2 exp(iδo2)n

The polarization properties of the input and output waves (see section 3, eqs.(11)) are fully deter-
mined by ri ≡ ai2/ai1, ro ≡ ao2/ao1, δi ≡ δi2 − δi1 and δo ≡ δo2 − δo1. The result of computer calculations
performed by the manufacturer for each bend is shown in table (3).The 28 GHz launching system
design is such that the universal polarizer is installed before the waveguide bends and therefore each
bend modi�es consecutively the wave polarization (ψi, χi) which is obtained after the re�ection in
the grooved mirrors surface.

�long� bend �short� bend

ao1 ≈ ai1 ; ao2 ≈ ai2 ao1 ≈ ai1 ; ao2 ≈ ai2

δo = δi + 2◦ δo = δi + 24◦

Table 3: Amplitudes and relative phases of the output and input waves in the two bends.

Using (11), we may write the Stokes parameters of the input and the output waves as

si1 =
1− r2i
1 + r2i

= cos 2χi cos 2ψi so1 =
1− r2i
1 + r2i

= cos 2χo cos 2ψo

si2 =
2ri cos δi
1 + r2i

= cos 2χi sin 2ψi so2 =
2ri cos(δi + ∆p)

1 + r2i
= cos 2χo sin 2ψo (69)

si3 =
2ri sin δi
1 + r2i

= sin 2χi so3 =
2ri sin(δi + ∆p)

1 + r2i
= sin 2χo
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Figure 18: The input wave polarization given by ψi and χi is modi�ed by the combination of both bends.

The �nal polarization needed to couple a QO�mode is represented in the �gure. Figure 4 shows the polarizers

setup before the coupling to the waveguide.

where ∆p = δo − δi is the phase di�erence introduced by the bend and we have taken ro ≈ ri. The
set of equations (69) allows us to determine the dependencies ψo(ψi, χi, ) and χo(ψi, χi). The e�ect
of both bends has to be combined paying attention to the fact that in the present set-up both bends
are not coplanar and have curvatures in opposite directions (see �gure 18).

4.3 53.2 GHz system

Figure 19 shows the dependence of the azimuth (ψ1) and the ellipticity angle (χ1) on the rotation
angles α1 and α2 of the polarizers installed in the �rst transmission line (QTL1). The angles ψ1

and χ1 are given in the launching reference frame of this line (see �gure 9). The two polarizers
are positioned at an incidence angle Θi = 15◦ (see �gure 3a). The groove parameters used in the
calculation are listed in table (4).
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Figure 19: Dependence of ψ1 and χ1 on the rotation angles α1 and α2 of the QTL1 polarizers.
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As we have seen in a previous section, the theoretical polarization angles that are needed to
couple a QX�mode with N|| = 0 on-axis (almost perpendicular propagation in the plasma periphery)
are ψQX = 58.2◦ and χQX = +1.2◦ (see table 2). To launch a wave with this polarization, a possible
pair of polarizer angles would be α1 ≈ 91◦, α2 ≈ 106◦.

QTL1 QTL2

(mm) λ/8 polarizer λ/4 polarizer λ/4 polarizer

h 1.004 1.427 1.427

c 1.691 1.691 1.23

d 3.381 3.381 2.46

Table 4: Parameters of the 53.2 GHz polarizers corrugations.

The second transmission line (QTL2) is only equipped with a polarization rotator (a λ/4 grooved
mirror at an incidence angle Θi = 45◦, see �gure 3b). The dependence of the azimuth (ψ2) and
the ellipticity angle (χ2) on the rotation angle of this polarizer is represented in �gure 20. The
theoretical QX�mode in this line (ψQX = 58.2◦, χQX = −1.2◦, see again table 2) can be achieved
using α2 ≈ 22◦. The fraction of QX�mode, ηQX, is also represented in the �gure.
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Figure 20: Dependence of ψ2 (red), χ2 (blue) and ηQX (green) on the rotation angle of the QTL2 polarizer.

4.4 28 GHz system

Figure 21 shows the dependence of the azimuth (ψi ≡ ψ28 before bends) and the ellipticity angle
(χi ≡ χ28 before bends) of the polarization ellipse at the waveguide input (see �gure 18) on the
polarizers rotation angles, α1 and α2. The two rectangular groove polarizers are positioned at an
incidence angle Θi = 30◦ (see �gure 4). The groove parameters used in the calculation are listed in
table (5).
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Figure 21: Dependence of ψi and χi on the rotation angles α1 and α2 of the polarizers.

For this incidence angle, there is a strong non linear dependence of ψi and χi on the position
of both polarizers. In Appendix C, the dependence of ψi(α1, α2) and χi(α1, α2) on Θi is illustrated.
Next, we need to know how the waveguide bends modify the values of ψi and χi. Figure 18 shows
the two bends and their relative position. The angle between both curvature planes is γb = 25.47◦.
As it was stated in 4.2, each bend can be treated separately and then both e�ects added by taking
into account their relative position.

(mm) First polarizer Second polarizer

h 1.338 2.676

c 2.500 2.500

d 6.000 6.000

Table 5: Parameters of the 28 GHz polarizers corrugations.

Using (69) iteratively and treating carefully the di�erent coordinates systems we �nd the results
depicted in �gure 22, where the �nal polarization ellipse angles, ψo ≡ ψ28 after bends and χo ≡ χ28

after bends, are again represented as a function of the polarizers rotation angles. The in�uence of
bends is clearly noticeable in both polarization ellipse angles, in particular the parameter space for
achieving an almost circular left handed polarization is enlarged, though a pure circular polarization
is no longer available (as the color sidebar in the χo case does not reach -45 degrees). In order to
achieve the optimum polarization for O mode injection (given by eq. 29) polarizers must be set to
α1 ≈ 51◦ and α2 ≈ 73◦. Setting the angle of the second polarizer to 0 degrees and rotating only
the λ/8 polarizer we obtain the result represented in �gure 23. Moreover, if no grooved mirrors
are used, the horizontal polarization (ψi = 0◦, χi = 0◦) delivered by the gyrotron is all the same
modi�ed. In this case, the polarization angles of the launched radiation and the fraction of power
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in the desired QO�mode are given by

ψo ≈ +24.2◦

χo ≈ −9.2◦

ηQO =
1

2
(1 + sQO · so) ≈ 0.74

where (29) has been used to calculate the stokes vector sQO.
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Figure 22: Dependence of the �nal output polarization angles ψo and χo on the rotation angles of both

polarizers once the e�ect of the bend has been taken into account.
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Figure 23: Dependence of ψi, χi (blue lines) and ψo, χo (red lines) on the rotation angles of the �rst polarizer
for a constant angle of the second polarizer (α2 = 0◦).
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Appendices

Appendix A Mirror positioning angles for QTL1 and QTL2

In the 53.2 GHz system, the dependence of the positioning angles a1 and a2 of both internal mirrors
on the chosen injection location along the magnetic axis is not a straightforward one. Actually,
since the intersection between the beam optical axis and the mirror surface is not a �xed point in
space (but depends precisely on the mirror angles) and since we are using a non plane mirror surface
(beams are refocused by the mirrors), the geometrical calculation of the relation between a1, a2, ϕ
and N‖ is rather complicated [2]. Here we only remind the general behavior represented in �gures
24 and 25. It is clear from the �gures that, instead of the mirror angles, it is much more convenient
to use ϕ or N‖ on-axis to characterize the launching direction.
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Figure 24: Dependence of the �toroidal� (a1) and �poloidal� (a2) mirror positioning angles on the
launching direction given by the toroidal TJ�II angle ϕ for both transmission lines.
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Figure 25: Dependence of the �toroidal� (a1) and �poloidal� (a2) mirror positioning angles on the
launching direction given by N‖ on-axis for both transmission lines.

The mirror angles for di�erent values of ϕ and N|| on-axis are presented in tables 6 and 7 of
Appendix B. The meaning of a1 and a2 and their rotation sense for each launcher is sketched in
�gure 26. Note that due to the stellarator symmetry both launchers are equally designed, their
angles de�nition is the same and they are positioned one up and another down.
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a   > 01 a   > 01

y

L1

z

x

y

L2

x

z

a   > 02
a   > 02

Figure 26: Top view of both launchers showing the rotation sense and the related signs of a1 and
a2.
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Appendix B Polarization angles for QX�mode coupling

Table 6 shows the QTL1 launched wave polarization angles for QX�mode boundary coupling and
the rest of parameters, including the mirror positioning angles, that have been discussed in the
previous pages. All the angles a1, a2, θ, ϕ, ψQX, χQX, ψaxisQX , χaxisQX are given in degress. The two last
angles with the �axis� superscript refers to the polarization angles calculated with the magnetic
�eld on-axis. The di�erence bewteen these angles and ψQX, χQX is due to the magnetic �eld shear
along the vacuum ray trajectory. At present, these values are not used in the experiments. The
data for QTL2 are easily obtained from the ones for QTL1 considering the stellarator symmetry.
These are presented in table 7 for completeness.

QTL1

a1 a2 N‖ ϕ |B| θ ψQX χQX ηQX ψaxisQX χaxisQX

12.8 23.1 −0.47 25.0 0.881 113.5 53.5 32.0 0.734 49.3 33.6

12.4 23.3 −0.45 25.2 0.881 112.6 53.7 31.4 0.743 49.3 32.9

12.0 23.6 −0.43 25.4 0.880 111.7 53.9 30.8 0.753 49.3 32.3

11.5 23.9 −0.41 25.6 0.879 110.7 54.0 30.1 0.763 49.4 31.6

11.1 24.1 −0.39 25.8 0.879 109.8 54.2 29.4 0.773 49.4 30.8

10.7 24.4 −0.38 26.0 0.878 108.8 54.4 28.7 0.784 49.5 30.0

10.3 24.7 −0.36 26.2 0.877 107.8 54.6 27.8 0.796 49.5 29.2

9.9 24.9 −0.34 26.4 0.877 106.9 54.8 27.0 0.808 49.6 28.2

9.4 25.2 −0.32 26.6 0.876 105.9 55.0 26.0 0.821 49.7 27.2

9.0 25.5 −0.30 26.8 0.875 104.9 55.2 25.0 0.835 49.8 26.2

8.6 25.7 −0.28 27.0 0.874 103.9 55.4 23.9 0.849 49.8 25.0

8.1 26.0 −0.26 27.2 0.873 102.8 55.6 22.7 0.863 49.9 23.7

7.7 26.3 −0.23 27.4 0.873 101.8 55.8 21.5 0.878 50.0 22.3

7.2 26.5 −0.21 27.6 0.872 100.8 56.1 20.1 0.894 50.1 20.9

6.8 26.8 −0.19 27.8 0.871 99.7 56.3 18.6 0.909 50.3 19.2

6.3 27.1 −0.17 28.0 0.870 98.7 56.5 17.0 0.924 50.4 17.5

5.9 27.4 −0.15 28.2 0.869 97.7 56.7 15.3 0.939 50.5 15.6

5.4 27.6 −0.13 28.4 0.868 96.6 56.9 13.5 0.954 50.6 13.6

5.0 27.9 −0.11 28.6 0.867 95.6 57.2 11.6 0.967 50.7 11.5

4.5 28.2 −0.08 28.8 0.867 94.5 57.4 9.5 0.979 50.8 9.2

4.0 28.4 −0.06 29.0 0.866 93.4 57.6 7.4 0.988 51.0 6.9

3.6 28.7 −0.04 29.2 0.865 92.4 57.9 5.2 0.995 51.1 4.4

3.1 29.0 −0.02 29.4 0.864 91.3 58.1 2.9 0.999 51.2 1.9

2.7 29.3 0.01 29.6 0.863 90.3 58.3 0.6 1.000 51.3 −0.6

2.2 29.5 0.03 29.8 0.863 89.2 58.5 −1.8 0.997 51.5 −3.2

1.8 29.8 0.05 30.0 0.862 88.1 58.7 −4.1 0.992 51.6 −5.7

1.3 30.0 0.07 30.2 0.861 87.1 59.0 −6.3 0.983 51.7 −8.1

0.9 30.3 0.09 30.4 0.860 86.0 59.2 −8.5 0.972 51.9 −10.4

0.4 30.6 0.12 30.6 0.860 85.0 59.4 −10.6 0.958 52.0 −12.6

0.0 30.8 0.14 30.8 0.859 84.0 59.7 −12.6 0.943 52.1 −14.6
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QTL1

a1 a2 N‖ ϕ |B| θ ψQX χQX ηQX ψaxisQX χaxisQX

−0.5 31.1 0.16 31.0 0.859 82.9 59.9 −14.5 0.927 52.2 −16.6

−0.9 31.3 0.18 31.2 0.858 81.9 60.1 −16.2 0.910 52.4 −18.4

−1.3 31.6 0.20 31.4 0.858 80.9 60.3 −17.9 0.893 52.5 −20.0

−1.8 31.8 0.22 31.6 0.857 79.9 60.5 −19.4 0.875 52.6 −21.5

−2.2 32.0 0.24 31.8 0.857 78.9 60.8 −20.8 0.858 52.7 −22.9

−2.6 32.3 0.26 32.0 0.856 77.9 61.0 −22.1 0.842 52.9 −24.2

−3.0 32.5 0.28 32.2 0.856 76.9 61.2 −23.4 0.826 53.0 −25.4

−3.5 32.7 0.30 32.4 0.856 75.9 61.4 −24.5 0.811 53.1 −26.5

−3.9 33.0 0.32 32.6 0.856 74.9 61.6 −25.5 0.796 53.3 −27.6

−4.3 33.2 0.34 32.8 0.856 74.0 61.8 −26.5 0.782 53.4 −28.5

−4.7 33.4 0.36 33.0 0.855 73.0 62.1 −27.4 0.769 53.5 −29.4

−5.0 33.6 0.38 33.2 0.856 72.1 62.3 −28.2 0.757 53.7 −30.2

−5.4 33.9 0.40 33.4 0.855 71.2 62.5 −29.0 0.745 53.8 −30.9

−5.8 34.1 0.41 33.6 0.856 70.3 62.7 −29.7 0.734 53.9 −31.6

−6.2 34.3 0.43 33.8 0.856 69.4 62.9 −30.4 0.723 54.1 −32.3

−6.6 34.5 0.45 34.0 0.856 68.5 63.1 −31.0 0.714 54.2 −32.9

−6.9 34.7 0.46 34.2 0.856 67.6 63.3 −31.6 0.704 54.4 −33.5

−7.3 34.9 0.48 34.4 0.857 66.8 63.5 −32.1 0.695 54.5 −34.0

−7.6 35.1 0.50 34.6 0.857 65.9 63.7 −32.6 0.687 54.7 −34.5

−8.0 35.3 0.51 34.8 0.857 65.1 63.9 −33.1 0.679 54.8 −35.0

Table 6: Polarization angles for boundary coupling (ψQX, χQX) and other relevant parameters, for
the QTL1 case. All angles are given in degrees.

QTL2

a1 a2 N‖ ϕ |B| θ ψQX χQX ηQX ψaxisQX χaxisQX

12.8 23.1 0.47 65.0 0.881 66.5 53.5 −32.0 0.734 49.3 −33.6

12.4 23.3 0.45 64.8 0.881 67.4 53.7 −31.4 0.743 49.3 −32.9

12.0 23.6 0.43 64.6 0.880 68.3 53.9 −30.8 0.753 49.3 −32.3

11.5 23.9 0.41 64.4 0.879 69.3 54.0 −30.1 0.763 49.4 −31.6

11.1 24.1 0.39 64.2 0.879 70.2 54.2 −29.4 0.773 49.4 −30.8

10.7 24.4 0.38 64.0 0.878 71.2 54.4 −28.7 0.784 49.5 −30.0

10.3 24.7 0.36 63.8 0.877 72.2 54.6 −27.8 0.796 49.5 −29.2

9.9 24.9 0.34 63.6 0.877 73.1 54.8 −27.0 0.808 49.6 −28.2

9.4 25.2 0.32 63.4 0.876 74.1 55.0 −26.0 0.821 49.7 −27.2

9.0 25.5 0.30 63.2 0.875 75.1 55.2 −25.0 0.835 49.8 −26.2

8.6 25.7 0.28 63.0 0.874 76.1 55.4 −23.9 0.849 49.8 −25.0

8.1 26.0 0.26 62.8 0.873 77.2 55.6 −22.7 0.863 49.9 −23.7
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QTL2

a1 a2 N‖ ϕ |B| θ ψQX χQX ηQX ψaxisQX χaxisQX

7.7 26.3 0.23 62.6 0.873 78.2 55.8 −21.5 0.878 50.0 −22.3

7.2 26.5 0.21 62.4 0.872 79.2 56.1 −20.1 0.894 50.1 −20.9

6.8 26.8 0.19 62.2 0.871 80.3 56.3 −18.6 0.909 50.3 −19.2

6.3 27.1 0.17 62.0 0.870 81.3 56.5 −17.0 0.924 50.4 −17.5

5.9 27.4 0.15 61.8 0.869 82.3 56.7 −15.3 0.939 50.5 −15.6

5.4 27.6 0.13 61.6 0.868 83.4 56.9 −13.5 0.954 50.6 −13.6

5.0 27.9 0.11 61.4 0.867 84.4 57.2 −11.6 0.967 50.7 −11.5

4.5 28.2 0.08 61.2 0.867 85.5 57.4 −9.5 0.979 50.8 −9.2

4.0 28.4 0.06 61.0 0.866 86.6 57.6 −7.4 0.988 51.0 −6.9

3.6 28.7 0.04 60.8 0.865 87.6 57.9 −5.2 0.995 51.1 −4.4

3.1 29.0 0.02 60.6 0.864 88.7 58.1 −2.9 0.999 51.2 −1.9

2.7 29.3 −0.01 60.4 0.863 89.7 58.3 −0.6 1.000 51.3 0.6

2.2 29.5 −0.03 60.2 0.863 90.8 58.5 1.8 0.997 51.5 3.2

1.8 29.8 −0.05 60.0 0.862 91.9 58.7 4.1 0.992 51.6 5.7

1.3 30.0 −0.07 59.8 0.861 92.9 59.0 6.3 0.983 51.7 8.1

0.9 30.3 −0.09 59.6 0.860 94.0 59.2 8.5 0.972 51.9 10.4

0.4 30.6 −0.12 59.4 0.860 95.0 59.4 10.6 0.958 52.0 12.6

0.0 30.8 −0.14 59.2 0.859 96.0 59.7 12.6 0.943 52.1 14.6

−0.5 31.1 −0.16 59.0 0.859 97.1 59.9 14.5 0.927 52.2 16.6

−0.9 31.3 −0.18 58.8 0.858 98.1 60.1 16.2 0.910 52.4 18.4

−1.3 31.6 −0.20 58.6 0.858 99.1 60.3 17.9 0.893 52.5 20.0

−1.8 31.8 −0.22 58.4 0.857 100.1 60.5 19.4 0.875 52.6 21.5

−2.2 32.0 −0.24 58.2 0.857 101.1 60.8 20.8 0.858 52.7 22.9

−2.6 32.3 −0.26 58.0 0.856 102.1 61.0 22.1 0.842 52.9 24.2

−3.0 32.5 −0.28 57.8 0.856 103.1 61.2 23.4 0.826 53.0 25.4

−3.5 32.7 −0.30 57.6 0.856 104.1 61.4 24.5 0.811 53.1 26.5

−3.9 33.0 −0.32 57.4 0.856 105.1 61.6 25.5 0.796 53.3 27.6

−4.3 33.2 −0.34 57.2 0.856 106.0 61.8 26.5 0.782 53.4 28.5

−4.7 33.4 −0.36 57.0 0.855 107.0 62.1 27.4 0.769 53.5 29.4

−5.0 33.6 −0.38 56.8 0.856 107.9 62.3 28.2 0.757 53.7 30.2

−5.4 33.9 −0.40 56.6 0.855 108.8 62.5 29.0 0.745 53.8 30.9

−5.8 34.1 −0.41 56.4 0.856 109.7 62.7 29.7 0.734 53.9 31.6

−6.2 34.3 −0.43 56.2 0.856 110.6 62.9 30.4 0.723 54.1 32.3

−6.6 34.5 −0.45 56.0 0.856 111.5 63.1 31.0 0.714 54.2 32.9

−6.9 34.7 −0.46 55.8 0.856 112.4 63.3 31.6 0.704 54.4 33.5

−7.3 34.9 −0.48 55.6 0.857 113.2 63.5 32.1 0.695 54.5 34.0

−7.6 35.1 −0.50 55.4 0.857 114.1 63.7 32.6 0.687 54.7 34.5

−8.0 35.3 −0.51 55.2 0.857 114.9 63.9 33.1 0.679 54.8 35.0

Table 7: Polarization angles for boundary coupling (ψQX, χQX) and other relevant parameters, for
the QTL2 case. All the angles are given in degrees.
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Appendix C Dependence of polarizers performance on the incidence angle Θi

Figures (27), (28) and (29) show the wave polarization dependence on the incidence angle Θi for the
28 GHz case. The incidence angle is the same in both grooved mirrors as shown in �gure (4). The
result for the design value (Θi = 60◦) was presented in �gure (21). Increasing values of Θi produce
a stronger coupling between the angles α1 and α2 of the polarizers. In the ideal case Θi = 0◦, not
achievable in practice, α2 would only modify the azimuth angle of the polarization ellipse while α1

would be responsible of changes in both ellipticity and azimuth angles.
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Figure 27: Dependence of ψi (a) and χi (b) on the rotation angles α1 and α2 of the polarizers for Θi = 7.5◦.
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Figure 28: Dependence of ψi (a) and χi (b) on the rotation angles α1 and α2 of the polarizers for Θi = 15.0◦.
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Figure 29: Dependence of ψi (a) and χi (b) on the rotation angles α1 and α2 of the polarizers for Θi = 22.5◦.
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