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ABSTRACT 

 

This work revises current assumptions adopted in the checkpointing modelling and 

evaluates their impact on the attained prediction of the optimal coordinated single-

level checkpoint period. An accurate a priori assessment of the optimal checkpoint 

period for a given computing facility is necessary as it drives the incurred overhead 

due to frequent checkpointing and, as a result, implies a drop in the resource steady-

state availability. The present study discusses the impact of the order of 

approximation used in the single-level coordinated checkpoint modelling and follows 

on extending previous results of the optimal checkpoint period to explore the effects 

of the checkpoint rate on the cluster performance under total execution time and 

energy consumption policies, and in terms of resource availability. A consequence of 

a prescribed checkpoint rate with current technology is a critical size of the cluster 

above which the attained availability is too poor to become a cost-effective platform. 

Thus, some guidelines for the cluster sizing are indicated. 

 

1. INTRODUCTION 

High availability in supercomputers is an essential issue, even more at the coming of 

the exascale era, where higher failure rates in the environment are expected to occur 

as more and more components will shape the computing facility. It means that an 

adequate checkpoint protocol will be a “hot spot” to yield resource availability over an 

adequate threshold, such that a cost-effective high performance computing (HPC) 
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scenario can be achievable. But, how to correctly state the term “adequate” in a 

context of increasing overhead because of demanding checkpointing in computers 

with a extreme number of computing units?  

It is clear the importance of assessing this overhead with accuracy as the trans-

petascale computing is facing the exascale era. Complexity of applications is growing 

and the available higher HPC performance is driving the term ‘large’ even further. In 

particular, large-scale scientific applications are evolving incorporating finer 

resolution in time and space, as well as more detailed physics in the modelling. 

Typically, in strong and weak scaling scenarios the goal is to compute problem 

solutions as fast (prescribed size problem) or as big (prescribed computing time) as 

possible, respectively. But the integrity of the computations may be exposed to a too 

high failures rate in current and future supercomputers. Then significant or total lost 

of an amount of execution may occur at some point in the execution. This brings 

other dimension within the involved complexity: a two-fold algorithmic and system 

resilience must be added to fight against failures in the environment, such that they 

can be tolerated or minimized. One common technique in use is checkpointing & 

rollback, which guarantees the persistence of the computed data in the presence of 

failures. The computed data are copied someplace within the resource (local disk, 

remote disk, volatile memory, or a combination of these), so in case of a failure the 

affected part of the machine will re-start the computations out of the copied data, this 

leading to a smaller computational waste caused by a failure. Going to the extreme 

scale, the overall reliability of large computing resources can be too low for efficient 

usage even though component-level reliabilities may be very high (recent example of 

this have been reported for supercomputers Jaguar, Titan and others [1-4]). A 

consequence is that beyond certain size of HPC systems, it will be unfeasible to 

successfully execute parallel applications if frequent failures take place. It is known 

that modern HPC systems exhibit mean time between failures (MTBF) of about days 

to only hours due to hardware and software errors [5,6]. That means that the HPC 

availability for useful computing is closely linked to its physical size (in terms of 

number of individual components put together into the system) and data recovery 

capability implementation. This situation arises as a big challenge to overcome in the 

trans-petascale era.  

Among the variety of recovery techniques explored by modeling, simulation and 

experiments at scale, the de-facto one in HPC is checkpointing and rollback, in which 
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the state of the parallel application is saved at successive time instant over the 

computing time. Being the single-level coordinated checkpoint scheme the most 

implemented one [7-9], other sophisticated versions of fault-tolerant protocols have 

been proposed during the last years, as it is the case of the multi-level (two-level and 

beyond) checkpointing [10-14] or the hierarchical approach among others [15-20]. 

Nevertheless there is still a lack of understanding of key aspects (like the effects of 

resource heterogeneity on the failures rate distribution modelling over the system 

lifetime or the inclusion of second- and higher-order formulations for improved 

accuracy). This work aims at filling this gap. 

 

The present investigation provides the following contributions: 

 

- Out of the analytical first-order single-level coordinated checkpoint model 

presented in [21], the expressions of the optimal checkpoint period (both to 

minimize the total execution time and energy consumption) are hereby 

modified by including a functional dependence with the checkpoint rate to take 

into account the foreseen evolution of the checkpoint technology, which it is 

expected to be implemented in future supercomputers.  

- The inclusion of the blocking- / non-blocking effect into the coordinated 

checkpoint model is discussed within the context of first- and second-order 

formulations for accurate prediction of the optimal checkpoint period. A 

quantification is done. 

- Guidelines for sizing the cluster (in number of nodes or sockets) using 

information from current clusters (taken as the reference case for comparison 

purposes) are provided to match a HPC availability criterion in the frame of an 

evolving checkpoint technology. With such a prediction, it will be easier to fix 

the cluster size to match an a priori prescribed availability for a given 

checkpoint overhead. 

 

2. RELATED WORK 

The high cost of checkpointing when using single-level schemes has motivated 

conducting research in more advanced recovery schemes capable of providing 

multiple levels of fault-tolerance, thus to achieve better performance than single-level 
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schemes. Such studies spread over the last two decades, mainly focusing on multi-

level (mostly two-level) and hierarchical models to provide a better average 

performance overhead of failure recovery by combining saving data in various parts 

of the supercomputer, i.e., using local memory for those failures of greater probability 

of occurring; and using remote, stable storage for those less probable failures. In this 

direction some authors have recently [16] tackled the mathematical aspects from a 

standpoint of achieving unified checkpoint formulations. 

The work of Vaidya [22] provides an analytical approach based on discrete Markov 

Chains (MCs) to evaluate the performance of two-level checkpoint schemes. In [10, 

14] these two-level schemes have been revisited also following a MCs approach and 

stochastic renewal reward process-based methodologies. Interestingly, a major result 

is that two-level schemes exhibit superiority in scenarios of long-running applications, 

but are inferior on short-running ones. Both constitute limit scenarios with an optimal 

checkpoint solution for each. So if the workload changes over time, an adaptive 

checkpointing scheme might be seen as a compromise in between, making single-

level checkpoint schemes relevant in the context to provide resilience in more 

general failure scenarios, and hence the interest of achieving their better modelling.       

 

Next, the related work about single-level checkpoint (under focus in the present 

investigation) is detailed. Daly [23] refines the study conducted by Young [24] by 

deriving a higher-order analytical expression using the probability theory (PT) for 

quantifying the optimum restart interval that minimizes the total runtime. The second-

order approximation clearly shows the improvement in the prediction of the optimized 

checkpoint period in those cases where it is of the order of the mean time between 

failures (MTBF). Precisely this is an approaching horizon of the coming exascale era. 

Gelenbe et al. [25] deduce an equation for the optimum checkpoint interval to 

maximize system availability in a context of short-running tasks. Their study 

generalizes the methodology for age-dependent processes [26] (both Weibull and 

Poisson failure rates are assumed and their results compared). Parameters as the 

system workload are included and it is assumed that failures do not occur during 

checkpoint and recovery. This last condition is relaxed in the work of Vaidya [27, 28] 

based on MCs, which  presents a model for predicting the periodic checkpoint 

overhead taking into account the checkpoint latency and it shows that a large 

increase in latency is acceptable if it is accompanied by a reduction in overhead. His 
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study analyses the difference between blocking (sequential) and non-blocking 

(forked; that is, computation is overlapped with stable storage access) checkpoint. 

Ling et al. [29] formulate the optimal checkpointing scheduling using calculus of 

variations (CoV). They derive a closed-form equation which links optimal 

checkpointing frequency with a general failure rate; hence they derive a cost-optimal 

aperiodic checkpointing sequence. For workloads varying over time, they propose to 

subdivide the total time into segments and then to tune the Poisson arrival rate in 

each one. One major finding of their approach is that optimal checkpointing is equally 

spaced if and only if the system failure time is exponentially distributed in infinite-time 

horizons. It is demonstrated that this is not true for finite-time horizons, as stated in 

[30], which also gives algorithms for the optimum checkpoint frequency in cases of 

generic distribution functions.  

With CoV, it has also been explored the assumption that failures obey to a Weibull 

distribution [8], but this issue remains controversial since several HPC resources 

exhibit non-Poisson, non-Weibull failure distributions [5, 30-32]. Hence, various 

authors point out to probabilistic models formulated using non-specific failure laws, 

solved numerically [20, 32]. Aupy et al. [21] provide a first-order analytical model 

following the PT to determine the optimal coordinated checkpoint period to minimize 

the execution time and the energy consumption and a discussion of both criteria is 

given. Their model incorporates a slowdown parameter which permits to adjust the 

intensity of the blocking effect (from full-  to non-blocking operation) [9, 21] and it 

extends the first-order formulae of Young [24] to include it. 

 

In summary, three major mathematical approaches have appeared in the literature to 

deal with the coordinated checkpointing modelling in the last decades. They 

correspond to models based on MCs, CoV, and PT. Table 1 shows their main 

constrains and applicability. It is noticed that some parameters explored in single-

level formulations (i.e., blocking, workload intensity…) seems difficult to include in 

multi-level formulations due to the extra complexity. 
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Table 1. MC, CoV, and PT approaches to the optimal checkpoint modelling 

 

                                        Mathematical approach 

 MCs CoV PT 

Failure rate law Poisson  general Poisson 

CKP interval periodic  aperiodic (1) periodic 

Failure at C and R (2) Yes no (C, R <<T) some formulations 

Non-blocking yes (3) no yes 

Other - 
based on renewal 
process theorem 

- 

(1)
 Being periodic a particular case 

(2)
 C: checkpoint time interval; R: rollback time interval; T: checkpoint period 

(3)
 Controlled by a parameter 

 

 

 

3. OPTIMAL CHECKPOINT PERIOD 

This section provides some equations of the optimal checkpoint period following the 

deductions of [21] for single-level coordinated checkpoint schemes. The present 

study modifies the mentioned deductions by including a functional dependence with 

the checkpointing, rollback, and recovery rates. The proposed approximation serves 

to mimic the speed up of the checkpointing technology over the next years by means 

of a tuning parameter which links the evolution of the checkpointing technology with 

the size of the cluster. This functional dependence yields a generalization of the 

checkpointing overhead and allows to explore two situations of interest: a present-

day scenario to quantify how a given cluster would behave when additional nodes 

are added under the current checkpoint technology; and a future scenario where at 

the same time of enlarging the platform with additional nodes, an evolved checkpoint 

technology is implemented. Both situations provide information which allows to better 

bound the cluster realizable size. Some particularities of heterogeneous clusters are 

also analysed in what follows.  

u5211
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3.1 Homogeneous Node Cluster  

Let suppose a cluster built of N equal nodes (computing units). Assuming each one 

has an individual mean time between failures MTBFunit, the hypothesis of a Poisson 

failure law for the whole N-size cluster leads to the definition MTBF=MTBFunit/N. It is 

implicit within this assumption that all computing units behave the same, and that the 

failure rate attributed to the combination of system software and hardware granularity 

(i.e., having the cores grouped into multi-core sockets or in various CPUs per node) 

can be characterized at node-level. So the MTBFunit takes into account the system 

software; that is, it considers not only the reliability of individual cores (which run the 

application codes), but also the system software as an important source of failure. 

This assumption, albeit controversial according to the reliability theory and the 

experiments reported in the literature [5, 8, 30-33], is an approximation and applied 

here in the deductions that follow. The more complex case of an heterogeneous 

node cluster, which implies to tackle with a further degree of granularity, is introduced 

in the next subsection. 

A first-order extension of the Young’s [24] and Daly’s [23] formulae for optimal 

checkpointing in a cluster of N computing units is provided in [21] according to 

 �����������	 = �2�1 − ������� − �� + � + ���          (1) 

 

where �����������	 is the optimum compute time between saving checkpoint data; that 

is, the execution is partitioned into periods of duration  �����������	 . In this expression, 

C is the time to save a checkpoint file, thus a checkpoint of length C is done every 

period. And R and D are the recovery and downtime lengths, respectively, in time 

units. Checkpoints are taken at regular intervals. The superscript “min-time” refers to 

apply a criterion (operational policy) of minimizing the total execution time. The 

parameter ω handles the degree of non-blocking: ω=0 corresponds to fully blocking; 

and ω=1 corresponds to fully non-blocking; that is, a checkpoint completely 

overlapped with computations, such that provides the particular case �����������	 = 0. 

It is seen that the shorter the optimal period, the less work to re-execute after a 

failure, but it also means that a higher overhead caused by frequent checkpoints in a 
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failure-free execution scenario occurs. It is noticed that for ω=0 and R<<C, D<<C, 

equation (1) collapses into the well known Young’s and Daly’s equation 

  � = √2 ∙ ���� 

 

Similarly, an expression for the optimal checkpointing period under the policy of 

minimizing the energy consumption of the running application may be deduced. To 

accomplish it, all the energy cost contributions over a generic interval of time T, are 

summed up to build the expression for the total energy consumed. The energy cost 

contributions are mainly four, defined as follows 

 

- Pstatic: static power consumption, which corresponds to the base power 

consumed when the cluster is switched on. That is, the consumption during 

each time-step of the execution. It includes, for example, the cooling system 

power consumption.  

- Pcal: calculation power consumption, which is the CPU power overhead when 

the cluster is active; it takes place in addition to Pstatic.   

- PI/O: power consumption overhead due to I/O operations. It is driven by 

checkpointing tasks and when recovery from a failure.  

- Pdown: power consumption overhead when one of more nodes are down and 

need to be rebooted (for coordinated checkpointing, when one node fails, the 

rest of the cluster stays idle). 

 

In a generic non-blocking scenario (ω≠0), Pcal and PI/O consumptions are overlapped 

when checkpointing. The three last power contributions may be expressed as 

fractions of Pstatic by introducing the parameters α, β and γ, hence they read 

 

Pcal=α Pstatic , PI/O=β Pstatic and Pdown=γ Pstatic. 

 

The total energy consumed Etotal may be derived as the summatory of these four 

power contributions 

 ���� ! = �" !#" ! + �$/&#$/& + �'�(�#'�(� + ���� !#)� ��" 
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where Tcal, TI/O, Tdown and Ttotal are the times during which the respective power is 

used. After some math (see [21]), taking the first derivative of Etotal and setting it 

equal to zero leads to a quadratic polynomial over Topt  

 *	�	+,-����. + �	�	+,-���� + 	�	+,- = 0               (2) 

 

whose only positive root is the optimum time interval ���� = ��������	�	+,-
. The 

polynomial coefficients in eqn. (2) read 

 

*	�	+,- = /� + 0� + 1�2����. + 22���� + 3 − 04����. + 12����  

 

�	�	+,- = �0 − 3�2���� − �/�1 − �� − 0�.2����.  

 

	�	+,- = − 32�/� + 0� + 1� + 5����� − 02.                                                                                
+ 6 22���� + 34����.7 �/�1 − �� − 0�. 

(3) 

with   

3 = �1 − ��,   b=1− 
89:9;<=>?@  

 

The details of casting eqns. (1) – (3) can be found in [21] and not repeated here. In 

this work, it is assumed that the node rebooting cost is negligible compared to Pstatic,, 

then γ=0 (Pdown=0). In addition, the ratio of power consumption contributions 

 

                   A = BCDEDFG9BH/IBCDEDFG9BGEJ = K9LK9M                 (4) 

 

can be built by inserting empirical values of the static, I/O and computing power 

budgets. This ratio serves to compare both optimal checkpoint criteria in different 

scenarios of energy consumption.  
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Furthermore, eqns. (1) and (2) are useful to estimate the optimal checkpoint period 

and to identify the maximum feasible size of a cluster for a given implemented 

checkpointing technology which automatically drives the order of magnitude of the 

overhead due to the R, D and C time intervals contributions in the equations 

(“feasible” here means a number of nodes that guarantee a steady-state operation 

above a prescribed threshold of resource availability).  

 

To scale the cost of checkpointing of an application which spreads over n computing 

units, the following functional dependence is a wide accepted description of the 

checkpoint cost [34] 

                                            Cref(n) = aref + bref /n +dref·n    (5) 

 

where Cref is a characteristic time for saving a checkpoint on n computing units in a 

reference cluster; and aref, bref  and dref are fixed parameters into the definition of Cref. 

The three terms in eqn. (5) relate to the following contributions. Let Vdata be the total 

volume of bytes to checkpoint. In a weak-scalable scenario, it can be written as the 

application memory footprint per computing unit (Mem) times n, that is Vdata=n·Mem. 

For strong-scalable cases, Vdata is a constant. In both cases each computing unit has 

Vdata/n bytes. Considering that bwio is the available I/O bandwidth, the overhead 

penalty on eqn. (5) results to be 
NOEDEP(FQ� , which leads to the functional dependence 

stated by the second term in eqn. (5), with bref=Vdata/bwio. In the evaluation of the 

checkpoint time Cref(n), a fixed start-up delay (aref,1) must be included to take into 

account the time needed to move the data from the computing unit or to proceed to 

the I/O storage. This delay is one of the two contributions to aref in eqn. (5). In 

addition, the incurred time due to synchronization tasks among computing units to 

accomplish coordinated checkpoint may be modelled as another constant delay 

(aref,2) plus a term proportional to the number of participating computing units (dref·n), 

that is aref,2+dref·n. Grouping these contributions, it is aref=aref,1+aref,2 and the functional 

dependence indicated by eqn. (5) is satisfied. 

Evolution of the checkpoint technology over time implies that checkpoint parameters 

aref, bref and dref in eqn. (5) will change accordingly. Being N the size of a cluster, let 

introduce the notation for general checkpoint parameters linked to their counterparts 

in a reference cluster 
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aN=aref·fa(N) ,  bN=bref·fb(N)   and  dN=dref·fd(N)          (6) 

 

where functions fi (i=a,b,d), satisfying fi(Nref)=1, model the evolved checkpoint 

technology with its implementation in a N-size cluster. The generic expression for the 

checkpoint cost reads 

 

CN(n,N) = aN + bN /n +dN·n = aref·fa(N)  + bref·fb(N)/n + dref·fd(N)·n     (7) 

 

which conceptually includes two effects on the total checkpoint cost: the cost due to 

the size of the application running on n nodes of the cluster. And the one because of 

the evolution of the checkpoint technology when implemented in a N-size cluster. 

Quicker coordinated checkpoint in the forthcoming bigger clusters (when available) is 

mimicked here by assuming decreasing fi functions over N. A first approximation to 

these functions in the present analysis is to assume a simple decreasing law over N 

of the type 

fi ∼(Nref/N)pi
  for i=a, b, d     (8) 

 

which is further simplified by assuming p = pa ∼ pb ∼ pd, thus f(N) = fa ∼ fb ∼ fd = 

(Nref/N)p and CN=f(N)·Cref. Exponent p≥0 tunes the hypothetical scenarios to come: 

from p∼0 (which means that future checkpoint rate stagnates at present values as 

indicated by eqn. (1), so a quick penalty will occur to the cluster availability at 

moderate values of N), to p∼1 (the resulting law ∼1/N approaches the same rate of 

drop than MTBF) or even a higher value. In resume, factor p adjusts the smoothness 

of how coordinated checkpoint technology will improve over years in bigger clusters. 

With this simplification and introducing a reference cluster to compare to, the new 

overhead intervals in eqn. (1) read 

 

           = +	R STUVWT X�   and   � + � + � = ��+	R + �+	R + �+	R� STUVWT X�
       (9) 

 

where ref subscript corresponds to a reference cluster representative of high-end 

current ones (Nref=106 nodes, MTBFunit=125 years, Rref=Cref and Dref=Cref/10. A 

realistic checkpoint interval in current clusters is about Cref=10 minutes. Some figures 
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have been plotted with the more aggressive value Cref=1 minute, characteristic of 

foreseen future checkpoint durations. The corresponding Cref value is indicated in 

each figure footprint). 

Factor p=0 just recalls eqn. (1); that is, the scenario of having a fixed checkpoint 

overhead while building a bigger cluster by simply hardware stacking. The scaling 

rule for a general p is 

 

�����������	�\� = STUVWT X� ]=>?@UVW6^UVW^ 7_`a� b8UVW9:UVW9;<UVWc
=>?@UVW^UVW^  � b8UVW9:UVW9;<UVWc �����������	�\+	R�      (10) 

 

Taking orders of magnitude in this expression, it is seen that if for typical current HPC 

clusters with O(104) to O(105) nodes, the stacking of additional nodes to build a 

cluster ten times larger (O(106) nodes), would imply to manage, roughly speaking, a 

three times higher checkpoint frequency during executions considering an scenario 

of p=1, which would provide a higher availability of the resource (under the 

assumption Cref, Dref and Rref << MTBFref, the optimal checkpoint period scales as 

(Nref/N)p/2, so an increase of an order of magnitude in the size of the cluster impacts 

with a factor of about three in the frequency of optimal checkpoint). For a range of 

values of p, the higher checkpoint frequency is compensated by the shorter duration 

of the checkpoint events, thus the availability is not degraded. Nevertheless, under a 

p-threshold, availability will decay as N increases. 

In this path to build bigger clusters, factor p can be seen as a characterizing 

parameter of the checkpoint technology to match a feasible cluster size. A similar 

reasoning reads for ��������d�	+,-
 in eqn. (2) (using the definitions of eqn. (9)). 

 

3.2 Heterogeneous Node Cluster 

Current computer architectures are basically following two major trends [2, 3]: 

clusters based on heterogeneous nodes (CPUs with accelerators, multi-level 

memory); and clusters based on homogeneous nodes (groups of equal low-power 

cores with a single-level memory). One basic difference is that the first architecture 

has fewer nodes compared to the second one. Furthermore, to keep component 

counts for future systems within practical limits (< 1 million nodes), there will be 
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between 103 to 104 floating point computing units on a chip and it is expected on-chip 

parallelism to grow by a factor of 100x over the next decade. According to the 

reliability theory, this qu ite larger density of computing units per node (the so-called 

“fat” nodes) brings delicate issues regarding possible triggered chained-failures. In 

addition, it is common to enlarge homogeneous clusters by adding new nodes with 

more modern hardware, becoming a heterogeneous cluster.  

Let suppose the simplified scenario of an N-size heterogeneous cluster built with two 

different types of nodes (i.e., a combination of CPUs and GPUs; or even the situation 

of two different types of CPUs: recent and older ones) in quantity N1 and N2=N-N1, 

respectively. Assuming that corresponding failure rates of each type are adequately 

modelled by Poisson distributions e�f_�, e�fh� (being λ1=1/MTBF1 and λ2=1/MTBF2 

the unitary failure rate of the nodes in the respective portions of the cluster), the 

entire cluster reliability function R  (i.e., the probability of no failure in the interval (0,t]) 

follows as 

 

��i� = �K�i��.�i� = j ���i�T_
�kK j ���i�T

�kTh
= be�f_�cT_be�fh�cTh = e�T_f_��Thfh� 

(11) 

and the average failure rate of the entire cluster results to be 

 lT = − ': '�⁄: = \KlK + \.l.       (12) 

 

which also yields a Poisson failure rate distribution, thus it retains the memoryless 

behavior, which is a consequence of the superposition of renewal processes [35]. 

Then, the MTBF of the entire system reads 

 

MTBF = MTBF1·MTBF2 /(N1·MTBF2 + N2·MTBF1)    (13) 

 

These expressions are still valid for nonhomogeneous (aging) Poisson processes, 

where it can be assumed that λN exhibits a parametrical dependence with time, that 

is dλ/dt =O(λN/Tlife), being Tlife the operational lifetime of the cluster. Then eqns. (12) 

and (13) hold as a first-order statistical description of the system. 

u5211
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A more complex situation arises when manufacture and integration variability of the 

nodes is considered in the modelling. Assume that both portions of the cluster are 

built using nodes supplied under a degree of variability in their unitary Poisson 

distributions. Hence, suppose that for the N1 nodes portion, manufacture variability 

implies that its nodes have been stacked out of a population with a varying failure 

rate among two types: a proportion q with failure rate λ1,q and a proportion 1-q with 

failure rate λ1,1-q. The reliability function of the N1 portion corresponds then to 

 �K = ∏ ��,KT_�kK = bo��.q + �1 − o���,K�qcT_ = boe�f_,r � + �1 − o�e�f_,_`r �cT_
     (14) 

 

Similar reasoning follows for the N2 portion of the cluster (now p and 1-p denote the 

respective variability proportions) 

 �. = ∏ ��,.T�kTh = bs��.� + �1 − s���,K��cTh = bse�fh,a � + �1 − s�e�fh,_`a �cTh
     (15) 

 

The average failure rate of the cluster is then 

 

lT = − t��K�.� ti⁄�K�.
= \K olK,qe�f_,r� + �1 − o�lK,K�qe�f_,_`r�oe�f_,r� + �1 − o�e�f_,_`r�
+ \. sl.,�e�fh,a� + �1 − s�l.,K��e�fh,_`a�se�fh,a� + �1 − s�e�fh,_`a�  

 (16) 

from which setting q=p=1, eqn.(12) is recovered. 

 

A significant difference compared to the first simplified scenario is that the included 

population variability (q≠0, p≠0) implies that the mean time between failures of the 

cluster becomes now time dependent. The average λN = N1{q·λ1,q + (1-q)·λ1,1-q } +  

N2{p·λ2,p + (1-p)·λ2,2-p}  holds only at the beginning of life (t=0). Hence, the Poisson 

distribution is lost in strict sense for t>0 and the failure rate of the resulting distribution 

shifts over time and decreases monotonically as t → ∞.  
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This departure from Poisson law attributed to the nodes variability in the case of the 

heterogeneous cluster is also applicable to the homogeneous node cluster as well. 

And it agrees with the experimental observation that many clusters obey to non-

Poisson distributions (sometimes modelled as Weibull or exponential failure 

processes, to include the time dependence) albeit their nodes are in a first 

approximation well represented by Poisson processes. However, the attained 

decrease over time does not explain the typically observed higher rate of 

interruptions because of system aging (i.e., the bath-tube plot), but fits with the 

behavior reported in some investigations which collect the failure rate observed in a 

variety of HPC systems [5]. The change of lT over time is 

 

  
'f^ '�⁄f^ = − Kf^

OhuODh :�SOuOD Xh
:h = lT + OhuODhOuOD        (17) 

 

Taking orders of magnitude, it follows  

 

        Οv 'f^ '�⁄w^xJFWV y∼ lT�!�R	 + Ο�1� ≫ 1      (18) 

 

(say Tlife~ 108s, corresponding to a lifetime of about 5 years). Since tlT ti ~ ⁄ lT.  with  lT∼10�K − 10�|}�K, eqn. (18) shows that the time variation of the failure distribution 

is significant and a large enough number of time segments must be considered within 

[0, Tlife] under the age-dependent Poisson assumption, which has been suggested in 

[25, 29] to cite some. But the disparity of time scales makes this approach 

questionable as the number of  time segments to take into account (each linked to an 

age-dependent Poisson process) results to be large and requires frequent update 

with failure information that may not be available for accurate results. This sub-

section stresses some drawbacks of assuming a Poisson failure law for the cluster as 

has been done in the previous sub-section for homogeneous nodes clusters. 

Nevertheless, the mentioned assumption comes to simplify the involved math and to 

yield a first approximation to the problem under analysis. 
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3.3 Order of Approximation 

An important issue of clusters is to operate with the highest possible availability, 

which implies to perform efficient checkpointing. From a predictive standpoint, it is 

necessary to develop accurate enough checkpoint models and to quantify how large 

the error can be when using them for the checkpoint period calculation (too coarse 

models impact negatively in predicting the available computing time of the resource). 

First- and higher-order checkpoint models have appeared in the literature to deal with 

this problem. Figure 1 depicts first- and second-order approximations to the optimal 

checkpoint period (Topt) discussed in the literature by Young [24], Gelenbe et al. [25], 

Vaidya [27], Daly [23] and Aupy et al. [21] in the context of single-level coordinated 

checkpoint schemes. The comparison quantifies that first-order solutions depart very 

quickly from the second-order ones when the number of nodes is huge, which will be 

the case in the exascale era and the incurred departure is rather dependent on the 

checkpoint interval duration (plotted non-dimensionalized as C/Cref). On the contrary, 

the curves plotted for 106 nodes (high-end current supercomputers) show that both 

first- and second-order models almost coalesce when checkpoint is done at high to 

moderate rate (C/Cref < 0.1). This is not the case for 108 nodes, where it is visible that 

even for C/Cref ~10-3 (that is C∼0.6s) a departure of about a 20% still occurs between 

both approaches. It is seen in Figure 1 that first- and second-order predictions of Topt 

for an exascale cluster of 108 nodes with a future rather optimistic C∼1min (C/Cref = 

0.1) differ by more than double or triple.   

It is noticed that Figure 1 corresponds to full workload operation, so the region over 

Topt/MTBF=1 is of no applicability in cluster operation (optimal checkpoint solutions at 

partial workload operation exist for Topt/MTBF>1, as shown in [25]). The sensitivity to 

partial workload is shown in Figure 2, where it is visible that at very small checkpoint 

durations within an exascale scenario, the impact of shifting the workload from low 

(25%) to full (100%) is halving the optimal checkpoint interval. The asymptotic 

behavior Topt/MTBF→1 with a slow checkpoint mechanism and full workload is 

captured by the second-order Vaidya’s and Gelenbe at al. approximations. Besides, 

Daly’s second-order equation closely follows the same tendency, but it drops and 

departs from it for quite slow checkpoint intervals. The effect of the duration of the 

checkpoint interval on the cluster availability is plotted in Figure 3 (full load case). It is 
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seen how critical will be to move from 106 to 108 nodes since the graphs depict a 

more abrupt drop at large checkpoint intervals. As a result, there is a smaller range of 

C/Cref with acceptable availability. For a fixed requirement of availability, this states a 

threshold and a range of feasible checkpoint rates. 

Considering the full workload case, it is relevant to quantify the impact of including or 

not the non-blocking effect into the coordinated checkpoint protocol, as it is done in 

the Aupy et al. first-order formulation. This is shown in Figure 4, where Aupy’s model 

is plotted for ω=0 (full-blocking) and ω=0.5 (half-blocking) superimposed with the 

Gelenbe et al. (full-blocking) second-order formulation for comparison purposes. 

Predictions for 106 nodes look quite similar with both models for ω=0, except at low 

checkpoint rate. The fork of computing and checkpointing following a 50 - 50% ratio 

in Aupy’s model implies an increase of about 50% in the checkpoint frequency, which 

is large enough to be considered in the modelling. For the scenario of 108 nodes the 

effect of ω is similar (of about 50% in terms of checkpoint frequency variation) but the 

comparison shows a definite departure of Gelenbe’s plot from Aupy’s plot for the 

entire C/Cref range. A similar result is obtained if Vaidya’s second-order formulation is 

compared. The prediction provided by Aupy’s with ω=0 and ω=0.5 over- and 

underestimates, respectively, the second-order prediction of the optimal checkpoint 

frequency at high checkpoint rates. Besides, their first-order solution provides an 

overprediction of the optimal period at moderate to slow C/Cref. On the other side, at 

high-rate checkpoint both approaches yield a rather close value for the checkpoint 

frequency. 

Current clusters with typical checkpoint durations (say, 10 minutes as a realistic 

value) show small differences between first and second-order performance 

predictions (see Figure 1), so the order of the approximation means a low impact 

from the users point of view. Thus, in the scenario of current clusters, the non-

blocking property seems to be more important from the users perspective as it serves 

to reduce the execution time of their applications (by a 10% or even more according 

to estimations for petascale supercomputers) and, on the contrary, it is noticed that 

second-order Topt predictions introduce minor corrections to the cluster operation in 

this case. 

This situation will change in the foreseen exascale systems, since much smaller 

checkpoint durations will be required to hold the overhead within limits and to operate 
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with good resource availability. To this regard, values of checkpoint duration at about 

1 minute imply C/Cref ∼0.1 in Figure 1, which represents a more sensitive region to 

the second-order prediction because of the impact of the checkpoints duration on the 

availability drop (this region of checkpoint rates shows that the departure between 

the first- and second-order plots implies an error in the the Topt prediction of more 

than 100%). The notably smaller Topt predicted by the second-order approach makes 

the availability to drop, which means to accept greater average waiting times of the 

users queued jobs. In future clusters with workloads dominated by short-running 

applications, this constitutes a major issue, as important as the potential reduction of 

the execution time because of the implementation of a non-blocking checkpoint 

protocol. And to deal with it, a more accurate prediction of the Topt is mandatory 

since, as seen in Figure 1, it may introduce a more than a two-fold factor in the 

estimation of the checkpoint duration.  

It can be concluded that second-order predictions deserve as much attention as the 

inclusion of non-blocking effects in the modelling because of the foreseen impact of 

future checkpoint rates on the resource availability, mostly when exascale computers 

are into the focus and considering the challenges of achieving better but probably 

moderate checkpoint rates. The inclusion of the penalty due to a smaller resource 

availability in addition to the attained speedup of the applications execution caused 

by a non-blocking checkpoint protocol, will permit a more accurate assessment of the 

mean overhead at system level. 

 

 

4. CLUSTER SIZING  

To assess the cluster operation policies (goodness of minimizing the total execution 

time or the energy consumption) according to the presented model, several figures 

are provided. Two figures of merit are depicted over the number of nodes in Figures 

5, 6 and 7 showing the ratio of total execution time, following the definition 

Time(��������	�	+,-
)/Time(�����������	); and the ratio of energy consumption, defined as 

Energy(�����������	)/Energy(��������	�	+,-
). Both figures of merit are plotted in two 

checkpoint rate scenarios: for a current checkpoint rate (here a value Cref=10 minute 

is set as realistic of present-day supercomputers); and a rather quicker rate Cref=1 

minute, which mimics the situation of future exascale.  
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Figure 7 depicts this information by means of contour maps. The information of a 

reference cluster with checkpoint rates Cref=10min and Cref=1min is used to fill up the 

plotted equations. Two power ratios (see eqn. (3)) ρ=5.5 & 7 are considered in the 

case of the energy policy as realistic [21]. Plots compare the results for three values 

of parameter p, namely p=0, 0.5 and 1. These figures of merit serve to quantify both 

cluster policies and, as a result, indicate the relative gain or loss incurred during 

applications execution in both scenarios of checkpoint rate (Cref=10min and 

Cref=1min).  

Case p=0 in Figures 5 and 6 shows that an important saving of energy can be 

achieved, namely up to 30% for an execution time overhead of about 15% 

(Cref=10min) and 12% (Cref=1min). This saving corresponds to the visible maximum 

located in the plots (N∼3·105 nodes for Cref=10min and N∼5·106 nodes for Cref=1min), 

attained at a notably higher number of nodes in the exascale scenario. 

The exascale scenario reveals that both ratios tend to one as the cluster size 

reaches its critical number of nodes Ncritical∼7·107 nodes (that is, the maximum size 

which corresponds to enforce Topt=0 in eqns. (1) and (2) under the respective policies 

at p=0). On the contrary, at Cref=10 min the ratio of total execution time exhibits a flat 

value over a wide number of nodes, which indicates the insensitivity of the attained 

overhead with the size of the cluster. Interestingly, this flat zone of the plot is followed 

by a quick increase of the overhead in execution time, caused by the penalty of such 

a large Cref in eqn. (1). 

For p=0.5 and Cref=1min the maxima shift to higher N, with Ncritical ∼3·109 nodes. 

However, for Cref=10min the behaviour reverses and the maxima shift to a lower N 

(the critical size of the cluster shift to higher number of nodes: Ncritical ∼2·107 nodes). 

In terms of the ratios of execution time and energy consumption, this maxima shift 

which occurs for Cref=10min implies a rather small impact on the figures of merit 

because the curves are rather flat in this zone. 

It is visible that the energy saving and execution time overhead at p=0.5 are quite 

similar to their counterparts at p=0; but the advantage at p=0.5 is that there is a 

smaller rate of variation of the resource availability over the number of nodes and the 

cluster can be sized to achieve higher availability for the same number of nodes 

when its size is big enough.  
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According to subsection 3.1, case p=1 implies that the overhead due to C, R and D 

intervals scales as ∼1/N, so the figures of merit stagnate at constant values (i.e., for 

Cref=1min the ratios result to be: Time(��������	�	+,-
)/Time(�����������	)∼1.08 and 

Energy(�����������	)/Energy(��������	�	+,-
)∼1.22). Interestingly, the energy saving and 

execution time overhead (which at p=0 show percentages of about 30% and 12%), 

exhibit for p=1 a lower bound:  22% and 8%, respectively, which quantifies the effect 

of the mentioned policies in a very optimistic scenario of checkpointing. The optimal 

checkpoint period is also plotted in Figures 5 and 6.  

 

Another figure of merit is the resource availability AR, defined as  

 

     *: = 1 − b�~e�+�~e�+�~e�c6^UVW^ 7a9  xh=>?@           (19) 

 

The rate of AR over N satisfying the criterion of optimal checkpoint period Topt yields 

 

��u�T = − K. ��T S >QaD=>?@X − �1 − s� �~e�+�~e�+�~e�=>?@UVW  TUVWa`_
Ta           (20) 

 

The sign of both terms on the right side of this equation is important in order to 

understand how the availability evolves over N. The sign of the first term depends on 

N. When N is less than the number of nodes which yields (Topt/MTBF)max (see 

Figures 5 and 6), its contribution becomes negative, otherwise positive. When it is 

positive, then it palliates to some extent the net availability drop over N since it 

compensates part of the drop caused by the second term in eqn. (20), which is 

negative for p≤1.  

 

Let AR,ref be the availability attained for a reference cluster of Nref nodes. The drop of 

the availability ∆AR when shifting from Nref to certain N* >Nref nodes can be evaluated 

directly from eqn. (19) 

 ∆*: = *:∗ − *:,+	R = K. �S >QaD=>?@X+	R − S >QaD=>?@X∗�        (21) 
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Availability drop is plotted in Figures 8 and 9 and can be used to guide the sizing of a 

cluster out of the reference data. Let assume ∆AR=A*R–AR,ref is the accepted net drop 

in availability for an enlarged version of the reference cluster. Then N* nodes are 

needed to match that constrain results from solving eqn. (21) for a prescribed 

checkpoint technology (p=0 if it is the same as in the reference cluster; or an 

improved one characterized by some p>0). In particular, for p=0 eqn. (21) gives 

 K. S >QaD=>?@X∗ + 68UVW9:UVW9;<UVW=>?@UVW 7 T∗TUVW =
−∆*:,+	R + K. S >QaD=>?@X+	R + 8UVW9:UVW9;<UVW=>?@UVW       (22) 

 

where the right term is known and the equation can be solved for N*. The 

expressions are valid for both the total execution time and energy consumption 

policies using the corresponding value of Topt from eqns. (1) and (2). For the energy 

consumption policy, results of ρ=5.5 and 7 are outlined in the figures.  

 

As N increases for a given p, the availability decreases at a rate which speeds down 

for N greater than the number of nodes which yields (Topt/MTBF)max and becomes 

zero at the end of the curves, which states the critical size Ncritical of the cluster. The 

comparison of the performance at both checkpoint rates shows that the slope of the 

availability curve is steeper over N for Cref=10min compared to Cref=1min, which 

points out to the difficulties of enlarging current clusters by stacking additional 

hardware under the current checkpoint rate constrains. Besides, it is also visible that 

the starting-point availability (say, at 105 nodes according to Figure  8) is worse for 

Cref=10min. This is explained by the larger penalty caused by the Topt/MTBF 

contribution in eqn. (19), which is about three times its counterpart for Cref=1min.    

 

As expected, higher p implies smaller Topt/MTBF in the region of large N, so a higher 

availability can be attained. Figures 5 and 6 shows that the curve which corresponds 

to the energy policy, irrespective of ρ, provides larger values of Topt than the 

execution time policy for all p values. The comparison of both policies shows that the 

energy consumption policy gives a smaller availability over nodes as a result of its 
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smaller checkpoint frequency (higher Topt/MTBF in the entire range of number of 

nodes). Furthermore, the availability exhibits a higher rate of decay for the energy 

consumption policy at the beginning, which is explained by the behavior of the term 

∂(Topt/MTBF)/∂N in eqn. (20). On the contrary, the availability for the execution time 

policy shows a smooth drop over N at the beginning but exhibits a rather speed up of 

the decay rate compared to the energy consumption policy.    

 

The quantification of the availability drop reads out of these plots and the threshold 

line for, say, a 50% availability is drawn in Figure 9, which provides an estimation of 

the feasible maximum number or nodes for a given checkpoint p-value. The results 

have been obtained for multi-core architectures under the hypothesis Dref∼Cref/10, 

which seems too optimistic for those architectures based on many-core chips. 

Whereas Dref=1min or smaller sounds reasonable for multi-core based CPUs of the 

exascale era, it is not the case for current many-core chips (i.e. Intel KNLs/KNHs) 

where a more realistic value of the downtime interval is about 6 minutes according to 

recent experiments [36]. As a result, downtime interval Dref dominates in eqn. (1), 

hence a penalty is paid and the realizable cluster size shrinks (up to a 25% in current 

architectures and within a 4 to 5 times shrinkage using a number of computing units 

equivalent to the total number of cores using multi-core CPUs); the availability for the 

realizable cluster exhibits a significant drop as well. This is clearly shown in Figures 

10 and 11.     

 

5. CONCLUSIONS 

 

This study assesses the impact of the optimal coordinated single-level checkpoint 

period and current modelling assumptions on the cluster performance under total 

execution time and energy consumption policies. A consequence of the prescribed 

checkpoint rate is the identification of a critical size of the cluster above which its 

availability is too poor. 

To improve predictions of optimal checkpoint periods in forthcoming exascale 

computers, both high-order and non-blocking effects must be adequately included in 

the coordinated single-level checkpoint models. This is not easy because of the 

inherent mathematical difficulties of having into account all participating effects, but it 
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is important to know the real contribution of each effect on the cluster performance. 

While it makes little difference to perform second-order predictions of the optimal 

checkpoint frequency in current petascale platforms, it seems not to be the case in 

future exascale computers, as both effect will have similar impact on the 

performance. 

Then, for accurate results, the development of second-order checkpoint formulations 

will lead to an improvement in their predictive capacity since the non-linearity over 

the checkpoint rate modifies the cluster availability in a significant amount (caused by 

the higher checkpoint frequency) when the number of nodes is huge. Consequently, 

its interplay with the acceleration of jobs executions of the users (because of using 

non-blocking checkpoint) must be correctly evaluated in the modelling.   

In addition, the checkpoint overhead under criteria of minimizing total execution time 

and energy consumption has been compared for the case of homogeneous nodes 

clusters. Besides these performance metrics (which are driving vectors in the frame 

of cost and computational efficiency), another major factor to consider is cluster 

availability. The undertaken analysis revels that the total execution time policy 

delivers a higher availability of the resource for a prescribed cluster size and 

checkpoint technology (characterized by the checkpoint rate and its scalability in 

future platforms) than the energy consumption policy. Since resource availability is of 

paramount importance during the cluster lifetime, an adequate cluster sizing must be 

accomplished out of accurate estimations of the overhead provided by the checkpoint 

technology in use. To this respect, the variation of the performance metrics and 

availability over the number of nodes (for a given checkpoint characterization) 

provides guiding information in the decision making about how big a cluster might be. 
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Fig. 1: Comparison of the nondimensional optimal checkpoint interval proposed by 
several authors in the literature (see references). All correspond to blocking 
checkpointing  and Cref=10min. 
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Fig. 2: Nondimensional optimal checkpoint interval proposed by Gelenbe et al. [25] 
where the effect of the % workload is shown for current (106 nodes) and future exascale 
(108 nodes) supercomputers. It is assumed Poisson distribution, negligible reloading  
time (R=0) of checkpointed data; and full processing of lost time interval (reference 
checkpoint interval: Cref=10min). 
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Fig. 3: Availability versus checkpointing duration for increasing facility scale (reference 
checkpoint interval: Cref=10min). 

 
 

   
 
 
Fig. 4: Nondimensional optimal checkpoint interval according to Gelenbe et al. full-
blocking model and Aupy et al. (this last for full- and half-blocking checkpointing: 

ω=0 and ω=0.5, respectively). Reference checkpoint interval: Cref=10min.  
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Fig. 5: Execution time and power consumption figure of merit comparison for ρ=5.5: ratio 
Ttotal(Topt

min-exec)/Ttotal(Topt
min-energy) (in black) and Etotal(Topt

min-energy)/Etotal(Topt
min-exec) (in blue) 

is shown for three values of the checkpoint rate parameter (p=0, 0.5, 1) and ω=0.5. Two 
scenarios of the checkpoint rate are depicted: a) Mimicking current checkpoint rate at 
Cref=10min; and b) Improved (exascale) checkpoint rate at Cref=1min. (nondimensional 
checkpoint period is shown in the lower portion of the graphs). 
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Fig. 6: Execution time and power consumption figure of merit comparison for ρ=7: ratio 
Ttotal(Topt

min-exec)/Ttotal(Topt
min-energy) (in black) and Etotal(Topt

min-energy)/Etotal(Topt
min-exec) (in blue) 

is shown for three values of the checkpointint rate parameter (p=0, 0.5, 1) and ω=0.5. 
Two scenarios of the checkpoint rate are depicted: a) Mimicking current checkpoint rate 
at Cref=10min; and b) Improved (exascale) checkpoint rate at Cref=1min (nondimensional 
checkpoint period is shown in the lower portion of the graphs). 
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Fig. 7: Contour maps of the execution time and power consumption figures of merit: ratio 

Ttotal(Topt
min-exec)/Ttotal(Topt

min-energy) (left column) and Etotal(Topt
min-energy)/Etotal(Topt

min-exec) (right) is 

shown for three values of the checkpoint rate parameter (p=0, 0.5, 1). Parameters: ω=0.5, 

Cref=10min. 
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Fig. 8: Availability as a function of the cluster size and nondimensional optimal checkpoint 

period versus number of nodes depicted for checkpoint parameter p=0. Both total execution 

time and energy consumption policies are included in two scenarios of checkpoint rate: a) 

Mimicking current checkpoint rate at Cref=10min; and b) Improved (exascale) checkpoint rate 

at Cref=1min (results correspond to ρ=5.5 and 7 with ω=0.5). 
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Fig. 9: Availability as a function of the cluster size for checkpoint parameters p=0, 0.5 and 1. 

Both total execution time and energy consumption policies are plotted (parameters: ρ=7, 

ω=0.5 and two checkpoint rates: a) Cref=10min; and b) Cref=1min). 
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Fig. 10: Comparison of two architectures based on multi-cores characterized by 

Cref=Rref=10min and Dref=1min; and many-cores (Cref=Rref=10min; Dref=6min): a) Figures of 

merit of the total execution time and energy consumption ratios (above) and optimal 

checkpoint period (bottom); and  b) Cluster availability over the number of nodes. The 

variation of the critical size of the cluster is indicated by green arrows (parameters: ρ=7 and   

ω=0.5). 
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Fig. 11: Comparison of two architectures based on multi-cores characterized by 

Cref=Rref=1min and Dref=0.1min; and many-cores (Cref=Rref=1min; Dref=6min): a) Figures of 

merit of the total execution time and energy consumption ratios (above) and optimal 

checkpoint period (bottom); and  b) Cluster availability over the number of nodes. The 

variation in critical size of the cluster is indicated by green arrows (parameters: ρ=7 and   

ω=0.5). 




