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Abstract In this work the Numerical Aerodynamic Simulation (NAS) bench-
marks have been executed in a systematic way on two clusters of rather dif-
ferent architectures and CPUs, to identify dependencies between MPI tasks
mapping and the speedup or resource occupation. To this respect, series of ex-
periments with the NAS kernels have been designed to take into account the
context complexity when running scientific applications on HPC environments
(CPU, I/O or memory-bound, execution time, degree of parallelism, dedicated
computational resources, strong- and weak-scaling behaviour, to cite some).
This context includes scheduling decisions, which have a great influence on
the performance of the applications, making difficult to achieve an optimal
exploitation with cost-effective strategies of the HPC resources. An analysis
on how task grouping strategies under various cluster setups drive the execu-
tion time of jobs and the infrastructure throughput is provided. As a result,
criteria for cluster setup arise linked to maximize performance of individual
jobs, total cluster throughput or achieving better scheduling. To this respect,
a criterion for execution decisions is suggested. This work is expected to be of
interest on the design of scheduling policies and useful to HPC administrators.

Keywords MPI application performance · Benchmarking · Cluster through-
put · NAS Parallel Benchmarks

1 Introduction

The evolution in processors during the last decade has been oriented towards
an increasing degree of parallelism and this fact has deeply impacted all levels
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of computing hardware and software. The design of clusters and supercomput-
ers is also following this path. For example, the number of cores according to
the TOP500 list [14] has grown exponentially since 1993. Current trends in-
clude the use of many-core processors, driving the number of computing units
even further. An obvious way of getting the most of this is the usage of highly
parallel applications. MPI and OpenMP continue being instrumental to create
highly scalable applications suitable for this environment. Applications can be
classified into CPU, I/O or memory-bound depending on which factor limits its
execution speed. Other common issues regarding requirements are execution
time, degree of parallelism and required computational resources, to cite some.
This leads to many questions and specific scheduling decisions. Probably the
first is what should we do with partially-filled multi-core processors? What is
the most efficient decision when a given job is only using some of the CPUs of
a node, or just some of the cores of a CPU? On one side, executing some other
job at the same time would lead to a most intensive usage of the resources;
on the other, sharing the resources (namely memory at different levels and
I/O) may force both jobs to compete for them and slow down, having in fact
a negative impact on the total execution time. Thus, the implementation of
right task grouping strategies managed by the cluster scheduler seems to be a
fundamental aspect to speedup the executions by setting the optimal location
of the job MPI tasks. The problem is complex and has extra dimensions, and
the scope of this work aims to shed some light on performance issues.

2 Related work

Impact of MPI task locality has been investigated in [7] with three kernels
of NAS Parallel Benchmarks (in short, NPB) and application codes running
in a cluster of 32 CPUs. They show that an execution time saving of up to
25% is possible. Their number of used CPUs is small and the authors plan to
extend the experiments to large-scale machines since it seems necessary to be
conclusive about what happens in situations of many processors. In [4] it is
summarized the results of mapping MPI tasks onto sockets, taking into account
the machine topology. Results show that it is beneficial to map tasks onto as
many sockets per node as possible (the bigger savings in execution time, up to
30%, are obtained precisely for those cases). Similar experiments are done in
[13], reporting an improvement of about 15%. In particular, research dealing
with multicore architectures has been focused in the last years. To this regard,
[11] presents the gain in computational efficiency of a MPI-based production
application that exhibits a performance peak improvement of about 9% (with
averaged performance improvement of 6%), attributed to a better use of cache-
sharing at the same node and to the high intra- to internode communication
ratio of the cluster. Although it is a modest speedup, it is noticed that it
is obtained with minor source code modifications. The work in [3] points to
the same direction by evaluating the impact of multicore architectures in a
set of benchmarks; but on the contrary, they conduct a non-straightforward
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adaptation of the original application. Their characterization of the inter- to
intranode communications ratio throws a figure of 4 to 5 in the worst case. This
kind of node mappings is an area where little to moderate efforts are required
for significant gains in application performance. The impact of internode and
intranode latency is analyzed in [12] using a parallel scientific application with
MPI tasks mapped onto the CPUs of an infiniband-based cluster of 14 nodes.
With the objective of improving the computational efficiency, [17] analyzes
how many cores per node should be used for applications execution. Here, both
NPB and a large-scale scientific application code are executed in three single-
socket-per-node clusters. They identify that task mapping is an important
factor on performance degradation, being the memory bandwidth per core the
primary source of performance drop when increasing the number of cores per
node that participate in the computation. Something similar concludes [10],
showing a high sensitivity of the attained NAS kernels performance to the
multi-core machines. In [16] it is detected that NPB exhibit high sensitivity
to the cluster architecture. Also, MPI tasks mapping reveals that distributing
them over the nodes is better from a computational standpoint in most cases.
According to their experiments, an up to 120% speedup is attained for most of
the NAS kernels. They explain this behaviour because by distributing the tasks
they do not have to compete for node local resources, a scenario that seems to
occur when running tasks are sharing a slot or are located in slot of the same
node. In [15] a semi-empirical predictive model is formulated and tested with
a large-scale scientific application code, which provides good results for weak
scalability cases and show that it can lead to a 5% increase of the execution
time. The study conducted in [5] on mapping MPI tasks to cores using micro-
benchmarks and NPB, shows that it may affect significantly the performance
of intranode communication, which is closely related to the inter- to intranode
communication ratio.

These previous investigations point out to the large sensitivity of the ex-
ecution time to the task mapping. The impact of grouping or not MPI tasks
outside of the box (out of the same node), over sockets or cores within the node
is high as it is seen that execution time varies significantly. Also the lack of un-
derstanding of how to proceed in a systematic manner with an application in
a specific cluster remains and further clarifications are needed to improve the
cluster efficiency and usage. The present investigation summarizes the results
of mapping MPI tasks onto cores in two different infiniband-based clusters at
CIEMAT.

Then, processor mapping combinations have been tested to explore the
impact on cluster throughput and hence, to build usage criteria aiming at
feeding better scheduling strategies to support the scientific groups.

Hence, the present work explores the behaviour of different scientific kernels
on modern infrastructures and the impact on clusters throughput. An analysis
on how task location, network traffic and resource sharing affect their execution
time has been carried out to infer a generalization of their behavior. This
information can then be useful to improve scheduling algorithms and cluster
setups. In the text, a job is composed by one or more tasks. The assignment
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of those tasks to computational resources (mapping) determining when and
where to run each job constitutes the scheduling process.

3 Characterization of HPC facilities

3.1 Benchmarking

The chosen applications for systematic benchmarking can be divided in two
groups. The first one is system benchmarks, to measure the raw performance
of the components of our clusters. The second one is application benchmarks
(NPB), to test the behavior of the infrastructure when running real applica-
tions.

STREAM benchmark [8] measures sustainable memory bandwidth and
tests the communication bandwidth between the socket and its RAM. In mul-
ticore sockets an OpenMP flag is set for building one thread/core during com-
pilation.

OSU micro-benchmark [9] measures the latency and bandwidth of MPI li-
braries and interconnections. It implements a set of routines with various com-
munication patterns. It measures intra- and internode communication band-
widths.

Bonnie++ [2] is a small yet powerful benchmark to measure disk perfor-
mance. It provides a number of tests of hard drive and file system performance.

Intel Memory Latency Checker 3.1 [6] allows accessing memory chunks
located in the elements of the memory hierarchy, measuring the latency time.

All together, these benchmarks allow characterizing the cluster raw per-
formance. Hence, a better understanding of the results gathered with a set
of scientific kernels is intended. The NAS Parallel Benchmarks [1] is devel-
oped at the Numerical Aerodynamic Simulation (NAS) program at NASA.
It has evolved as a group of kernel benchmarks, set for a variety of prob-
lem sizes (classes A, B, C,... which differ mainly in the sizes of the arrays)
of increasing computing cost. All together are representative of algorithmic
building blocks found in the aforementioned scientific kernels. Among them
are examples of memory-bound and CPU-bound, or weak-scaling and strong-
scaling kernels. The present investigation uses NPB v2.0, which includes seven
portable kernels (Fortran90, MPI parallelised) whose acronyms corresponds to:
BT- Block Tridiagonal solver; CG- Conjugate Gradient; EP- Embarrassingly
Parallel; FT- Discrete fast Fourier Transform; IS- Integer Sort; LU- Lower-
Upper Gauss-Seidel solver; MG- MultiGrid on a sequence of grids.

3.2 Infrastructure characterization

Two computing facilities of different generations based at CIEMAT have been
employed (see Figure 1, which displays the hardware of their nodes). The
first one, EULER, is a production HPC shared among the scientific groups. It
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Fig. 1 Major architecture and communications for clusters ACME and EULER (band-
widths are approximate best cases sustained values).

consists in 480 Xeon R©5450 quadcore@3.0 GHz, 2GB RAM/core, mounted on
Dell PowerEdge M610 blades. When EULER was installed in Autumn 2008, its
performance according to LINPACK (23 TFlops peak) would have ranked it
around position 300 of TOP500. Because it is under full usage, the experiments
have been done while sharing the resource and the restriction of accessing to
a reserved set of 8 nodes within a limited timeframe (this matches with how
the analyzed applications behave in real environments).

The second one, ACME, is a smaller, state-of-the-art HPC for research
purposes and fully devoted to this project, which counts with 10 nodes (8 of
them are computing nodes): 2 Bull R424-E4 chassis with 4 nodes each, plus
another two devoted to host accelerators and fast network storage. Each node
consists in a Supermicro X10DRT-P motherboard with two 8-core Xeon R©E5-
2640 v3@2.60. Each node counts with 32 GB DDR4 RAM memory @2133
MHz, in the form of 4 x 8 GB modules. Two of these modules are connected
to each processor (NUMA). Each core accesses to half the memory with rather
smaller access time than to the other half, as show in Fig. 2. Network is
provided by Infiniband FDR. The MPI library mvapich2-2.2b is installed in
both. It includes some performance metrics obtained with the benchmarks and
from the official documentation.

Fig. 3 shows the dependence of internodes and intranodes communication
bandwidth with the message size for the OSU micro-benchmark running on
ACME and EULER clusters. It is worth noticing that the results mostly match
their counterparts provided by the hardware vendors. ACME has higher in-
tranode communication bandwidth (3 to 4 times higher than EULERs); 2.5
times larger shared L3 cache; and 3 times higher infiniband bandwidth. Both
clusters have a ratio of intra- to internode bandwidth within 3 to 3.5.

3.3 Influence of node sharing on memory access time

In multi-core CPUs and in multi-CPUs nodes, there is a decision concerning
whether it is better or not to share the resources among pending jobs, or
should a sole application be executed at the same time. It can be inferred
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Fig. 2 Latency of a core accessing increasingly larger data blocks in ACME, corresponding
to cache, RAM and disk. ’Same slot’ and ‘Remote slot’ refer to the location of the processor
to which the accessed memory is connected in the NUMA system.

Fig. 3 Intranode and internode communication bandwidth in ACME and EULER clusters,
computed with the OSU micro-benchmark.

that sharing a node between two or more jobs may increase RAM misses, as
the available memory is shared between the running jobs, so they have less
space for data and executable. This same issue happens when sharing a multi-
core CPU, leading to an increased number of misses in L3 cache. Hence, it is
necessary to measure the access time to the different memory layers in order
to quantify its influence.

Figure 2 shows latency in ACME when a given core is accessing to mem-
ory. As expected, L1 cache is the fastest one but only stores up to 32 KB of
data; then comes L2 with 128 KB, L3 with 20 MB, and after that the RAM
memory. In this case, as pointed out before, there is a significant difference
(60%) between accessing the modules connected to the same processor and
those connected to the other one in the other slot of the same motherboard.
The last step corresponds to the sizes between 32 and 64 GB, where both RAM
modules are accessed to store/read. The last step of the memory hierarchy is
represented by the persistent storage. It counts with a HD (1TB) for scratch
and temporary files and network storage for the users home directory and the
non-OS applications (scientific codes). Measured latency is 1.5µs for the HD
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Table 1 Total execution time of NAS kernels in ACME with different cluster setups (time
ratio is referred to the Dedicated Network setup)

Setup Execution time (s) Time ratio (%)

Dedicated Nodes 36533 32.6
Dedicated Cores 19442 17.5
Dedicated Sockets 28989 25.8

and 7.35µs for the network storage, roughly an order of magnitude larger than
RAM latencies.

Summing up, results show that a miss in any cache level implies accessing
an upper layer of the memory hierarchy with a penalization of about an order
of magnitude in latency. Resource sharing will then have an impact on the job
execution due to the influence on the access time of the different cache levels.

4 Results

In this section, results of executing a set of seven algorithms of the NAS
Parallel Benchmarks are presented. These span a rather different behaviour
in terms of CPU and memory requirements, execution time (ranging from a
second to several hours) and have been executed in different ways to obtain
as much information as possible regarding the machine performance, with the
objective of identifying tasks execution patterns to extract general conclusions.
The study comprises jobs up to 128 MPI tasks. This maximum number of tasks
is justified by the limited strong-scaling properties of NAS kernels, as shown in
Fig. 4, where it is visible that speedup stagnation occurs at about 32 MPI-tasks
for most of them (stagnation for BT and EP begins later).

4.1 Cluster performance

The experiments with NPB have been repeated under four Slurm setups:
- Dedicated Cores: one-to-one assignment of cores to MPI tasks of the

parallel job (a core executes only one MPI task of that job; set in ACME and
EULER).

- Dedicated Sockets: a socket may only execute MPI tasks of the same job.
Once the socket is occupied by at least one MPI task of a job, no other part
of another job may be executed on it in the meanwhile (set in ACME).

- Dedicated Nodes: an entire node is assigned in exclusivity to execute MPI
tasks of the same job (set in both ACME and EULER).

- Dedicated Network (reference case): the whole cluster executes only one
parallel job at the same time, thus avoiding any overhead due to network con-
gestion (set in ACME). This is a scenario devoted to obtain reference execution
times.

Table 1 compares the total execution time of a set of NAS kernels. To mimic
real-life workloads, all jobs corresponding to different kernel classes (sizes of
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Fig. 4 Speedup of NAS kernels in cluster ACME. Intermediate size classes B (left) and C
(right) are plotted.

Table 2 Submitted jobs of all NAS kernels partitioned per degree of parallelism.

Degree of parallelism 1 2 4 8 16 32 64 128
Total number of jobs 210 360 630 720 840 540 400 170
Percentage of jobs (%) 5.4 9.3 16.3 18.6 21.7 14 10.3 4.4

computed problems) and degrees of parallelism (about 4,000 jobs sent for
each cluster setup) were submitted at the same time, letting Slurm scheduler
to decide where and when to execute them using 8 nodes (16 cores/node) in
ACME and 16 nodes (8 cores/node) in EULER. There was no indication of any
job maximum execution time, thus no preemption techniques were employed.
Table 2 shows the jobs according to their degree of parallelism; note that 128
is the number of cores in the cluster ACME. This way, the impact of MPI
tasks location inside the clusters has been analysed under the Slurm setups.
It is noted that the Dedicated Sockets setup is the 2nd more efficient after the
Dedicated Cores setup (about 30% of the jobs counts for 8 or even less MPI
tasks), which is able to allocate more than one job at the same time.

4.2 NAS Benchmarking

The number of nodes (nN) times the number of MPI tasks per node (nT ),
in short nNxnT (see Fig. 5), that define the configuration of each experiment
(say, a definite kernel of a given class, executed under a cluster setup) has been
repeated 10 times, with their average referred in what follows as a computed
case. The experiments conducted under Dedicated Network setup include the
kernels of class D to enlarge the population of computed cases. For the other
cluster setups, only experiments with the A, B and C classes of the kernels
have been conducted to guarantee that the running MPI processes fit into the
RAM memory as well as to bound the workload computing time. All exhibit
standard deviation < 1%.
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Fig. 5 Example of 1x4 and 2x2 MPI tasks mapping in cluster ACME.

4.3 Dedicated Nodes cluster setup

Bearing in mind that the Dedicated Cores setup is a realistic scenario of pro-
duction clusters, a general trend can be stated out of Fig. 6, which depicts
the execution time of the seven NAS kernels in ACME. Each sector of the
circles corresponds to a given NAS kernel, identified by its acronym. Sectors
are partitioned into annular regions: each annulus corresponds to a nNxnT
configuration (indicated along the horizontal line on the right of the circle).
That is, a circle annulus compares the impact of a prescribed nNxnT config-
uration on the execution time for all the NAS kernels executed under a degree
of parallelization and the same NAS class. The outermost annulus corresponds
to the most distributed scenario in terms of number of participating nodes (on
the contrary, the circle centre corresponds to the most concentrated one). The
execution time is shown dimensionless (referred to the execution time obtained
in the cluster configuration of the fewest participating number of nodes, which
corresponds to the circle center). The examination of the relative execution
times in Fig. 6 shows that many computed cases take more execution time as
far as more nodes are involved.

Fig 7 compares ACME and Euler behaviour using the relative execution
time (RET) as a performance metric. The plotted bars for each kernel gather
the corresponding data of the NAS classes and nNxnT configurations (where
the mean and maximum-minimum values are indicated), in order to see what
is achieved in average. Both ACME setups -Dedicated Nodes and Dedicated
Cores- show that execution time exhibits greater variation than EULER’s (in
particular, it is visible for the Dedicated Nodes setup in ACME, that the rel-
ative execution time may be quite large in some experiments: CG: 30.6; IS:
24.0). In addition, EULER exhibits more sensitiveness to the cluster setup.
Fig 7 shows that all the mean values in ACME have RET > 1, thus it can
be stated that grouping MPI tasks within as few nodes as possible is good
to achieve shorter execution times. This statement changes in EULER, as it
is visible in Fig 7b, which shows that most mean values have RET < 1 (and
most of the kernels experiments with RET < 1: BT, FT, IS and MG). This
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Fig. 6 Relative execution time for the Dedicated Cores setup in ACME. Nondimensional
computing time is referred to the case of all processes running in one node.

result departs from ACME’s. That is, Euler has many experiments in which
the distribution of the MPI tasks over the nodes implies an execution speedup.
The fewer host memory per core and slower communication bandwidth with
the RAM stands as one cause to explain this trend. So, it seems that a gen-
eral rule can be inferred out of the plots of both clusters after examining the
behaviour of the kernels as a whole. However, several considerations must be
pointed out regarding the computed behaviour. On one hand, a case by case
examination reveals that there are exceptions to this rule as for example occurs
in ACME regarding the LU kernel (class B - 8 tasks), IS kernel (class C - 4
tasks) and others. So non consistent tendencies of the kernels are noticed. And
on the other hand, non monotone behaviour occurs in several computed cases.
Some of these may be explained by the kernel requirements (CPU- or memory
intensive,...), but also it is suggested that the execution is affected by the MPI
tasks of rather different behaving kernels located in neighboring cores by the
scheduler, which compete for resources (RAM and traffic). Besides, it is inter-
esting to notice that such a pattern (and criterion) related to grouping MPI
tasks in fewer nodes, seems to be more effective in saving execution time as
the degree of parallelism and size (class) increase. On the contrary, computed
cases of low number of tasks (see column of 4 MPI tasks in Fig. 6) show a small
variation of the execution time (within 5-10%) with the number of nodes. As
said, this general trend observed in ACME, it is not so definite in EULER. The



Effect of MPI tasks location on cluster throughput using NAS 11

Fig. 7 Execution time of the NAS kernels for the setups Dedicated cores and Dedicated
nodes in both clusters ACME and EULER. Times are nondimensionalized by the most
concentrated case. Bars have been plotted using the entire set of data (NAS sizes: A,B and
C; and corresponding nNxnT configurations). Symbol “o” indicates the mean execution
time and “*” corresponds to the maximum and minimun execution time.

somehow opposite behaviour of EULER and its higher sensitiviness suggest
to accomplish a further in depth kernel-by-kernel analysis. A comparison of
the different behaviour found in ACME and EULER in terms of the execution
time for the two MG and EP kernels (memory- and CPU-intensive, respec-
tively) is depicted in Fig. 8 for Dedicated Nodes setup. The plots for the MG
kernel with classes B and C show that the speedup increases with monotone
trend as more nodes are involved in the nNxnT configuration (nT = 4, 8, 16
and 32). And it is seen that this speedup is significantly greater in EULER,
which can be explained because EULER nodes are more memory-bound than
ACME’s. The EP kernel in ACME exhibits also a rather small speedup when
tasks are distributed over nodes. But on the contrary, EULER shows that the
EP kernel runs slower when it is taken ”out of the box” (that is, when the
tasks are partially migrated from all being grouped in one node). It is visible
in Fig. 8 that a big jump in execution time occurs as the EP kernel goes from
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1xnT to 2xnT (with nT = 4 and 8). It is noticed that the computed cases in
EULER corresponding to nT = 16 and nT = 32 start at configurations 2x8
and 4x8, respectively, thus it is not possible to have evidence of the ”out of the
box” effect in these cases (but it is plausible that the wavy pattern observed
in these be similar to the wavy one observed for nT = 8 from the 2x4 configu-
ration on). In summary, the rule derived for the EP kernel in EULER is that
MPI task grouping makes sense as the execution time drops. And besides, the
reversed behaviour seen in ACME for the EP kernel can be justified because
of the much higher internode bandwidth, which compensate the ”out of the
box” effect observed in EULER.

4.4 Sensitivity to the clusters setup

The performance of kernels MG and EP is plotted in Fig. 9 corresponding to
8 MPI tasks and the four clusters setups analysed for the classes A, B and
C. This plot is relevant because it provides four nNxnT configurations that
start at 1 x 8 in both clusters, so the ”out of the box” effect can be focused, if
any. For both kernels, Dedicated Network and Dedicated Nodes setups provide
very similar execution time, showing a monotone, quasi-linear drop with the
number of nodes, which suggests the benefit (but small) of adding nodes to
the computation. The plot for Dedicated Sockets is similar, but even it is seen
a smaller drop of the execution time. This pattern is observed for the MG and
EP kernels with all classes (it is noted that Dedicated Network and Dedicated
Sockets setups are included only for ACME since EULER is a production
cluster and only a portion of it was assigned to this research). Again, for the
MG kernel in EULER under Dedicated Nodes, it is observed a higher speedup
with the number of nodes, compared to ACME. In particular, for the execution
of the EP kernel in EULER, it is visible the out-of-the-box effect under both
setups: a large increase of the execution time when the EP kernel goes from 1x8
to a 2x4 configuration, followed by a saturation of the drop when additional
nodes are included. A different conclusion is derived for EULER: while for the
memory-bound MG kernel is beneficial to distribute the MPI tasks over so
many nodes as possible (the smaller host memory of its sockets may explain
the significant improvement), the CPU-bounded EP kernel demands to group
them into one node to attain the best performance. In summary, the MG and
EP kernels under Dedicated cores setup in ACME, points out to the dominance
of a performance drop (but not monotone) when additional nodes are added
to the computation (the execution time shows a pattern of either a moderate
increase of up to 20%, or a slight drop in some cases). Comparison of the
speedup obtained with the Dedicated Nodes and Dedicated Cores setups for
the whole set of experiments conducted in ACME and EULER is given in
Fig. 10. A comparison for ACME with 3 setups is provided in Fig.11. The
plotted boundary lines indicate the unused portion of the cluster due to the
Slurm setup itself, which serves to suggest a general criterion about how much
speedup is possible and which is the extra cost due to not using a portion
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Fig. 8 Relative execution time for the Dedicated Nodes setup. NAS kernels MG (upper
row) and EP (lower row) are shown for clusters ACME and EULER.

Fig. 9 Impact of cluster setup on the relative execution time for MG (memory-intensive)
and EP (CPU-intensive) kernels with 8 MPI tasks in clusters.

of the machine (e.g.: say an ACME 2x4 configuration with Dedicated Nodes
setup. This implies 4 tasks running on a socket of 8 cores. Since each node has
2 sockets, the occupation reads 4 of a total of 8+8=16 cores, which means a
75% of unused cores).

The vertical scales in the plots relate speedup and % of unused cores (i.e.
speedup of 2 corresponds to a 50% of unused cores; speedup of 4 to a 75%
of unused cores; and so on). Fig. 10 shows that speedup values dispersion is
greater in EULER. Speedup dispersion in ACME strongly increases at higher
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Fig. 10 Map of speedup VS. usage of computational resources for NAS under a) Dedicated
Cores setup; and b) Dedicated Nodes setup (locus of % of unused cores is plotted for each
number of MPI tasks. Line color corresponds to the symbols), depicted for clusters ACME
and EULER.

degrees of parallelism (32 and 64 MPI tasks), mostly with the Dedicated Cores
and Dedicated Sockets setup, as it is visible in Fig. 11.

These plots remark the importance of searching for a balance between
significant speedups and not having too many unused cores. Obviously, it
is a matter of settling a sweet point for users and cluster administrators.
But under the Dedicated Nodes setup, it is seen that few points are over the
boundary lines. A question that arises is how to cast a criterion to anticipate
how the execution of a given experiment should be to speed it up as much as
possible. Because only the Dedicated Cores setup has all its boundary lines
collapsed into the 0%-unused cores situation (full occupation), it is interesting
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Fig. 11 Map of speedup VS. usage of computational resources for NAS under Dedicated
Cores, Sockets and Nodes setups in cluster ACME.

to compare it with what happens using the other cluster setups. Let

Sincrement = Speedupi − SpeedupDC

be the speedup increment when the cluster setup is changed to i=DN, DS
(DN: Dedicated Nodes; DS: Dedicated Sockets). If

Sincrement > 0

then the i-setup is potentially a better option for performance; but the context
of unused cores in the cluster must be taken into account. For that, a speedup
figure of merit (SFM) is introduced according to

SFM =
Speedupi
SpeedupDC

If the condition

SFM >
totalcores
usedcores

is fulfilled by an executed experiment in the cluster, the attained performance
improvement justifies the cluster operation with that number of idle cores.
From a preliminary standpoint, this figure of merit may be useful to set a
criterion to run production codes using an a priori building of a database
out of code executions. That database would contain values of Speedupi and
SpeedupDC obtained under a variety of nNxnT configurations, problem sizes
and short enough runtimes to be effective in the code characterization. Hence,
this database would be a reduced ”map of cases” to inferred executions be-
haviour and to guide throughput decisions.
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5 Conclusions

The NAS Parallel Benchmarks have been executed in a systematic way on two
clusters with rather different internode and intranode bandwidth properties, to
identify dependencies between MPI tasks mapping and execution time speedup
or resource occupation. The study comprises jobs up to 128 MPI tasks, justified
by the limited strong-scaling properties of NAS kernels. A criterion for decision
on which cluster setup is better to optimise the total cluster throughput is
provided for NAS and its extension to production codes is suggested.

The findings can be related to two scenarios. When the clusters are con-
figured to run parallel jobs in exclusivity, the results show that in most cases
the execution time drops as the MPI tasks are distributed over the nodes (this
agrees with previous investigations) and it seems efficient to distribute a given
parallel job over cores located in different nodes. However, the other important
scenario found in production HPC clusters corresponds to the need of sharing
resources among set of jobs, such that the socket cores execute MPI tasks of
different jobs. In this situation, a rather different behaviour is observed, much
more sensitive to the type of cluster. In the state-of-the-art cluster ACME,
many of the carried out experiments show a speedup when MPI tasks run on
the fewest number of nodes. This is opposite to what is found in the clus-
ter EULER, where execution time trends are more sensitive to the algorithm
properties and part of the experiments points out to task distribution over
nodes to shorten the execution time. This major result found in ACME feeds
the discussion about possible computational efficiency benefits by tailoring
live tasks migration and scheduling policies in modern clusters. In production
clusters which share a significant load of serial jobs while running parallel jobs
(a 7-year analysis of the executed tasks in EULER showed that more than half
were serial), the question of to which extent serial tasks may act as pertur-
bations to the execution of parallel jobs arises and deserves consideration to
clarify the best live task migration policies within the context of optimizing
clusters occupation. Other interesting aspect is how different the results would
be in the case of hybrid MPI/OpenMP tasks. These open issues are part of
the ongoing research within our group.

Acknowledgements This work was partially funded by the Spanish Ministry of Econ-
omy, Industry and Competitiveness project CODEC2 (TIN2015-63562-R) with European
Regional Development Fund (ERDF) as well as carried out on computing facilities provided
by the CYTED Network RICAP (517RT0529).

References

1. Bailey, D., et al.: The NAS Parallel Benchmarks. Tech. rep. (1994)

2. Bonnie++: www..coker.com.au/bonnie++

3. Chai, L., Gao, Q., Panda, D.K.: Understanding the impact of multi-core architecture in
cluster computing: A case study with Intel dual-core system. In: Proc.- 7th IEEE Int.
Symp. Cluster Computing and the Grid, CCGrid, pp. 471–478 (2007)



Effect of MPI tasks location on cluster throughput using NAS 17
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