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Abstract

We present a numerical study of the interaction of the flame and acoustic

waves when a laminar flame propagates in a narrow channel from an open

to a closed end. It is shown that the coupling of the flame dynamics and the

acoustics can lead to thermo-acoustic instabilities, that can result in large

oscillations in the flame speed and pressure inside the duct. Additionally,

it is shown that both symmetric and non-symmetric flames can propagate

in these channels and that, because their response to acoustic oscillations is

different, their interaction with the acoustic modes of the channel is also dif-

ferent. Therefore, the possibility of symmetry breaking needs to be taken into

account in order to correctly predict the onset of acoustic flame instabilities

in narrow channels.
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1. Introduction

Small-scale combustion has received a lot of interest recently as a power

and heat generation technology, because of potential advantages compared to

existing small-scale batteries, such as lower weight, smaller size, higher power

output, faster recharge and longer duration. Reviews of recent technologies

and developments can be found in [1–6].

Obtaining high power in small-scale combustion systems requires comple-

tion of the combustion process in a small volume and is then limited by the

chemical reaction time characteristics of the fuel. Moreover, the increased

surface-to-volume ratio of small devices results in large heat losses through

the wall, which can affect the stability of the flame. As a consequence, the

coupling between the fluid dynamics, heat transfer, acoustics and chemical

kinetics is important in these small systems and is a critical element of their

design.

The propagation of flames in ducts (small or large) is also of interest for

safety reasons: when a mixture of fuel and oxidizer can exist in the injection

conducts of a combustion system, it is fundamental to know if a flame can

propagate upstream along them, a situation known as flashback. After pio-

neering work in this subject about thirty years ago [7, 8], recent interest in

small-scale combustion systems has motivated further studies on the effects

of heat losses, the flow velocity, the Lewis number and the channel width on
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the flame propagation and extinction limits for steady flames propagating

in narrow channels [9–19]. In these works, the extraordinary complexity of

the flame dynamics has been evidenced. In particular it was shown that sev-

eral flame instabilities can appear, related to heat expansion, to differential

diffusion or to the effect of varying viscosity.

Nevertheless, studies of flame-acoustics interactions leading to acoustic

instabilities for flames in small ducts are scarce in literature. Until recently,

experiments on thermo-acoustic instabilities have only been viable in meso-

scale ducts (diameters of the order of 1− 10 cm) [20–23]. They have shown

that when a flame propagates from an open to a closed end in a conduct the

coupling of flame dynamics and pressure can lead to different regimes: for

mixtures for which the flame propagation speed is slow the flame produces

no sound; for more energetic mixtures a primary instability is detected, in

which the flame oscillates moderately while propagating and sound is pro-

duced; when the laminar flame speed of the mixture is large, violent acoustic

instabilities (called secondary), featuring large flame oscillations and high in-

tensity sound are reported and finally for even faster flames, the interaction

flame-acoustics leads to incoherent, very fast motion and the flame becomes

turbulent, producing no sound [21]. Experimental studies of flame-acoustics

interactions in smaller systems have only been reported recently, in a series of

studies of different fuel flames propagating towards a closed end in the narrow

gap between two parallel plates (a Hele-Shaw cell), showing again primary

and secondary thermo-acoustic instabilities [24, 25]. In these experiments

the narrower dimension was of the order of 1-10 mm.

Analytical and numerical studies of flame-acoustics interactions have usu-
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ally decoupled the acoustic problem from that of the flame, to simplify the

problem and facilitate the analysis and have studied the response of planar

or slightly wrinkled flames to forcing by externally imposed acoustic waves

[26–28]. To the best of our knowledge, the two-way coupling between flame

and acoustics in a conduct using direct numerical simulations of the com-

plete problem has only been tackled in the study reported by Petchenko et

al. [29, 30]. In these two papers, numerical simulations solving the flame

propagation and the acoustics for flames propagating in narrow channels

with adiabatic walls and Le = 1 were presented. However, the possibility of

symmetric and non-symmetric propagating flame solutions was overlooked.

Several recent studies have indeed shown that in narrow channels sym-

metric and non-symmetric flame solutions might appear, related to thermo-

diffusive or Darrieus-Landau instabilities [12, 13, 17, 19, 31]. This symme-

try breaking in otherwise perfectly symmetric problems appears at a crit-

ical channel width, which depends on the reactants flow rate, the mixture

Lewis number and the heat release parameter. When symmetry breaking

occurs and the two solutions are mathematically possible, symmetric flames

have been shown to be unstable to small perturbations, and non-symmetric

flames emerge as the physically realizable solutions. For a given set of pa-

rameters, the non-symmetric slanted-shaped solution presents a significantly

larger flame surface and propagating speed than the corresponding symmet-

ric flame. Because these differences can be relevant for the flame-acoustics

interactions, here we revisit the above mentioned study [29, 30], paying spe-

cial attention to the possibility of symmetry breaking and its implications in

the onset of thermo-acoustic instabilities.
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Notice that in [25–28], where flames in vertical channels were investigated,

it was concluded that gravitational acceleration plays an important role in

the flame instability. Nevertheless, we shall neglect gravity forces in this

work, and will study their effect elsewhere. In addition, we will simplify the

problem studying only Le = 1 flames in adiabatic channels, and will include

differential diffusion and heat losses to the walls in future work. The main

goal of this work is to study the effect of flame symmetry on the dynamics

of flame-acoustic interaction.

In section 2 we describe briefly the adopted set-up, the conservation equa-

tions and the numerical method used to solve them; in section 3 we present

flames propagating in a narrow adiabatic channel with a closed end and

the conditions for the existence of symmetric and non-symmetric solutions,

which for a given Lewis number are determined by the channel width; sec-

tion 4 presents symmetric and non-symmetric flames oscillating due to the

coupling with acoustic waves; section 5 analyses the frequency of these oscil-

lations and section 6 explains the different oscillating behavior of symmetric

and non-symmetric flames. Sections 7 and 8 introduce the effects of variations

in parameters such as the channel width and the dependence of the reaction

rate on the density. Finally, section 9 summarizes the main conclusions of

our study.

2. Numerical model and simulation method

We consider a premixed flame propagating in a two-dimensional channel

with width D and length L, filled with a flammable mixture of fuel and

air. The channel walls are assumed to be adiabatic and closed at one end
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(say the left end) and open at the other end. If a fuel-air mixture at initial

temperature T0 is ignited near the open end of the channel, a flame front will

grow and propagate, rapidly reaching the walls as well as the open channel

end. After this transient, a single flame will remain, propagating towards the

fresh mixture, from right to left, as shown in the sketch in Fig. 1. A parabolic

velocity profile will be established in the hot combustion product stream,

bringing the combustion products to the exit at the right side of the channel.

This non-uniform flow will induce a curvature in the flame, whose magnitude

depends on the parameters of the problem. The unburned mixture in the

region between the moving flame and the closed end of the channel remains

stationary (on average, except for the movement of gas particles produced

by sound waves). As we shall show below, the resulting curved flame can be

symmetric or non-symmetric.

The exact shape and speed of this flame can be determined numerically

by solving the governing equations of the problem. Here, we solve the 2D

conservation equations for mass, momentum, energy and fuel mass fraction.

We will assume a one-step irreversible chemical reaction F+O → P where

F is the deficient reactant, so that the reaction rate depends on its mass

fraction, YF . Neglecting body forces, radiation heat losses and heating by

viscous dissipation, the two-dimensional governing equations are:
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∂ρ

∂t
+
∂ρui
∂xi

= 0 (1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

(2)

∂ρet
∂t

+
∂ (ρet + p)ui

∂xi
=

∂uiτij
∂xj

− ∂qi
∂xi

+Q ω̇F (3)

∂ρYF
∂t

+
∂ρYFui
∂xi

=
∂

∂xj

(
ρD∂YF

∂xj

)
− ω̇F (4)

Here ui are the components of the gas velocity, ρ its density, p the pres-

sure, YF the fuel mass fraction and et the total (non-chemical) energy, de-

fined as et = 1
2
ukuk + p/ρ (γ − 1), with γ = cp/cv, the relation of heat

capacities, assumed constant, and where the perfect gases equation of state:

p = ρRT = ρ(cp − cv)T is used.

Equations 1-4 are completed by the definitions of τij, the viscous stress

tensor τij = µ
(
∂ui/∂xj + ∂uj/∂xi − 2

3
δij∂uk/∂xk

)
, and qi, the components

of the heat flux vector, modelled via a Fourier law as: qi = −λ∂T/∂xi, where

λ = µcp/Pr is the thermal conductivity of the gas mixture, defined as a func-

tion of the mixture viscosity µ, its heat capacity cp and a constant Prandtl

number Pr. The viscosity and conductivity are assumed to vary with tem-

perature, as µ/µ0 = λ/λ0 = (T/T0)
0.7, while the fuel diffusivity D appearing

in Eq. 4 is related to the thermal diffusivity and the thermal conductivity

via a constant Lewis number Le as D = DT/Le = λ/ (ρcpLe) and depends

on temperature as ρD/ρ0D0 = (T/T0)
0.7. The subscript 0 stands here and

throughout the paper for quantities evaluated in the fresh gas mixture.

Finally, the fuel consumption rate per unit volume and time, ω̇F , is de-
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scribed by an Arrhenius law:

ω̇F = B ρn YF exp(−Ea/RT ), (5)

where Ea is the activation energy and B is the pre-exponential factor. The

exponent n, taking values n = 1 and 2 is used here to represent Arrhenius

models proportional to either ρ or ρ2. This dependence has an effect on

the flame-acoustics interaction, as will be shown in section 8. Even if n =

2 could be more appropiate to represent an order-two global reaction rate

proportional to the product of the partial densities of the deficient and the

abundant reactant, because most of the works on flame-acoustics interaction

use an Arrhenius expression proportional to ρ, we maintain n = 1 in this

work, unless otherwise specified. We introduce the Zel’dovich number β =

Ea (Ta − T0) / (R T 2
a ) and the thermal expansion parameter q = Ta/T0, the

standard parameters characterizing Arrhenius models, with Ta the adiabatic

flame temperature. The heat produced per unit volume and time, Q ω̇F ,

is given by the factor Q = (Ta − T0)cp/YF0 = (q − 1)T0cp/YF0, where YF0

represents the fuel mass fraction in the fresh gas mixture.

We solve a dimensionless version of Eqs. 1-4, scaled with the thermal

flame thickness of the planar flame, defined as δT = DT0/SL (with DT0 the

thermal diffusivity of the fresh gas mixture, DT0 = λ0/ (ρ0cp0), and SL the

laminar planar flame speed), a time scale δT/c0 (with c0 the speed of sound

in the fresh gases, c0 =
√
γp0/ρ0 ), and the fresh gases reference state given

by ρ0, T0, µ0, YF0 and cp0. For this dimensionless version of the equations the

only free parameters are Le, Pr, q, β, γ, a Damköhler number Da related to

the pre-exponential factor B as Da = Bρn−10 δT/c0, and an acoustic Reynolds

number Reac = δT c0/ν0, which relates the thermal flame thickness, the
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sound speed in the fresh gases c0, and the fresh gases kinematic viscosity

ν0 = µ0/ρ0. In this work we will assume Lewis number Le = 1, Prandtl

number Pr = 0.7, the relation of heat capacities γ = 1.4, a value of the

thermal expansion parameter q = 8 and a value of the Zel’dovich number

β = 10. These are representative values for hydrocarbon combustion. The

acoustic Reynolds number is chosen to be Reac = 476.19. The Damköhler

number Da determines the burning speed of the planar unstretched flame,

SL. Here it is chosen so that the flame Mach number Ma = SL/c0 takes the

value Ma = 0.003 (and thus it takes different values for n = 1 and n = 2).

The computational domain is a rectangle of width D and length L, as

shown in Fig. 1. In this work we vary the channel width in the range D =

10 δT − 80 δT (this would correspond to 1− 8 mm for typical thermal flame

thicknesses of the order of 0.1 mm). The channel length is varied from

L = 800 δT to 5000 δT , that would correspond to about 80 − 500 mm. In

all these cases the computational domain is discretized on uniform Cartesian

grids containing typically 100 × 2000 cells for a channel with D = 40 δT

and L = 800 δT . Notice that the parameter δT defined above is just a length

scale, not a measure of the real flame thickness. A closer measure of the flame

thickness is given by δL = (Ta − T0) / dT
dx

∣∣
max

, which is about five times larger

according to [32] (for the present planar flame, in particular, we obtained

δL = 5.9 δT ). In the present calculations we have a grid resolution about

15 times smaller than δL. Grid refinement studies have been conducted for

selected cases, showing no appreciable differences in the results of simulations

when the grid resolution was doubled or even quadrupled (see AppendixA).

For some particular cases a grid with finer resolution was required; this will be
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discussed in the text as these cases are presented. The time step is determined

by a CFL condition based on the sound speed with a value 0.5 for the CFL

factor.

Adiabatic, no-slip, no-flux boundary conditions are imposed at the chan-

nel walls (the effect of heat losses will be considered elsewhere). At the open

channel end a pressure node with constant pressure equal to the atmospheric

pressure (p = patm) is set, as should correspond to an outlet open to the

atmosphere. Note that the constant pressure boundary condition implies re-

flection of sound waves at the open end [32, 33]. Therefore the flame-sound

interaction will be different to that described in [29, 30], where non-reflecting

boundary conditions were applied at the channel exit and the flame-acoustics

interaction happens mainly due to the acoustic mode between the flame front

and the closed end wall. Here, because of the reflection of sound waves at

the exit, the acoustic mode between the flame front and the open end also af-

fects the flame-acoustics interaction. This is, in our opinion, a more realistic

boundary condition for an open tube, and it has been used in several nu-

merical studies concerning acoustic flame instabilities [34–36]. The NSCBC

methodology [33] is used to implement the boundary conditions. It should

be mentioned that in the case of very strong acoustic oscillations, the flow

direction in the burnt gases may be occassionally inverted, so that the outlet

becomes an inlet. When this is the case, the entering gas is considered to

have the composition and temperature of burnt gases.

The calculations are initialized using a planar flame solution, located at a

distance x0 = 8 δT from the open end, as in [29, 30]. This avoids the need to

solve for the ignition period, which would imply very small times steps and
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therefore high computational costs. Three kinds of simulations will be pre-

sented below: 1) simulations starting from a planar flame and using the full

computational domain, 0 < y < D; 2) simulations in the full computational

domain starting from a planar flame with an added non-symmetric pertur-

bation, in the shape of a circular hot spot centered at (xc = x0 − δT ; yc =

3D/4) and with radius R = δT , so that the perturbed initial temperature

is T (x, y) = Tplanar(x, y) [1 + 6 exp (− ((x− xc)2 + (y − yc)2) /2R2)], where

Tplanar(x, y) is the unperturbed initial planar flame temperature; and 3)

simulations using half the computational domain, 0 < y < D/2, and impos-

ing symmetry along the central axis y = D/2. This last kind of simulations

is used to force a symmetric solution in cases where the symmetric flame

might be unstable.

While the constant-pressure boundary condition at the duct exit and the

viscosity dependence with temperature are two differences with the simu-

lations presented in [29, 30], the main difference between those papers and

the present work is our consideration of both symmetric and non-symmetric

solutions for the propagating flames, as explained in the introduction.

To solve the system of equations Eqs. 1-4, together with the mentioned

boundary conditions, we use the compressible solver NTMIX3D, a paral-

lel solver designed for the direct numerical simulation of flames and turbu-

lent reacting flows described in [37] and thoroughly validated (see e.g. [37–

39]), using a sixth-order accuracy compact finite differencing-scheme [40] and

third-order Runge-Kutta time integration.

In analysing the results, in what follows we shall measure the flame con-

sumption speed (normalized with the flame speed of the corresponding planar
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Figure 1: Sketch of the problem.

unstretched flame SL) by the integral:

Sc/SL =
1

ρ0YF0DSL

∫ D

0

∫ L

0

ω̇F dxdy. (6)

A symmetry factor defined as:

|S| = 1

(Ta − T0)DL

∫ D/2

0

∫ L

0

|T (x, y)− T (x,D − y)| dxdy, (7)

so that it is equal to zero for perfectly symmetric flames, shall be used to

distinguish symmetric and non-symmetric solutions. It is obvious that |S|

is exactly zero (within the numerical accuracy) for symmetric distributions

and non-zero for non-symmetric ones.

3. Symmetric and non-symmetric solutions.

When a flame propagates in a channel in a quiescent mixture, the hot

products are put in motion and, because of friction with the walls, a parabolic

flow is established in the hot gas stream. This flow induces a curvature in

the flame, increasing its surface and, consequently, its consumption speed.

Heat losses to the wall may contribute also to curving the flame, but for an

adiabatic channel the final shape depends only on the channel width, the

thermal expansion parameter and the mixture Lewis number. As reported

in [19], for a flame with Le = 1 freely propagating in a channel with imposed
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flow rate m and with a given thermal expansion rate q, there is a critical

channel width below which the flames are always symmetric and above which

two solutions are possible: a symmetric or a non-symmetric flame. It has

been shown that the symmetric flame becomes unstable and a non-symmetric

flame is generated during the growth of small perturbations [19]. Symmetric

and non-symmetric flames have different flame surface and therefore different

consumption speeds.

Of course the two kind of solutions may exist as well in the present case

where flames with Le = 1 propagate in a channel from an open to a closed

end. This is illustrated in the temperature distributions presented in Fig. 2,

corresponding to the symmetric and non-symmetric solutions for a Le = 1,

q = 8 flame propagating in a channel of width D/δT = 20 and L/δT = 800.

Figure 3 presents the consumption speed Sc/SL and the symmetry factor

|S| for flames with Le = 1 and q = 8 propagating from the open to the closed

end in several channels with a fixed length L/δT = 800 and increasing widths

D/δT = 10− 30. The solid lines correspond to simulations in a half channel

and therefore to imposed symmetric conditions. The dashed lines correspond

to simulations in the full domain starting from a planar flame plus a non-

symmetric perturbation as described in section 2. For the narrower channels

the flame is planar, thus |S| = 0, and the propagating speed is equal to that

of the planar unstretched flame, Sc/SL = 1. As the channel is made wider

the flames acquire a curvature and the flame speed adopts values Sc/SL > 1.

For D/δT < 17 all the computed flames have symmetric shapes, as shown by

the zero value of the symmetry factor |S|. For wider channels, D/δT >= 17,

symmetric and non-symmetric solutions are mathematically possible (even
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Figure 2: Flame structures obtained in the simulation of a flame with Le = 1 and q = 8

propagating from the open to the closed end of a channel with D/δT = 20 and L/δT =

800. The flames are represented by isotherms plotted at steps δT/ (T0(γ − 1)) = 1 and

correspond to the same instant in the flame propagation.

if only the non-symmetric flame is stable), and the non-symmetric solution

burns faster than the corresponding symmetric flame. Note that all the

flames in Fig. 3 propagate steadily after some transient. Even if some oscil-

lations can be observed in the flame speed at the initial propagation stages

(see for example the symmetric flame corresponding to D/δT = 30), these

are rapidly damped, due to dissipative effects.

For Le = 1, q = 8 and adiabatic walls, the critical channel width for which

non-symmetric flames exist lays between D/δT = 16 and D/δT = 17. Note

that in simulations done assuming constant viscosity (independent of temper-

ature), we found that the critical channel width was between D/δT ≈ 5.5 and

D/δT ≈ 6, which agrees with the values reported in [19] for approximately

the same parameter set. The temperature-dependent viscosity of the present

study, results in a different effective thickness of the flame and therefore a

different value of the critical channel thickness for symmetry breaking. It

should be noted that in the present study the definition of the thermal flame

thickness, δT , is based on the cold gas transport parameters.
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Figure 3: The flame consumption speed, Sc/SL, and the symmetry factor, |S|, for flames

with Le = 1 and q = 8 propagating in channels with length L/δT = 800 and different

widths.

4. Oscillating flames

As the channel is made wider, self-sustained oscillations appear as a re-

sult of flame-sound interaction. No oscillation occurs if a zero Mach number

formulation is used (this was verified in a separate set of simulations). Figure

4 presents the time evolution of the normalized consumption speed, Sc/SL,

the mean flame position, xf , scaled with L, and the pressure at the channel

closed end, pw/pa, for a flame propagating in a channel with D/δT = 40 and

L/δT = 800. Note that L/δT = 800 is the smallest length for which oscilla-

tions are detected for this channel width, for shorter channels initial oscilla-

tions are rapidly amortiguated by dissipative effects, as was the case with the

thinner channels of Fig. 3. The flame consumption speed is computed using

Eq. 6, and the pressure at the closed end is measured at the centre of the end

wall. We estimate the mean flame position via the burnt volume fraction,

Vb (defined as the fraction of volume in the channel -or area in these 2D
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Figure 4: The flame consumption speed, Sc/SL, flame position, xf/L, and pressure at

the channel closed end (left wall), pw/pa, for a flame propagating in a channel of width

D/δT = 40 and length L/δT = 800. The inset corresponds to a zoom of the xf/L curve,

where weak oscillations of the flame position may be appreciated.

calculations- where the temperature is above the value T∗ = 1/2(Ta − T0)),

as: xf/L = Vb/(DL). The mean flame position increases from xf/L = 0.1,

corresponding to the initial condition, to xf/L = 1 as the flame reaches the

end wall. This is an average measurement of the flame advancement, differ-

ent to what would be measured by tracking the position of a specific flame

point. Indeed a flame point may oscillate about a fixed position without

changing the burnt volume fraction.

Starting from the initially planar flame, for which the consumption speed

is Sc = SL, the flame acquires a curved tulip shape as it propagates along
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Figure 5: Isotherms corresponding to T∗ = 1/2 (Ta − T0) for a flame propagating in a

channel of width D/δT = 40 and length L/δT = 800. The three flame groups correspond to

the beginning (symmetric flame with small oscillations), the middle (symmetric flame, with

maximum oscillations) and the end of the simulation (non-symmetric, steadily propagating

flame). In the three cases the plotted isosurfaces are separated by the same time delay,

corresponding to half the period of the maximum amplitude cycle).

the channel and accelerates, reaching a speed of about Sc = 1.65SL. Then it

starts oscillating, and this oscillation amplifies, becoming maximal when the

flame is at the second half of the channel. Changes in the flame shape are

small, but still appreciable in Fig. 5, where isolines of constant temperature

(T∗ = 1/2(Ta − T0)), representing the flame surface, are plotted for three

different stages of the flame propagation: near the beginning, at the cycle of

maximal amplitude and near the end of the channel. In the three groups the

plotted isosurfaces are separated by the same time delay, corresponding to

half the period of the maximum amplitude cycle. The maximum amplitude

cycle occurs at a location after the middle of the channel, at about xf/L =

0.55. After that, the amplitude of the oscillations decays. We plot in Fig. 6

the flame consumption speed oscillations about the mean value corresponding

to the curved flame, S ′c = (Sc − 1.65SL)/SL, and the pressure oscillations

about the atmospheric pressure value, p′w = (pw − pa)/pa. Note that the

value of S ′c at initial times is S ′c = (SL − 1.65SL)/SL = −0.65 and lays out

of the y-axis range of the figure. We can see in this figure that the pressure
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Figure 6: In-phase oscillations in the flame consumption speed S′c (dashed lines) and the

pressure at the end wall p′w (solid lines) for a flame propagating in a channel of width

D/δT = 40 and length L/δT = 800.

measured at the end wall oscillates in phase with the flame speed, which,

according to Rayleigh’s criterion, is a necessary condition for self-sustained

thermo-acoustic instabilities.

Before reaching the end wall, a large change in flame consumption speed

occurs. This corresponds to the flame transitioning to a non-symmetric

slanted shape, as can be seen in Fig. 5. For this slanted flame, the flame

surface and therefore the consumption speed are larger. This flame propa-

gates steadily, showing no oscillations, at a speed about 2.2SL, and rapidly

reaches the end wall and extinguishes as the fuel is completely consumed. At

the final propagation stages near the end wall, a small decceleration, followed

by a sudden acceleration precede the final extinction. This corresponds to

a reduction in flame surface after the flame tip reaches the wall, followed

by the fast engulfment and consumption of a blob of remaining fuel at the

channel corner. These changes in flame speed, which can be appreciated in

Fig. 4 top, produce noise, as can be seen in Fig. 4 bottom.

Figure 7 presents pressure and gas velocity profiles at the central hori-
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zontal channel axis. The profiles in Fig. 7 a) correspond to four different

instants along the flame propagation: tSL/L = 0, 0.15, 0.30 and 0.45. As the

flame propagates in the channel, a negative pressure gradient is established

between the flame position and the open channel end, which opposes the wall

friction and pushes the hot gases towards the channel exit, with maximum

speeds at the central axis of the order of U ≈ 18SL. The pressure profile

between the flame and the closed-end wall is uniform for t SL/L = 0.15 and

0.45, with a pressure level that grows as the flame travels towards the wall.

This uniform pressure corresponds to a negligeable gas velocity before the

flame, indicating that the fresh gases are at rest and uniformly compressed

as the flame advances. The pressure between the flame and the end wall at

tSL/L = 0.30 (dashed-dotted line) is not constant, it presents a non-uniform

gradient which corresponds to a pressure wave, as we can see by inspecting

Fig. 7 b).

The pressure and velocity profiles in Fig. 7 b) correspond to half the

cycle of maximum amplitude shown in Fig. 5. The solid line corresponds

to the instant in this cycle when the flame surface is minimum, that is,

the instant of maximum negative amplitude in the flame speed oscillations.

The dashed-dotted line corresponds to the instant when the flame surface is

maximum, that is, the maximum amplitude in the flame speed oscillations.

Finally, the dashed line profiles correspond to an intermediate time between

these two, where the flame surface (or speed) takes the mean value between

oscillations. We can see that, because of these pressure wave oscillations, the

pressure at the flame position and the pressure gradient between the flame

and the channel open-end oscillate. These oscillations are small, so that
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the pressure gradient does not change sign and the flux between the flame

and the open end remains positive (towards the channel exit). Because this

particular channel is rather short, the pressure difference needed to push the

hot gases through the open end is small. However, the pressure gradient

between the flame and the closed-end wall oscillates with a larger amplitude

and changes its sign, driven by pressure waves travelling between the flame

and the closed wall. This oscillating pressure gradient induces a small flux

in the fresh gases, switching between positive and negative values opposed in

phase to the pressure oscillations. In summary, the fresh gases between the

flame and the channel end wall are at rest except for small oscillating fluxes

induced by pressure waves.

We have seen that, as described in [26, 27], oscillations in the flame sur-

face (and speed) are driven by acoustically-induced accelerations of the flow

just upstream the flame, linked to acoustic waves propagating between the

channel end wall and the flame. Waves are reflected at the closed channel

end and (partially) at the flame surface as well as at the open channel end.

If these waves are amplified by the flame, and in its turn the flame response

is strong enough and in phase with the sound waves, then oscillations may

grow, leading to self-sustained instabilities. However, if the flame response

is weak then oscillations can be dissipated.

It seems clear from these results and those of the precedent section that

a minimum channel width is needed for the flame to oscillate. For a channel

with D/δT = 30 oscillations are small and rapidly dissipated (see Fig. 3)

. For a channel with D/δT = 40 persistent oscillations are detected. This

is a consequence of the increase in the flame curvature: the response of a
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Figure 7: Pressure and gas velocity at the horizontal central axis for a flame propagating in

a channel with D/δT = 40 and L/δT = 800. a): Four instants along the flame propagation

(solid, dashed, dashed-dotted and dotted lines, corresponding, respectively, to t SL/L =

0, 0.15, 0.30, 0.45) b) Three instants in the cycle of maximum amplitude of the oscillating

flame of Fig. 5. The three profiles correspond to the instant of smallest flame surface

(solid), to the instant of largest flame surface (dashed-dotted) and to an intermediate

time. They represent thus half a cycle.
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planar flame to acoustic wave oscillations is very weak [41, 42], as the flame

becomes curved, the flame response to oscillations becomes stronger, and

for a certain value of the curvature the flame response is strong enough

to amplify initial perturbations and compensate the dissipation of acoustic

energy by viscous effects. Moreover, we have also observed that a minimum

channel length is needed for the oscillations to persist: for the present channel

width, oscillations only appear for a minimum length of L/δT = 800. As we

shall see later, this is related to the acoustic modes of the channel, which

determine the possible frequencies of acoustic waves in the channel for a given

channel length. Only when pressure oscillations at these frequencies are able

to produce an amplified flame response we will find a coupling between the

flame and the acoustics.

The question now arises of why when the flame becomes non-symmetric

oscillations cease as seen in Fig. 4. Two possible answers can be anticipated:

1) it could be because its shape preclude oscillations (if the non-symmetric

flame response is too weak for a flame-sound resonance to appear) or 2) it

may be because it appears at a late stage, where the flame is at a short

distance from the wall and the corresponding frequency of acoustic oscilla-

tions is too fast to create the adequate flame response. A partial answer

can be given by doing a second simulation in which a non-symmetric per-

turbation is added to the initial planar flame condition, to trigger an earlier

transition towards the non-symmetric solution. The results of this simula-

tion are plotted with dashed lines in Fig. 8. Solid lines correspond to the

results already presented in Fig. 4, in which no perturbations were added

to the initial condition and the transition to the non-symmetric solution is
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triggered by perturbations induced by the numerical method. The top plot

in Fig. 8 presents the consumption speed for the two simulations, while the

bottom plot presents the unsigned symmetry factor. It is clear that the non-

perturbed solution (solid black lines) is symmetric until very near the end

of the simulation and that the change in consumption speed is linked to the

flame becoming non-symmetric. In the perturbed case (dashed red lines)

the flame switches to the non-symmetric solution much earlier, at a reduced

time about 0.6; it is non-symmetric from the early stage and it propagates

steadily, with no oscillations, along the channel. There is no position in the

channel where the non-symmetric flame response is amplified by the acous-

tics of the channel and acoustic instabilities never appear (in this channel)

for the non-symmetric solution.

As the channel length is increased, the amplitude of oscillations of the

symmetric flames becomes higher, and the flame position where oscillations

occur moves towards the end of the channel, as can be seen in Fig. 9 a)

for L/δT = 1200. For a length L/δT = 1600 the non-symmetric flame also

oscillates, even if with a small amplitude. Notice that the initial steadily

propagating symmetric flames are identical in curvature and consumption

speed in the shorter and the longer channels (the same occurs with the non-

symmetric flames). However, the flames oscillate in one channel and not in

the other one. As we shall see later, this is related to the acoustic eigen

modes of the channel, which depend on the channel length.

Figure 9 c) presents a visualization of the maximum amplitude cycle for

the symmetric flames in the three channels. The three plots in this figure

present surfaces of constant temperature (T∗ = 1/2(Ta−T0)) for the cycle that
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Figure 8: The flame consumption speed Sc/SL and symmetry factor |S| in the simula-

tions of a flame propagating in a channel of width D/δT = 40 and length L/δT = 800.

The solid black lines correspond to the simulation in Fig. 4, with perfectly symmetric

initial conditions corresponding to a planar flame, the dashed red lines correspond to

non-symmetrically perturbed initial conditions, triggering a faster transition to the non-

symmetric solution.
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Figure 9: a) Flame consumption speed, b) pressure at the end wall and c) isotherms

at T∗ = 1/2 (Ta − T0) at the maximum amplitude cycle for a flame propagating in a

channel with D/δT = 40 and length L/δT = 800, 1200 and 1600. Blue lines correspond

to simulations with imposed symmetry, red lines to simulations in the full domain with

non-symmetric initial perturbations.
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corresponds to the maximum amplitude of oscillations in the flame speed. For

the symmetric flame in the L/δT = 800 channel (top), this corresponds to a

location just after the mid-channel, and the oscillations are small, resulting

in very small changes in the flame shape, as already presented in Fig. 5.

For the symmetric flame in the channel with L/δT = 1200 (middle) the

oscillation of maximum amplitude occurs again just after the mid channel

and presents important changes in the flame shape, which is neary planar at

the minima of the cycles. Finally, for the symmetric flame in the L/δT = 1600

channel (bottom), the peak oscillations occur near the end of the channel,

and correspond to very large changes in the flame shape and surface.

Interestingly, as we plot the pressure at the closed channel end for these

solutions (Fig. 9 b)), we find that while for the shorter channel the amplitude

of pressure oscillations is of the order of 5×10−3 the atmospheric pressure (or

about 500 Pa), it increases with the channel length and becomes more than

an order of magnitude larger, about one tenth of the atmospheric pressure (or

10000 Pa) for the longer channel. These are the orders of magnitude reported

in the experiments in [21] and [24, 25] for primary and secondary instabilities,

respectively. As commented in the introduction, in those experiments the

transition is related to changes in the burning mixture equivalence ratio.

In the present configuration, the transition from small to large amplitude

oscillations is rather related to an increase in the channel length for a fixed

mixture composition.

We have seen in Fig. 9 that as the channel is elongated, the non-symmetric

flames start oscillating, initially with very small amplitudes, barely visible for

the channel with L/δT = 1600. For even longer channels the non-symmetric
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flame oscillations increase in amplitude, as can be seen in Fig.10. For the

case L/δT = 2400, both the symmetric and the non-symmetric solutions

oscillate, the symmetric flame with a slighty larger amplitude. The non-

symmetric flame oscillations occur in the first half of the channel while the

symmetric flames oscillate near the channel end. This can be appreciated in

Fig. 10 c), where the isotherms at the maximum amplitude cycle for the non-

symmetric and the symmetric flames in each channel are represented. For the

channel with L/δT = 4000, the non-symmetric flame oscillations increase in

amplitude and the symmetric flame almost ceases oscillations. As the channel

is further lengthened, to L/δT = 5000, the symmetric flame starts oscillating

again, with an amplitude similar to that of the non-symmetric flame. An

explanation for this behavior shall be given in the next two sections, as we

analyze the period of the flame oscillations, the acoustic eigen modes of the

channel and the flame transfer function.

Pressure oscillations in the channels with L/δT = 2400, 4000 and 5000 are

of the order of 5×10−2pa, about 5000 Pa (see Fig. 10 b)), which corresponds

to the amplitudes of secondary instabilities in the experiments of [21, 24, 25].

5. Period of the oscillations and acoustic eigen modes of the chan-

nel

We measured the period of the pressure oscillations as the flame propa-

gates along the channels for the cases shown in Figs. 9 and 10, and plot it as

a function of the flame distance to the end wall, x/L, in Fig. 11. The period

of oscillations is scaled in this figure with the channel length L and the speed

of sound in the fresh gases c0. It decreases with the decrease of the distance
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Figure 10: a) Flame consumption speed, b) pressure at the end wall and c) isotherms at

T∗ = 1/2 (Ta − T0) at the maximum amplitude cycle for non-symmetric and symmetric

flames propagating in a channel with D/δT = 40 and length L/δT = 2400, 4000 and 5000.

Blue lines correspond to simulations with imposed symmetry, red lines to simulations in

the full domain with non-symmetric initial perturbations.
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to the wall, this indicates that the oscillations depend on the travelling time

of the acoustic signal to the end wall. But instead of a linear decrease, as

would be the case if only the distance to the wall was involved, we observe a

different dependence with x.

We plot also in this figure the period of the longitudinal acoustic eigen

modes in a narrow channel of length L open at one end and closed at the

other end and filled partly with a quiescent gas at the conditions of the fresh

gases (ρ0, c0) and partly with a quiescent gas at the conditions of the burned

gases (ρb, cb). The effect of unsteady heat release on the channel acoustics

is neglected, and instead of a flame we just assume a surface separating the

fresh and the hot gases and located at x (see the sketch in Fig. 12). The eigen

mode equation can be obtained easily from the wave propagation equation

with boundary conditions corresponding to a closed end at x = 0 and an

open end at x = L and reads [32, 36, 43]:

tan

(
ωx

c0

)
tan

(
ω(L− x)

cb

)
=
ρ0c0
ρbcb

(8)

or

tan

(
2πx

T c0

)
tan

(
2π(L− x)

T cb

)
=
ρ0c0
ρbcb

(9)

for the frequency ω or period T of the eigen modes. The solutions of Eq. 9

are plotted with red solid lines in Fig. 11 as functions of x for each of the

different channels of length L. It is clear that the period of the pressure

oscillations in the present results follows closely the prediction of Eq. 9, with

only small deviations for the longest channels. This means that, for the

present flames and channel geometry, the period of the pressure (and the

flame speed) oscillations is fully determined by the acoustics of the channel.
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The heat release oscillations do not change the frequency of oscillations. The

flame acts as a passive thin planar surface separating gases with different

thermoacoustic properties, and even when oscillations are large, as in the

longest channels of the present study, deviations from this behavior are only

small.

Note that the ‘classical’ quarter-wave mode between the flame position x

and the closed-end wall, which would correspond to a non-reflecting boundary

condition at the open end, would give:

ωx/c0 = π/2 , or T c0 = 4x (10)

This expression is also represented in Fig. 11, with a dashed blue line, and

only concides with the predictions of Eq. 8 or Eq. 9 for a flame located at

the open end of the channel (x = L).

6. Flame response to acoustic waves for symmetric and non-symmetric

flames

Similarly to what was done in [41, 42], where the response of planar

flames to acoustic waves was investigated, we use numerical experiments to

investigate the response of symmetric and non-symmetric curved flames to

imposed acoustic waves.

For this study, we will solve Eqs.1-4 with the same numerical scheme and

grid resolution presented in section 2, but in a reference frame moving with

the flame, as explained below. In a first set of simulations we establish two

steady flame solutions in a channel of width D/δT = 40 and L/δT = 400 open

at both ends: a non-symmetric flame in the full computational domain and a
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Figure 11: Measured period of the pressure oscillations T c0/L as the flames propagate

from the open end (x/L = 1) to the closed end (x/L = 0) for several channels with different

L (symbols), compared to the expressions in Eqs. 9 (solid red lines) and 10 (dashed blue

lines). For L/δT = 800, 1200, 1600 the plots correspond to oscillations of symmetric flames,

for L/δT = 2400, 4000, 5000 to non-symmetric flames.

Figure 12: Sketch of an open-closed channel filled with fresh and burnt gases corresponding

to the acoustic eigen mode equations Eqs.8 and 9.
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symmetric flame in half the computational domain by imposing symmetry at

the axis. In the two cases we impose non-reflecting inlet and outlet conditions

using NSCBC [33]. The calculations are initiated with a planar flame situated

at the middle of the channel. To converge to steady flame solutions, we adopt

a reference frame moving with the flame by modifying iteratively the inlet

flow rate, so that the final curved flame is stationary in the computational

domain, as in [16, 18]. Once the curved flames are established, we force the

inlet, superimposing acoustic waves to the inlet flow. These waves have a

small amplitude A0 = 5×10−3SL and reduced frequencies f ∗ = fδT/SL in the

range 0.01 to 1. Then we measure the frequency-dependent flame response to

these perturbations, that is, the flame transfer function gain, as the relative

amplitude of the oscillations in the flame consumption speed A/A0.

The most delicate point in these simulations is the imposition of bound-

ary conditions at the inlet of the domain. We need to impose an acoustic

wave entering the domain and at the same time to make the inlet boundary

non-reflecting for possible waves travelling from the interior of the domain

towards the inlet. This problem was studied in [44], where it was shown

that such a condition can not be fulfilled if velocities are imposed at the

inlet. Instead, they proposed a method, called the inlet wave modulation

method (IWM), based on NSCBC [33], in which the amplitude of charac-

teristic waves traveling towards the interior of the domain is imposed. Non

reflecting conditions are also imposed at the outlet.

Results of these simulations are shown in Fig. 13. For both symmetric

and non-symmetric flames the flame response is small (A/A0 << 1) for

the highest frequencies and begins to be appreciable for reduced frequencies
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below ≈ 0.17 in the case of symmetric flames and below ≈ 0.075 for the

non-symmetric case. For symmetric flames the response grows slowly as the

frequency is decreased. For non-symmetric flames, the response grows more

rapidly and reaches a peak near f ∗ = 0.05, before decreasing again for the

lowest frequencies.

We include in Fig. 13 the range of reduced frequencies of the longitudinal

eigen modes corresponding to several channels, with lengths ranging from

L/δT = 800 to L/δT = 10000, computed using Eq.8. For every channel the

smallest frequency corresponds to a position of the flame at the open end of

the channel (x = L), and the highest frequency to a position at the closed end

wall (x = 0). For the smallest channel, L/δT = 800, Fig. 13 shows that only

the symmetric flames have a small but appreciable amplifying response (with

A/A0 > 1), and this only for the smallest frequencies; this means that for

this channel we should expect small oscillations of the symmetric flames and

no oscillations of the non-symmetric flames. This means also that no self-

sustained oscillations should be expected (for the present flame parameters)

for channels shorter than L/δT = 800. As the channels are made longer, e.g.

L/δT = 1200, 1600, the amplifying response of symmetric flames becomes

larger and for the frequencies corresponding to L/δT = 1600 non-symmetric

flames begin to present an appreciable amplification. Symmetric and non-

symmetric flames are both amplified in the channels with L/δT = 1600 and

L/δT = 2400, the amplitude of the response of the non-symmetric flames

becomes then dominant for L/δT = 4000 and a small amplification is again

found also for symmetric flames in the case L/δT = 5000.

In summary, Fig. 13 explains the different oscillating behavior of sym-
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metric and non-symmetric flames detected in our simulations in channels

of different lengths and depicted in Figs. 9 and 10. A minimum channel

length is needed for the flame acoustic instability to be established; for the

smallest channels in the present work, which correspond to the highest eigen

frequencies, only symmetric flames have a large enough response to lead to

self-sustained oscillations. Then, as the channel is made longer, both the

symmetric and the non-symmetric flames have a large amplitude response,

with different amplification and at different frequencies. According to these

results, for even longer channels, longer than those of the present study,

for example L/δT = 10000, thermo-acoustic instabilities will occur at very

small frequencies and both symmetric and non-symmetric flames will oscil-

late, but with moderate amplitudes. The maximum amplitude of oscillations

for the present parameters (D/δT = 40, q = 8, Le = 1) corresponds to

a reduced frequency near f ∗ = 0.05, that is, to channel lengths between

L/δT = 1600− 4000.

7. Effect of the channel width

Figure 14 presents results for the oscillations of the consumption speed

of a flame in a wider channel (D/δT = 80) for two different channel lengths.

Symmetric and non-symmetric solutions exist again in this case, and present

different acoustically-driven oscillations. In the cases shown in Fig. 14, the

non-symmetric solutions present very small amplitude oscillations, while the

symmetric ones oscillate with large amplitudes. The symmetric flame oscil-

lations are very large in the case with L/δT = 3200, and the flame acquires

in this case a large surface, as can be seen in Fig. 15 (bottom). The flame in
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this figure corresponds to the largest amplitude oscillation in Fig. 14, which

is about 30 times the laminar flame speed. Note that for this channel with

D/δT = 80 and L/δT = 3200, the grid resolution had to be increased in order

to properly solve the highly corrugated oscillating flame. A grid resolution

test, carried out by progressively increasing the number of grid points showed

that a mesh with 600×24000 points and a mesh with 800×32000 points gave

indistinguishable results. The 600×24000 points mesh (with three times the

resolution used in the rest of this work) was therefore kept as adequate for

this simulation.

Notice that this very corrugated and very fast flame with violent acoustic

oscillations looks similar to that reported in [29] and [30]. It should be

mentioned, however, that it corresponds to the symmetric solution, which is

not the physical one, as it is unstable. It was forced here by the imposed

boundary conditions at the channel axis, but otherwise the solution would

have shifted to the stable solution, the non-symmetric flame, which does not

present such large oscillations for these narrow channels.

8. Effect of the density exponent in the Arrhenius model

Figure 16 shows the oscillations of the flame consumption speed obtained

in channels with D/δT = 40 and varying length when the exponent n =

2 is used in the Arrhenius model (Eq.5). These results are compared to

those obtained using an Arrhenius reaction with n = 1, showing that the

flame-acoustics interaction changes when this dependence on the density is

changed. (Note that when the exponent is changed from n = 1 to n = 2

the pre-exponential factor in the Arrhenius model is also changed, so that
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Figure 15: Isocontours of constant temperature T∗ = 1/2 (Ta − T0) for a flame propagating

in a channel with D/δT = 80 and length L/δT = 3200. The top figure corresponds to the

non-symmetric solution maximum oscillation cycle. The bottom figure corresponds to the

maximum length flame in the computation in a half channel with imposed symmetry.
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the planar flame speed remains unchanged (SL = 0.003 c0).) As a general

trend, the amplitude of oscillations for both non-symmetric and symmetric

flames increases with the value of n, as expected. For the present values of

the parameters, it appears that the increase in the amplitude response of

symmetric flames is more important. However, the qualitative behavior of

the flame-acoustics interaction does not change.

For the case with imposed symmetry with n = 2, D/δT = 40 and length

L/δT = 5000, the grid resolution had to be increased. A grid resolution

test showed that increasing the grid resolution by a factor 1.6 was enough to

obtain reliable results (indistinguishable from those obtained by increasing it

by a factor 2). As in the case of symmetric flames with n = 1, D/δT = 80 and

length L/δT = 3200 presented in section 7, this need for higher resolution

is linked to violent oscillations, reaching flame propagation speeds of up to

30SL and corresponding to a highly corrugated flame surface. (Note that for

an easier comparison of results, the axis in the bottom right plot of Fig. 16,

corresponding to this case, is truncated at a value Sc/SL = 12, even if this

flame (blue line) reaches Sc/SL ≈ 30.)

9. Conclusions

Numerical simulations of the interaction of flame and acoustics in a nar-

row adiabatic two-dimensional channel as a Le = 1 flame propagates from

the open to the close end have been presented. They show that two types of

solutions can be found in these unsteady computations, corresponding to a

symmetric and a non-symmetric shape, and that the two solutions result in

different flame dynamics. The coupling between the flame dynamics and the
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Figure 16: Flame consumption speed in the simulations of a flame propagating in a channel

with D/δT = 40 and length L/δT = 800, 1600, 4000 and 5000. Blue lines: simulations

with imposed symmetry, red lines: simulations in the full domain with a non-symmetric

initial perturbation. Results in the left column correspond to an Arrhenius model with

n = 1 and results in the right column to n = 2.
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acoustic waves in the channel depends on the frequency-dependent response

of these curved flames to pressure oscillations, that is, the flame transfer

function. The acoustic wave frequencies are determined by the acoustic eigen

modes of the channel, which for these narrow channels are longitudinal modes

and depend only on the channel length and the fresh/burned gases proper-

ties. Symmetric and non-symmetric flames present different flame transfer

functions when forced at the frequencies of these acoustic modes. In the

present configuration, for Le = 1, q = 8 and a channel width D/δT = 40, the

maximum amplification for symmetric flames is found at reduced frequencies

of the order of f ∗ = fδT/SL = 0.02, while non-symmetric flames present

the maximum gain at frequencies of the order of f ∗ = 0.05. Moreover, the

amplification of non-symmetric flames decreases rapidly with the frequency.

so that for the highest frequencies (or the shortest channels) only symmetric

flames present oscillations.

In summary, we have shown that the flame-acoustics interaction and the

onset of flame acoustic instabilities are different for the symmetric and the

non-symmetric solutions. Given that when the two kinds of flames are math-

ematically possible, and the symmetric solution is usually unstable [19], our

results should be a warning against assuming a priori the symmetry of the

flame and setting calculations in a computational domain consisting of only

a half-channel. In this respect, we have obtained results of violent flame

folding linked to acoustic instabilities similar to those reported in [29, 30],

for channels with D/δT = 80 and L/δT = 3200 only when the symmetry of

the flame is imposed in the calculation.

It should be noted that even if when symmetric and non-symmetric flames
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coexist the former are usually mathematically unstable (the real part of

the attenuation / growth rate is positive), symmetric solutions may be ob-

served as quasi-stable during experiments. The transition time to stable

non-symmetric states depends on the degree of asymmetry in the initial con-

ditions, which are difficult to control in experiments. Accordingly, the flame

response to acoustic disturbances can be significantly different in succesive

repetitions of the same experiment conducted in a channel of finite length.

Finallly we must mention that in our recent work [19] we have conducted

investigations on the effect of differential diffusion and thermal losses to the

wall in the flame shape and the breaking of symmetry, showing that heat

losses could increase the range stability of symmetric flames while differential

diffusion effects would reduce it. Continuing work is now under way, in which

we shall investigate the effect of heat losses to the wall and Le < 1 in the

flame-acoustics interaction.
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AppendixA. Resolution tests

We present in this appendix resolution tests for the flame propagating in

a channel with D/δT = 40 and L/δT = 800. To reduce the computational

cost, the tests consist in restarting the computation done in the base grid

(2000 × 100) at a time t SL/L = 0.225 over a coarsened or a refined grid

(using linear interpolation). We compare in Fig. A.17 the pressure measured

at the end wall pw/pa in the simulations using different mesh resolutions,

namely, a coarse 1000 × 50 grid, the base 2000 × 100 grid and two refined

grids with twice and four times the resolution of the base case simulation.

This comparison shows that the measured pressure is similar in the four

simulations. However, it is found that the coarser mesh (1000 × 50: black

solid curve) is insufficient at some point, the corresponding simulation can

not continue (blows-off) after a time about tSL/L = 0.44 and the flame never

reaches the end wall.

We also measured the time tw taken by the flame to travel from the

initial position to the end wall in the simulations using grids with 2000 ×

100, 4000× 200 and 8000× 400 points and the corresponding average flame

speed U and present them in table A.1. This table shows that differences

between these values as the base case grid is halved are very small and that

convergence of the solution is good. We estimated the order of convergence

of our simulations by assuming a dependence of the measured quantities tw

and U on the grid size as f(h) = f0 + A (h/δT )α, with f0 and A constants,

and found α ≈ 1.15. Note that for tw the constants are f0 = 0.3120 and

A = 0.104, respectively, which means that the deviation in the prediction of

tw with the 2000× 100 grid is about 1.1%, a very small deviation.
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Figure A.17: Pressure oscillations for a flame propagating in a channel withD/δT = 40 and

L/δT = 800 for different resolutions. Solid black line: 1000×50; dashed red line: 2000×100;

dashed-dotted blue line: 4000× 200; dashed-dashed-dotted green line: 8000× 400.

Nx x Ny h/δT tw ∆tw U ∆U

2000×100 0.4 0.3156 - 1.7229 -

4000× 200 0.2 0.3136 -0.0020 1.7341 0.0112

8000× 400 0.1 0.3127 -0.0009 1.7394 0.0053

Table A.1: Resolution tests in a channel with D/δT = 40 and L/δT = 800. The base case

grid is emphasized.
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