
UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE CIENCIAS MATEMÁTICAS

UNIVERSIDAD POLITÉCNICA DE MADRID
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN

MÁSTER EN TRATAMIENTO ESTADÍSTICO COMPUTACIONAL DE LA
INFORMACIÓN

TRABAJO DE FIN DE MÁSTER

Aplicación de redes neuronales a la clasificación y propagación de
incertidumbre de procesos físicos en el experimento CMS, CERN

Julia Vázquez Escobar

Codirectores CIEMAT

Miguel Cárdenas Montes y José María Hernández Calama

Ponente UPM

Pedro José Zufiria Zatarain

Madrid, 2020

ii

Resumen

Los experimentos que se llevan a cabo en el ámbito de la Física de Partículas conllevan la
producción de grandes cantidades de información. Para poder producir y detectar procesos
de interés de baja probabilidad, que consideramos señal, se deben generar un gran número de
colisiones entre partículas. Esto produce conjuntos de datos en los que la mayoría de obser-
vaciones no son de interés, se consideran fondo. Es necesario recurrir a algún procedimiento
que sea capaz de diferenciar de manera eficiente entre señal y fondo.

En este trabajo se desarrolla una red neuronal con ese objetivo. Normalmente, las redes
neuronales se usan de manera que ofrecen predicciones puntuales. Sin embargo, muchas
ramas de la ciencia requieren resultados acompañados de medidas de incertidumbre para
poder evaluar su nivel de precisión. En este proyecto, las predicciones de la red neuronal
se acompañan con una estimación de su incertidumbre. Para tal fin se usan Técnicas de
Regularización Estocástica aplicadas a un Perceptrón Multicapa. Existe una equivalencia
entre optimizar usando redes neuronales de este tipo y redes neuronales Bayesianas, que
plantean un modelo de red probabilístico. Este hecho nos permite calcular la esperanza de
las predicciones y su varianza.

En este trabajo se construye una arquitectura de este tipo para identificar la producción y
desintegración de pares de quarks top-antitop en colisiones de protones llevadas a cabo en el
colisionador de hadrones LHC en el CERN. Se usa un conjunto de datos del experimento CMS
que contiene información detallada de simulaciones de estas colisiones, con procesos tanto
de señal como de fondo. La red neuronal desarrollada demuestra una excelente capacidad
de discriminación entre señal y fondo.

iii

iv

Abstract

Particle physics experiments entail large data collection. In order to produce and detect
low probability processes of interest (signal), a huge number of particle collisions must be
carried out. This procedure produces huge sets of observations where most of them are of
no interest (background). A mechanism able to differentiate rare signals buried in immense
backgrounds is required.

In this project, a neural network is used to classify particle physics events according
to their nature. Usually neural networks provide predictions as mere point estimations.
However, many science fields require uncertainty measures to validate the results. Obtaining
expected results with their variance would give us more information about the scope of the
network. To achieve this, Stochastic Regularization Techniques are applied to a Multilayer
Perceptron. There is an equivalence between optimising performance with a neural network
of this kind and with a Bayesian neural network, which defines a model from a probabilistic
point of view, so that uncertainty measures naturally come up. This fact allows us to
calculate, not only point estimations, but expected results with their variance.

An architecture with those properties is built for the identification of the production
and decay of top-antitop quark pairs in collisions of protons at the Large Hadron Collider at
CERN. Datasets of detailed simulations of the signal and background processes elaborated by
the CMS experiment are used. Results, stemming from the network, are presented together
with uncertainty measures, showing the great discrimination power achieved.

v

vi

Contents

Introduction 1

1 Mathematical background 3
1.1 Multilayer perceptron . 3
1.2 Bayesian neural networks . 5

1.2.1 Bayesian model . 5
1.2.2 Bayesian Neural Networks . 6

1.3 Dropout technique . 8
1.3.1 Achieving uncertainity measures . 9

2 Dataset 12

3 Results 17
3.1 Procedure . 17
3.2 Training performance . 19
3.3 Classification performance . 20

3.3.1 Classification parameter distribution 20
3.3.2 True and false positive rates . 22
3.3.3 The ROC curve . 24

3.4 Summary and conclusions . 26

Appendices 27
A: Distribution obtention . 28
B: Metrics obtention . 28

vii

Introduction

Particle physics is the study of fundamental constituents of matter and radiation and the
interaction between them. For this purpose, experiments involving high energy particle col-
lisions are conducted using specialised detectors that record the properties of the particles
produced in the collisions. Many elementary particles do not exist under ordinary circum-
stances, so these experiments make it possible to create and detect them.

Typically, the processes of interest rarely occur. They can involve the discovery of a
new particle, or just the study of events that hard to reproduce. The probability of these
processes occurring can be so low that millions or even billions of collisions are needed to
produce and detect such events. This situation gives rise to a huge volume of data to store
and analyze. Indeed tens of petabytes of data are recorded every year at the Large Hadron
Collider (LHC) [Cen] located in the European Centre for Particle Physics Research (CERN).

The LHC is the largest particle collider in the world. It performs this kind of experiments
accelerating protons until reaching 99.9999991% the speed of light. Protons are collided
about 109 times per second, originating 40 TB of information per second in the detector. This
unmanageable amount of data is filtered in real time by specialized electronics, producing
an output of about 1 GB/s or 10 petabytes of raw data per year. Evaluating datasets of
this magnitude just to study concrete types of events is a tedious task and it consumes
computing resources. For rare processes, the proportion of interesting events as compared
to the background can be really low. For example, only one in about 1010 proton collisions
at the LHC produces a Higgs boson, the elementary particle discovered at the LHC in 2012.

The identification of tiny amounts of signal inside a huge dataset is a complex task. It
involves the analysis of multiple event features such as the number and type of particles
produced, kinematic and topological distributions, etc. Neural networks can help optimizing
this selection process improving the signal identification efficiency and background supress-
sion. By performing a binary classification, we can predict with high accuracy whether or
not the observations collected are signal or background, obtaining a set of events, where the
proportion of signal is much higher, that can be used for further physics analyses.

Estimating the uncertainty in the measurement of any physics quantity is of crucial
importance. In this work, we follow [Gal16] to obtain uncertainty measures when using neural
networks. Bayesian neural networks (BNN) [Mac92] are artificial neural networks whose
weights are considered as random variables. We could calculate posterior probabilities for
these weights, given some observed data, using a Bayesian approach, having then, uncertainty
measures. The problem is that calculating these posterior probabilities becomes intractable
for a network with more than one hidden layer.

1

An alternative approach has been proposed, using Stochastic Regularisation Techniques
(SRT), more specifically dropout. It has been shown that optimisation by the use of Bayesian
neural networks is equivalent to optimise by the use of regular neural networks with dropout
[SHK+14].

Two results are key in this area: i) the expected value for the predictions of a Bayesian
neural network can be estimated with various predictions from regular neural networks with
dropout, and ii) the second moment for these predictions can be estimated analogously.
Hence we can obtain uncertainty measures.

The techniques described above are applied to a dataset related to the Compact Muon
Solenoid (CMS)[SC14] experiment at the LHC. The dataset consists of detailed simulations
of detector reconstruction of two types of events, events containing the decay products of a
top-antitop (tt) quark pair, considered as signal, and another category of events (including
several processes) considered as background. Features for the events are built from the data
reconstructed by the detector. The goal is to discern signal tt events from the background
events, which in nature occur approximately with a proportion of 1 to 400. A large suppres-
sion factor of the background, while keeping a reasonable selection efficiency on the signal is
required to isolate tt events for subsequent physics studies of the properties of the top quark.

Mathematical background

In this section we describe the type of neural network that is going to be used as a classific-
ation tool, the multilayer perceptron.

In order to estimate the uncertainty of the performance of the model, an equivalence is
established between Bayesian neural networks and the application of dropout to a multilayer
perceptron [Gal16]. This allows us to perform inference over the predictions of the network
with dropout, estimating a variance analogous to what we would obtain if we used a raw
Bayesian approach.

1.1 Multilayer perceptron

We face a classification problem. Neural networks are used as a resource to solve it. More
specifically, a multilayer perceptron, an artificial neural network, is the chosen tool. We
briefly introduce this network in this section and explain how it works. For further inform-
ation on neural networks and other deep learning techniques, the book [GBC16] is referred.

In this section, we explore the key aspects of a multilayer perceptron. This kind of neural
networks are deep learning models whose task is, given some observed data (x, y), to find a
function f ∗ that best fits y = f ∗(x). Typically, some bias is imposed by defining a family of
parametric functions f(x;ω) = fω(x). An optimisation algorithm adjusts the value of ω so
the best approximation for y = fω(x) is reached.

Figure 1.1: Single neuron process

3

CHAPTER 1. MATHEMATICAL BACKGROUND 4

A multilayer perceptron consists of one or more hidden layers each of them consisting of
several neurons. In each neuron the arriving input is transformed, first linear operations are
performed and then a nonlinear activation function is applied (see Fig. 1.1). The input is
a multidimensional observation X = (x1, ..., xn) or several of them if the network works in
batches. It is transformed using a vector of weights W = (w1, ..., wn), performing the scalar
product

n∑
i=1

= wixi = W TX. The final step to obtain the output involves the application of

a nonlinear function called the activation function a(). This could be a sigmoid [Mit97] or
Relu [NH10] function, for example. The final output is therefore y = a(W TX).

The complete scheme of the network could look something like Fig. 1.2, where every
neuron of the hidden layers performs the explained operations. The layers are dense which
means that the neurons are fully connected with the neurons of the next layer. The objective
of our work is to perform a binary classification, therefore the target variable, that should
match the output, is chosen to be one dimensional, just as the example in Fig. 1.2.

Figure 1.2: Example of a MLP

Given the input data X = {X1, . . . , XM}, we want an output as close as possible to a
target variable Y = {y1, . . . , yM}. In order to optimize the output, an error or loss function
is defined, quantifying the difference between output and target values.

E(W) = L(MLP (X;W), Y), (1.1)

where MLP (X;W) denotes the final output of the network (MLP stands for MultiLayer
Perceptron).

To compute the error we use some loss function L. This function must increase when
the prediction differs from the true target Y . Some of the loss functions often used are the
mean squared error, mean absolute error, crossentropy, etc.

The objective is therefore to find the parameters W that minimize the loss function.
Since we face an optimization problem, an optimization algorithm is required. Gradient
descent algorithms are the usual choice when drawing on neural networks.

CHAPTER 1. MATHEMATICAL BACKGROUND 5

An optimization algorithm of this type consists in looking for a solution in the direction of
the gradient of the objective function. We start the procedure in a random feasible solution.
Then, the gradient of the objective function is computed. Since the term MLP (X;W) can
be extremely complex, the gradient of the objective function may turn tricky to compute.
In [RHW86], backpropagation is described as a tool to obtain this gradient.

The solution is updated following the equation Wt+1 = Wt − ε∇Wf(Wt)
1 so it goes in

the direction that makes the objective function f decrease. The update is repeated until
some specified criteria is met. There are several options. If we choose reaching a minimum
as ending condition we may end in a local minimum. We can also set a maximum of steps or
a minimal difference between consecutive solutions. The specific method used is mentioned
in chapter 3.

1.2 Bayesian neural networks

In our work, we would like to deliver the predictions of the neural network with their estim-
ated uncertainty. In physics it is crucial to assess the precision of a measurement. The content
of this section is based on the thesis work in [Gal16] where an equivalence between Bayesian
neural networks and ordinary networks with dropout is achieved. The author demonstrates
that the variance and expected value of the predictions that a Bayesian networks would
provide can be estimated performing various predictions with an artificial network with
dropout.

1.2.1 Bayesian model

In order to study neural networks from a probabilistic point of view, we use Bayesian
modelling. Given training data X = {x1, . . . , xN} and some corresponding target variable
Y = {y1, . . . , yN}, we would like to find an equation to model their relationship, y = fω(x),
function f depending on some parameters ω. If we consider the parameters ω as random
variables it is natural to wonder which is their probability distribution. Taking the Bayesian
approach, the posterior probability of ω conditioned to the observed data can be calculated
using some prior distribution p(ω), through the Bayes’ theorem:

p(ω|X,Y) =
p(Y|X,ω)p(ω)

p(Y|X)
(1.2)

A problem arises when the posterior distribution p(ω|X,Y) cannot be obtained analyt-
ically. An alternative is to define a family of parametric functions qθ(ω) whose structure is

1ε is the step size parameter, adequately chosen for a good optimising process.

CHAPTER 1. MATHEMATICAL BACKGROUND 6

treatable. Since we want this distribution to be as close as possible to the original distri-
bution, we try to minimize the Kullback–Leibler (KL) divergence w.r.t. θ [Kul59] between
both:

KL (qθ(ω)‖p(ω|X,Y)) =

∫
qθ(ω) log

qθ(ω)

p(ω|X,Y)
dω, (1.3)

which is only defined when qθ(ω) is absolutely continuous with regard to p(ω|X,Y). We
denote q∗θ(ω) as the solution that minimizes 1.3. This solution would allow us to obtain a
predictive distribution:

p (y∗|x∗,X,Y) ≈
∫

p (y∗|x∗,ω) q∗θ(ω)dω =: q∗θ (y
∗|x∗) . (1.4)

We point out that minimizing eq. 1.3 is equivalent to maximizing the expression:

LVI
2(θ) :=

∫
qθ(ω) log p(Y|X,ω)dω −KL (qθ(ω)‖p(ω)) . (1.5)

1.2.2 Bayesian Neural Networks

Following these concepts, Bayesian Neural Networks were first introduced in the ’90s. They
can be understood as probabilistic neural networks. They are distinguished for inferring
distributions over the models’ weights. The network parameters ω are established as random
variables so we can consider obtaining uncertainty measures. Consider, for example, the
multilayer perceptron and think of the weights of each neuron as random variables.

Referring to the posterior probability defined in eq. 1.2, we could now ask ourselves
the following: given some known data (X,Y), what distribution do the parameters of the
Bayesian neural network follow? Gaussian prior distributions are often placed over the
weights of the network yet the posterior probability is, in most cases, not tractable due to
the complexity of the expression of the output, in terms of the input and weights.

Different approaches have been taken in an attempt to give functionality to these neural
networks. An example is the work [HvC93], in which the authors assume independence of
each weight from all the others in the network. This results in a factorised distribution
p(ω|X,Y) when we try to approximate it.

Recalling the variational inference techniques characterized in eq. 1.3, we can express the
divergence as in eq. 1.6. The goal is to find the optimum q∗θ(ω) that minimizes this quantity:

2We denote the expression as LVI because it is obtained through a Variational Inference procedure
[JGJS99]. While the Bayesian approach tries to calculate the probability of interest by marginalizing it, the
variational inference approach suggests an optimisation problem.

CHAPTER 1. MATHEMATICAL BACKGROUND 7

KL (qθ(ω)‖p(ω|X,Y)) ∝ −
∫

qθ(ω) log p(Y|X,ω)dω +KL (qθ(ω)‖p(ω))

= −
N∑
i=1

∫
qθ(ω) log p (yi|fω (xi)) dω +KL (qθ(ω)‖p(ω)) = LVI(θ).

(1.6)
Still, evaluating this expression can be difficult. The terms

∫
qθ(ω) log p (yi|fω (xi)) dω

are not tractable for BNNs with more than one single hidden layer. Even though we could,
obtaining these for every data observation, (xi,yi) ∀i = 1, ..., N , becomes computationally
costly.

The author solves this last problem by sampling the data. The expression 1.6 becomes
1.7. The integral is only evaluated for a selection of indexes i ∈ S, being S a subset of the
original data of size M .

L̂VI(θ) := −N

M

∑
i∈S

∫
qθ(ω) log p (yi|fω (xi)) dω +KL (qθ(ω)‖p(ω)) . (1.7)

This last expression is an unbiased stochastic estimator of LVI(θ), E
[
L̂VI(θ)

]
= LVI(θ).

If we use a stochastic optimiser to optimise expression 1.7, we would thus obtain a local
optimum of 1.5 [RM51].

To evaluate the terms
∫
qθ(ω) log p (yi|fω (xi)) dω, Monte Carlo integration techniques

are considered. A final expression 1.8 is obtained by using a pathwise derivative estimator.
It also meets the condition E

[
L̂MC(θ)

]
= LVI(θ):

L̂MC(θ) = −N

M

∑
i∈S

log p (yi|fω (xi)) + KL (qθ(ω)‖p(ω)) . (1.8)

The work in [Rub81] leads to an equivalence between optimising L̂MC(θ) and LVI(θ).
Distributions for the predictions follow eq. 1.4. The integral involved is also approximated

with Monte Carlo integration techniques:

q̃θ (y
∗|x∗) :=

1

T

T∑
t=1

p (y∗|x∗,ωt) −→
T→∞

∫
p (y∗|x∗,ω) qθ(ω)dω

≈
∫

p (y∗|x∗,ω) p(ω|X,Y)dω

= p (y∗|x∗,X,Y) ,

(1.9)

where ω̂t ∼ qθ(ω).
The bayesian model for the network easily accomodates the possibility of obtaining un-

certainty when working with these models, but the problem is that, most often, it is not
tractable. Stochastic regularisation techniques [Gal16] are presented as an alternative to
obtain predictions with uncertainty measures.

CHAPTER 1. MATHEMATICAL BACKGROUND 8

1.3 Dropout technique

The regularization technique we are going to use is Dropout [SHK+14]. Deep learning models
are likely to overfit the training data set quickly. Dropout is a technique often used to obtain
models that are not overfitted. It consists of randomly shutting down values, set them to 0,
when training the model.

To explain its use, we consider a single hidden layer neural network. We sample two
binary vectors ε̂1, ε̂2. ε̂1 must have the same dimension as the input and ε̂2 the same as the
output. We select two parameters 0 ≤ pi ≤ 1 i = 1, 2. The elements of ε̂i are null with
probability pi, they take the value 1 otherwise. The input data x is transformed x̂ = x� ε̂1

3.
The output of the layer is also transformed, h = σ (x̂M1 + b) to ĥ = h � ε̂2. The final
output of the model would be ŷ = ĥM2

4.

Since we use a multilayer perceptron, we apply this procedure to each hidden layer.
This way we are providing some random noise to the final output, mimicking Bayesian
neural networks, where the stochasticity comes from the fact that the model parameters are
considered random variables. Let’s compare both of them more thoroughly.

We can express the output of the model with dropout (with only one layer) as:

ŷ = ĥM2

= (h� ε̂2)M2

= (h · diag (ε̂2))M2

= h (diag (ε̂2)M2)

= σ (x̂M1 + b) (diag (ε̂2)M2)

= σ ((x� ε̂1)M1 + b) (diag (ε̂2)M2)

= σ (x (diag (ε̂1)M1) + b) (diag (ε̂2)M2)

The estimated weights would be Ŵ1 := diag (ε̂1)M1 and Ŵ2 := diag (ε̂2)M2, we
denote the output as ŷ = σ

(
xŴ1 + b

)
Ŵ2 =: fŴ1,Ŵ2,b(x), in the next lines we use

ω̂ = {Ŵ1,Ŵ2,b} to shorten the expressions.

The loss function for this model could be this one:

L̂dropout (M1,M2,b) :=
1

M

∑
i∈S

‖yi − ŷi‖2 + λ1 ‖M1‖2 + λ2 ‖M2‖2 + λ3‖b‖2, (1.10)

3� indicates the element-wise product.
4We denote the weights as M to distinguish deterministic values from the weights considered as random

variables (W) or estimations (Ŵ).

CHAPTER 1. MATHEMATICAL BACKGROUND 9

where we take the average square error into account but also the complexity of the model.
S is a subset of the data of size M . According to [TLS89],we can replace the average square
error by the negative log-likehood scaled by a constant.

L̂dropout (M1,M2,b) = − 1

Mτ

∑
i∈S

log p
(
yi|f g(θ,ε̂1)(x)

)
+ λ1 ‖M1‖2 + λ2 ‖M2‖2 + λ3‖b‖2,

(1.11)

where p
(
y|fM1,M2,b(x)

)
= N

(
y; fM1,M2,b(x), τ−1I

)
with τ−1 observation noise.

We recall the expression 1.8 and its adding term KL (qθ(ω)‖p(ω)). Since p(ω) is a prior
distribution, we can choose it so the next relation holds:

∂

∂θ
KL (qθ(ω)‖p(ω)) =

∂

∂θ
Nτ

(
λ1 ‖M1‖2 + λ2 ‖M2‖2 + λ3‖b‖2

)
. (1.12)

Then, the derivatives of the expressions 1.8 and 1.10 follow this relation:

∂

∂θ
L̂dropout(θ) =

1

Nτ

∂

∂θ
L̂MC(θ). (1.13)

Consequently, we can optimise over both loss functions obtaining the same results. In the
mentioned reference [Gal16], two equivalent optimisation algorithms are also constructed.
Summarizing, optimising an artificial neural network, built as explained, with dropout is
equivalent to approximately performing estimations over Bayesian neural networks. The
main conclusion is that a dropout network constructed as indicated has all the properties
that a neural network viewed as a probabilistic model possesses.

1.3.1 Achieving uncertainity measures

We can now present two important results of [Gal16] that allow us to perform inference over
a network with dropout.

We first recall the approximate predictive distribution 1.4:

q∗θ (y
∗|x∗) =

∫
p (y∗|fω (x∗)) q∗θ(ω)dω,

where ω = {Wi}Li=1 are the weights as random variables for a network with L layers,
fω (x∗) is the output of the network and q∗0(ω) is the optimum for 1.8.

We can estimate the first moment of the output as:

CHAPTER 1. MATHEMATICAL BACKGROUND 10

Proposition 1.3.1 Given p (y∗|fω (x∗)) = N (y∗; fω (x∗) , τ−1I) for some τ > 0,Eq∗θ (y
∗|x∗) [y

∗]
can be estimated with the unbiased estimator

Ẽ [y∗] :=
1

T

T∑
t=1

f ω̂t (x∗) −→
T→∞

Eq∗θ (y
∗|x∗) [y

∗] (1.14)

with ω̂t ∼ q∗θ(ω).

Proof:

Eq∗θ (y
∗|x∗) [y

∗] =

∫
y∗q∗θ (y

∗|x∗) dy∗

=

∫∫
y∗N

(
y∗; fω (x∗) , τ−1I

)
q∗θ(ω)dωdy∗

=

∫ (∫
y∗N

(
y∗; fω (x∗) , τ−1I

)
dy∗

)
q∗θ(ω)dω

=

∫
fω (x∗) q∗θ(ω)dω

giving the unbiased estimator Ẽ [y∗] := 1
T

∑T
t=1 f

ω̂t (x∗) following Monte Carlo integration
techniques as in 1.8, this time with T samples.

�

We can also estimate the second moment.

Proposition 1.3.2 Given can be p (y∗|fω (x∗)) = N (y∗; fω (x∗) , τ−1I) for some τ > 0,
Eq∗θ (y

∗|x∗)

[
(y∗)T (y∗)

]
estimated with the unbiased estimator

Ẽ
[
(y∗)T (y∗)

]
:= τ−1I+

1

T

T∑
t=1

f ω̂t (x∗)T f ω̂t (x∗) −→
T̄→∞

Eq∗θ (y
∗|x∗)

[
(y∗)T (y∗)

]
(1.15)

with ω̂t ∼ q∗θ(ω) and y∗, f ω̂t (x∗) row vectors (thus the sum is over the outer-products).

CHAPTER 1. MATHEMATICAL BACKGROUND 11

Proof:

Eq∗θ (y
∗|x∗)

[
(y∗)T (y∗)

]
=

∫ (∫
(y∗)T (y∗) p (y∗|x∗, ω) dy∗

)
q∗θ(ω)dω

=

∫ (
Covp(y∗|x∗,ω) [y

∗] + Ep(y∗|x∗,ω) [y
∗]T Ep(y∗|x∗,ω) [y

∗]
)
q∗θ(ω)dω

=

∫ (
τ−1I+ fω (x∗)T fω (x∗)

)
q∗θ(ω)dω

giving the unbiased estimator Ẽ
[
(y∗)T (y∗)

]
:= τ−1I+ 1

T

∑T
t=1 f

ω̂t (x∗)T f ω̂t (x∗) following
again MC integration with T samples. �

Having the second moment we can obtain the variance of the prediction as:

Ṽar [y∗] := τ−1I+
1

T

T∑
t=1

f ω̂t (x∗)T f ω̂t (x∗)− Ẽ [y∗]T Ẽ [y∗] →
T→∞

Varq∗θ (y∗|x∗) [y
∗] (1.16)

this is the sum of the sample variance of T stochastic predictions with dropout and the
inverse model precision. This precision is obtained with the following relation:

τ =
(1− p)l2

2Nλ
(1.17)

where p is for the probability of shutting down data in the dropout process, l2 is the variance
we set for the prior distribution of the model’s weights, N is the number of iterations and λ
is the regularization parameter.

With these two results we can estimate the expected predictions and their variance for
the multilayer perceptron with dropout applied. There’s no need to use Bayesian neural
networks to obtain uncertainty measures, which would led us to intractable operations.
The alternative of using stochastic regularisation techniques, dropout in this case, offers an
approachable solution.

Dataset

We apply the explained ideas to a CMS dataset. CMS stands for Compact Muon Solenoid,
a particle physics experiment located in the LHC (Large Hadron Collider) at the European
Centre for Particle Physics Research (CERN). The LHC accelerates protons which end up
colliding head-on at high energy (close to the speed of light) to study the processes that
arise from these interactions. CMS is a detector that collects the data produced in these
experiments.

The dataset that is going to be used contains information about the particles produced in
the proton collisions (events) for both a concrete type of reaction, that is of interest (signal),
and other types of processes that we consider as background. Background processes occur
with a much higher probability than signal events. The goal is to perform binary classification
in order to discriminate the events of interest from the rest, efficiently suppressing the large
background while losing as little signal events as possible. More information can be found
in [SC14].

The signal process of interest consists in the production of a top-antitop quark pair (tt)
followed by the immediate decay of the top quarks (after only 5 · 10−25 s). The top quark
decays into a bottom quark and a W boson. In the process under study, one of the W bosons
decays immediately (3 · 10−25 s) into two quarks, and the other decays into one lepton (a
muon, specifically) and a neutrino (it escapes undetected).

q′

l+

b

b

q

ν

W−
t t

W+

Figure 2.1: tt (semi-leptonic) decay diagram.

12

CHAPTER 2. DATASET 13

The detector only sees the remains of the process, the lepton and the four quarks1.
Identifying the whole process from its final state particles can be challenging because there
are several other reactions that have similar final states. We refer to these other processes
as background and to the decay of interest (tt) as signal.

We aim to suppress the background as much as we can and retain only the data related
to the signal. The detector collects kinematical information of the events such as number
of jets, jet momentum, bottom-quark-tagging discriminators, number of muons and others.
These variables are used to discriminate the signal from the background events.

The data consists of a series of simulated observations (events) that gather the variables
measured by the detector in a collision of protons. They are displayed in a matrix where each
row represents one event and each column is a measured physical magnitude. The process
that corresponds to each event is known so we can label the observations correspondingly.
In total there are 240k simulated observations. In order to get a realistic representation of
the relative proportions of the events as they occur in nature, a weight2 for each observa-
tion is provided. This way we can represent the results weighted, which is important to
appropriately combine the various components of the background and to compare the right
proportions of signal and background.

Type Number of events Weighed amount
tt (signal) 2850 635.10

W plus jets (background) 1097337 209603.60
Drell-Yan (background) 77729 34115.51

WW (background) 4580 229.95
WZ (background) 3367 69.93
ZZ (background) 2421 16.92

Single top (background) 5684 311.62

Table 2.1: Dataset breakdown

We describe below the features of each event. In addition, some new features are added
performing operations on the existing features. For each observation, we take into account
up to a maximum of 6 jets and 3 muons measured by the detector. Quarks are confined
inside hadrons by the nuclear strong force, and therefore after being produced turn instantly
into a spray of particles called jets. Muons are leptons (fermions that do not undergo
strong interaction) and their presence provides us with valuable information about the parent
process.

In relation to the jets, we consider their linear momentum (projected in the transverse
plane of the collision direction, pT): jpt1, jpt2, jpt3, jpt4, jpt5, jpt6. When the number of
detected jets is smaller than six, the corresponding variables are set to 0. We also consider
the jets’ pseudorapidity (η), jeta1, jeta2, jeta3, jeta4, jeta5, jeta6, an angular feature related

1The quarks turn into a collimated spray of hadron particles called a jet.
2An event that appears in the set may not occur in nature with the frequency represented in the data

set, to correct that we use the weight.

CHAPTER 2. DATASET 14

to the polar angle of the originating quark with respect to the collision direction. Since the
process of the signal involves two bottom (b) quarks, being able to know whether the jets
correspond to bottom quarks or not is highly informative. A b-tagging variable for the jets
is provided which is obtained from an algorithm that identifies B-hadron decays in a jet. If
the b-tagging score is high it means that there is a high probability that the jet relates to
a bottom quark. This way we can discriminate between jets associated with bottom quarks
and other types. The corresponding b-tagging features are named jbtag1, jbtag2, jbtag3,
jbtag4, jbtag5, jbtag6.

To characterize the muons we also consider their transverse momentum mupt1, mupt2,
mupt3 and their pseudorapidity mueta1, mueta2, mueta3. It is of interest to know if a
detected muon is located within the cone of particles of a jet or if it comes from the decay
of a W boson, in which case it is detected isolated. To quantify this, an isolation feature
accompanies every muon. It meausures the activity of the detector around the direction of
the muon. If the value is large it means that the muon is not isolated, it comes from a jet,
whereas if it is small the muon is detected isolated, it comes from a boson decay. These
features are named muiso1, muiso2, muiso3.

From the original dataset we also take a feature that indirectly measures the presence
of a neutrino in the event. Neutrinos hardly interact with matter and escape the detector
unseen. However, the transverse momentum of the neutrino can be inferred from the total
momentum of all the other particles originated in the collision by means of transverse linear
momentum conservation. The corresponding feature is called met.

200 400 600
Muon momentum (GeV)

10−2
10−1
100
101
102
103
104
105 Background events

(a) Background events

50 100 150 200 250
Muon momentum (GeV)

100

101

Signal events

(b) Signal events

Figure 2.2: Momentum distribution for the first muon

Since the variables are simulated, there are no missing values. Furthermore, the sim-
ulated dataset has been constructed carefully pre-selecting clean samples of every process
type. Nevertheless, we inspected the distributions of the features to look for anomalies.
For example, for the momentum of the first muon mupt1 there are no strange cases. We

CHAPTER 2. DATASET 15

can observe some higher values, (see Figures 2.2a and 2.2b), but they are on an acceptable
range and provide necessary information so they are not considered outliers. The rest of the
features present the same behaviour, we did not detect outliers in any of them.

In addition to these features, that are included without modification from the original
dataset, some others are calculated. For each muon, the relative isolation is obtained as
the quotient between the isolation feature and the momentum, reliso1 = muiso1/mupt1;
reliso2, reliso3 are defined likewise. The number of muons (nmuons) is calculated having into
account the non-zero momenta. We also obtain the number of isolated muons, nisomuons.

In order to characterize jet detections, we count the number of jets for each observation
(njets). Besides, we count the number of b-tagged jets, nbtag.

Some of these features highlight the differences between the events’ nature. For example,
we can visualize the number of jets detected for background events (Fig. 2.3a) versus signal
events (Fig. 2.3b). The differences are remarkable.

0 1 2 3 4 5 6
Number of jets

101

102

103

104

105
Background events

(a) Background events

0 1 2 3 4 5 6
Number of jets

100

101

102

Signal events

(b) Signal events

Figure 2.3: Number of jets detected

Another interesting feature to note is the number of b-tagged jets, nbtag, displayed in
Fig. 2.4. Again, the distributions for signal events and background are clearly different.
While the background events have mostly no b-tagged jets (the count for 0 b-tagged jets is
two orders of magnitude larger than the next one), in the case of signal events it is more
uniformly distributed between 0, 1 or 2 b-tagged jets. The expected value for this feature
in the signal case is 2, according to the Fig. 2.1. The differences between the obtained
distribution and the expected one are due to the fact that some jets are not tagged properly
or detected at all. The b-tagging algorithm is not perfect and some times misses some true
b-jets or even wrongly tags non-b jets (those in the count 3 in Fig. 2.4b).

CHAPTER 2. DATASET 16

0 1 2 3
Number of b-tagged jets

100

101

102

103

104

105 Background events

(a) Background events

0 1 2 3
Number of b-tagged jets

102

Signal events

(b) Signal events

Figure 2.4: Number of b-jets detected

We have in total 35 features that describe the events, plus the event weight which is
not used for the network training, but for testing the trained model with a dataset whose
composition reflects reality. We label the data, creating the target variable for the neural
network, the signal events take the value 1 and the background events the value 0. Just for
informative purposes, another variable that stores the specific process of each event (WW,
W plus jets, single top ...) is created. It allows us to check the performance of the model for
the various components of the background separately.

Summarizing, the dataset consists of 35 input variables, 1 target variable and 2 identifying
variables, not used for training nor predicting.

Results

Results from applying the concepts outlined in chapter 1 to the dataset described in chapter 2
are presented in this chapter. A neural network is used to predict the target variable, whether
an event originates from a tt process or not. We rely on the results of Prop. 1.3.1 and
Prop. 1.3.2 to offer expected predictions and their variance, not only point estimates.

To implement the process, Google colab notebooks are used. The library TensorFlow
[AAB+15], and more concretely, the module keras are the tools used for the network building
and training. The code developed is available in https://github.com/juliavazquez3/
github-upload.git.

3.1 Procedure

We split the data in a training set and a test set. 30% of observations are reserved for testing
the models and the rest is used for training them. We sample the 30% randomly to avoid
any bias.

The training set of observations has a proportion of only 3.5%1 of signal events. This
can entail a bad training because the network works in batches of observations, so in many
of them there might not appear any signal events. If this happens frequently, the network’s
weights are updated so that the identification of signal events is disfavoured.

Better results are obtained if the training set is undersampled. Background events are
eliminated randomly to obtain a set consisting in 40% signal events and 60% background.
Training the network with the undersampled set avoids the aforementioned problem. The
predictions obtained are more reliable this way.

The final sets are used for training and testing the networks. A multilayer perceptron
with dropout is built, consisting of dense layers with dropout applied before them. First a
dropout layer, then the first hidden layer, which is dense, then dropout is performed again,
another hidden one, dropout, the last hidden layer and the output layer. As explained before
in chapter 1, the dense layer consists of a series of neurons that are fully connected to the
neurons of the next layer. By adding dropout, we are randomly shutting down some neurons.
The simplified scheme depicted in Fig. 3.2 only represents the layers arrangement. In the

1This proportion is higher than the natural one. This is because these events are not weighed to the real
proportions.

17

https://github.com/juliavazquez3/github-upload.git
https://github.com/juliavazquez3/github-upload.git

CHAPTER 3. RESULTS 18

Split Undersampling

Figure 3.1: Diagram displaying the data processing

actual network, the first dense layer has 64 neurons, the second has 32 neurons and the
last one 16. The choice for the number of dense layers and their neurons is due to previous
experience in building neural networks for binary classification. Additionally, variations of
these parameters were tested showing that this combination offers the best results.

The number of epochs chosen for the network is 50. It is small enough so that we do not
end up with an overfitted model and a larger number would not improve the fit much, just
would increase the running time. The batch size is set to 128. The activation function used
for the neurons in the hidden layers is the rectified linear unit (ReLU [NH10]), compared with
other activaction fuctions it is more computationally efficient. The activation function used
for the neuron in the output layer was a sigmoid [Mit97], appropriate for binary classification.

Data Pred

Figure 3.2: Scheme of the network architecture

To train the network, a binary cross-entropy loss function was chosen, whose expression
is:

Loss =
∑
i

− (yilog(ŷi) + (1− yi)log(1− ŷi)), (3.1)

where yi is the true label for the event i and ŷi is the prediction provided by the network
for that event. We also specify a regularization parameter λ in each dense layer so that the
computed error takes into account the complexity of the model, as in eq 1.10, where the norm
of the weights plays a role in the loss function. These terms are added to the expression 3.1
to form the complete loss function. This regularization parameter is chosen λ = 0.001. If we
set a higher regularization parameter, the predictions of the model significantly decrease in
goodness of fit, and with this quantity we don’t have overfitting problems.

CHAPTER 3. RESULTS 19

An algorithm to implement the network training is necessary. The module of TensorFlow,
keras, offers a variety of them. We choose an Adam optimizer, details of how it works can
be found in [KB15].

The probability of shutting down a neuron when applying dropout is fixed to 0.1. For the
purpose of evaluating the robustness of the procedure, alternative dropout parameters were
tested. Instead of 0.1, the values 0.15 and 0.2 were set as dropout probability. There were
no remarkable changes in the results. The observed variation does not follow a tendency
against the parameter and it is within a small range. Therefore, only results regarding to
0.1 as dropout parameter are presented.

In order to estimate the uncertainty of the predictions, we obtain 10 different predictions
by running the network training from scratch 10 times.

Since 10 different models are trained, we obtain 10 different predictions for the test
dataset. Following the result of Prop. 1.3.1, we calculate an expected prediction by averaging
the T predictions y = 1

T

∑
r

ŷr
2. In addition, We used Prop. 1.3.2 to obtain a variance as given

in eq. 1.16. We add τ−1 as defined in eq. 1.17 to the variance estimator S2 = 1
T

∑
r

(ŷr − y)2.

3.2 Training performance

Accuracy and loss metrics are measured for both training and test datasets3. The values of
these metrics are stored for each epoch of the training of each network. These metrics are
of interest for evaluating the scope of the resulting models. Since these values are similar
for every training (we train 10 models), and we only want to study the process qualitatively,
only the loss and accuracy evolution of one of the models is represented.

It can be seen in Fig. 3.3 that the accuracy increases slowly and smoothly with the
training process. Precisely, the model progresses in such a way that it fits the training
events better and better. The test data has a more noisy plot but it also seems to have an
increasing tendency.

The model does not take into account the test events when evolving, hence the accuracy
the model provides for these observations is noisier. The accuracy still increases with the
epochs for the test set which means that the model is not overfitted, thus it will generalize
nicely.

In the loss plot (Fig. 3.3), for the train data, it can be seen how it descends, first with
a high slope, then the decrease slows down. Again, the behaviour for the test data is more
variable but it also has a decreasing tendency. The loss for the train data is larger than the
test loss, which indicates that the model is not overfitted.

2We denote the prediction corresponding to the model r as ŷr for r = 1, ..., T .
3Even though the accuracy and loss are measured for the test events, for every epoch of the training,

these events are not used in the weights updates, the test events do not influence the model outcome.

CHAPTER 3. RESULTS 20

0 10 20 30 40 50
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Model accuracy
train
test

0 10 20 30 40 50
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

Model loss
train
test

Figure 3.3: Accurary and Loss metrics for one of the models.

It could be expected to have a correspondence between the accuracy and the loss in the
form of symmetric plots but we must remember that the loss includes regularization terms
that the accuracy measurements do not.

For both the accuracy and the loss metrics of the training data, there is a decrease in
the slope of the tendency towards the end. The plot stabilizes as the number of epochs
augments. We could increase the number of epochs in the network training, since there are
not overfitting problems, but the small improvement in goodness of fit would not compensate
the computational cost.

3.3 Classification performance

Using the test dataset, we present in this section the evaluation of the classification perform-
ance of the network. The various metrics calculated below are presented together with the
estimation of their uncertainty. This way, the precision of the results can be assessed.

3.3.1 Classification parameter distribution

We show in Fig 3.44 the distribution of the predicted values of the classification parameter
together with its estimated variance, for both the signal and the background processes. We
describe in appendix A the detailed technical procedure to produce the uncertainty bands.
The distribution for the background has been constructed using the event weights that allow

CHAPTER 3. RESULTS 21

0.0 0.2 0.4 0.6 0.8 1.0
Cut clasification parameter

10−5

10−3

10−1

101

103
TTbar
Background

(a) Events weighed to reality

0.0 0.2 0.4 0.6 0.8 1.0
Cut clasification parameter

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
TTbar
Background

(b) Normalized distributions

Figure 3.4: Distribution of the predicted classification parameter for the signal and the back-
ground test datasets separately. The left figure reflects the relative normalization between
signal and background as occurring in nature (note the log scale), while the right figure shows
the probability distribution functions (normalized to area 1) of the classification parameter.

to mix the various processes contributing to the background according to their proportions
in nature.

Fig. 3.4 shows how the background events tend to have lower score for the classification
parameter while for signal events higher scores are more probable (closer to 1). In Fig. 3.4a
signal and background have been weighted so that their relative proportion is the one ob-
served in nature. We can therefore view the figure as how the model would operate for a real
set of events. Background events are much more copious, but for values of the classification
parameter close to 1, the number of signal and background events tend to even out. The y
axis has a logarithmic scale so that the signal events are visible.

In Fig. 3.4b the distributions have been normalized to unity area so that they represent
the probability distribution functions of the classification parameter. It can be better appre-
ciated the distinct shape of the distributions for both types of events. The background tends
to have a prediction closer to 0 and the signal closer to 1, creating a valley in between. It
is qualitatively perceptible that the network is able to discriminate very well between signal
and background.

Regarding the variance band, the variance of the signal distribution is larger. The fact
that the test data set contains a large proportion of background compared to signal events
may contribute to this. The predictions delivered by our model are more erratic for the
signal case, but still, within the variance limits, the signal is clearly differentiated from the
background.

4The label TTbar in the figure corresponds to the decay tt considered signal as explained.

CHAPTER 3. RESULTS 22

3.3.2 True and false positive rates

We consider the True Positive Rate (TPR) and False Positive Rate (FPR) metrics to evaluate
the quality of the predictions of the model in the test dataset5. TPR is the ratio between
the number of signal events predicted as signal over all tested signal events. FPR is the ratio
between the number of background events predicted as signal over all tested background
events.

TPR =
TP
CP

FPR =
FP
CN

6 (3.2)

Since 10 models were trained, we have obtained the expected average of the TPR and
FPR predictions and their variance, instead of point estimations. Calculation details are
provided in the appendix B.

Although the true label of the events is either 0 or 1, we have chosen the classification
parameter to be a continuous real number in the range [0, 1]. This allows us to study TPR
and FPR as a function of the value of the classification parameter, taken as a threshold to
select a sample of signal and background events. The goal is to enrich the signal+background
sample in signal events, keeping the level of background as low as possible.

It is usual to define the so-called tight, medium and loose working points that correspond
to FPR values (background selection efficiency) of 0.1%, 1% and 10% respectively. Typically,
tighter working points result in an increased ratio of signal over background but at the price
of decreasing the signal selection efficiency (TPR). The choice of the working point depends
on the details of the physics analysis of the signal process. In some cases a high signal purity
is needed (tight working point) and in other cases a large number of signal events is required
(loose working point).

We represent in Fig. 3.5 TPR and 1-FPR as a function of the value of the predicted
classification parameter. This value is used as a threshold to predict an event in the test
dataset either as signal (classification parameter value larger than the threshold) or back-
ground (otherwise). TPR is built comparing the prediction with the test events tagged as
signal, while FPR is built using the test events tagged as background.

The TPR and 1-FPR curves correspond to the average values obtained with 10 trainings
of the network. The band around the curves represents the estimated uncertainties (vari-
ances). Uncertainty bands are very small, so the predictions of the model are expected to
be quite stable.

The form of the TPR and 1-FPR curves show that the model discriminates very well
between signal and background events. The ideal situation would be to have a very small
slope all throughout the plot and then a drastic drop to 0 near to small values of the cut

5In the context of binary classification we label signal events as 1 (positive events) and background as 0
(negative events).

6We denote as TP the True Positives predicted and FP the False Positives. CP stands for Condition
Positives and CN for Condition Negatives.

CHAPTER 3. RESULTS 23

0.0 0.2 0.4 0.6 0.8 1.0
Cut clasification parameter

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

/ F
al
se
 P
os
iti
ve

 R
at
e

TPR
1-FPR
99% true negative rate
99.9% true negative rate

Figure 3.5: TPR and 1-FPR plots

classification parameter for the 1-FPR curve, and near to 1 for the TPR curve. The actual
situation is not far from the ideal case.

A good indicator of the classification performance is the point where both curves meet.
The closer to 1 the better the performance. In our case, the crossing point is about 0.97,
which is a great result. It means that for the corresponding value of the classification
parameter cut, we can correctly predict 97% of true signal and background events.

For a sufficiently low value of the classification parameter threshold (0.64), a large back-
ground suppression can be achieved with a high signal selection efficiency. A 99% background
suppression (FPR=0.01 or 1-FPR=0.99) corresponds to an average signal efficiency equal
to 90.3% (TPR in the range [0.895, 0.911] considering the uncertainty). This is the medium
working point referred above. A tighter background suppression (99.9% or 1-FPR=0.999)
yields an average signal selection efficiency of 36.5% (TPR in the range of [0.348, 0.382] tak-
ing into account the uncertainty). This tight working point is set with a threshold of the
classification parameter of 0.98. Both working points are represented in Fig. 3.5 as vertical
lines crossing the TPR and 1-FPR curves.

When choosing the tight working point, a fair fraction of the signal events (about one
third) is kept while the background is reduced at the per mill level! If a less stringent
reduction of the background level is adequate for the subsequent physics analysis of the data
(at the percent level with the medium working point), we can keep about 90% of the signal.

In addition to the analysis of the performance achieved with the network in the iden-
tification of signal (TPR) and background (FPR) events, it is of interest to calculate the

CHAPTER 3. RESULTS 24

relative proportion of signal and background events expected in real data for the various
working points (defined by cuts in the classification parameter). Usually, the background
is orders of magnitude larger than the signal, so even with small FPR values and large
TPR, the proportion of the signal might still be small to be seen compared to the remaining
background.

The test data set, weighted to fit the real proportions of the various processes in nature,
consists of 73k observations, where only 0.26% of them are signal events. The proportion
of signal events increases as the working point gets tighter but at the price of discarding
true signal events. For the working point defined by TPR= 0.97 (1-FPR = 0.97), the set
of test events classified as signal consists of 7.7% of the total condition signal events. This
represents an increase of 30 in the proportion of signal events with the small penalty of losing
3% of them.

For the medium working point (1-FPR= 0.99, TPR= 0.90 ± 1, considering the TPR
variance) the proportion of signal events increases to 18.9 ± 0.1%. For the tight working
point (1-FPR= 0.999, TPR= 0.365± 0.015), the proportion goes to of 48.6 ±1.1%%, so the
events data selected in this way would contain approximately the same number of signal and
background events.

As seen, the continuous classification parameter offers a number of possibilities to select
the final data sample, that varies in the proportion of signal to background events and in the
number of signal events. Depending on the particular physics analysis of data data, a loose
working point can be chosen (when it is important to keep a large number of signal events)
or a tighter working point when the purity of the sample if signal events is important.

Anyhow, as seen above, the neural network is able to suppress a large fraction of the
background while keeping most of the signal. We emphasize the discrimination power of our
neural network. Furthermore, the estimation of the uncertainty on the performance of the
network allows to calibrate the reliability of the result.

3.3.3 The ROC curve

Another way of presenting the results is through the so-called Receiver Operation Character-
istic (ROC) curve. It is a graphic representation where the TPR values are plotted against
the FPR ones. Fig. 3.6 shows the results applying our model to the test data.

Both plots, 3.6a and 3.6b, correspond to the same ROC curve, with the only difference
being that in Fig. 3.6b the abscissa axis is presented in logarithmic scale so that very small
values of FPR can be better appreciated.

The shaded area in the plots correspond to the TPR variance. The FPR variance is so
small it would not be noticeable in the graphics. The TPR uncertainty is also quite small
and only noticeable in the logarithmic scale plot.

A helpful measure is the area under this curve, auc. This is interpreted as the probab-
ility of the model predicting a higher value for a random signal event than for a random

CHAPTER 3. RESULTS 25

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

(a) ROC curve in linear scale.

10−3 10−2 10−1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

(b) ROC curve with the x axis in logarithmic
scale.

Figure 3.6: ROC curves

background event (here signal events are labeled as 1 and background as 0). An area of 0.5
would mean that our model classifies as well as a random classifier. The higher the auc value
the better our model classifies.

The area under the curve, for the central values, is 0.990. We obtain essentially the same
value if we use the external curves given by the uncertainty band. This very high value tells
us that there is a high probability (close to 1) that our model makes a higher prediction for
a random signal event than for a random background event. This allows us to discriminate
between both of them.

CHAPTER 3. RESULTS 26

3.4 Summary and conclusions

The huge volume of data that particle physics experiments have to deal with motivates the
problem faced in this project. When trying to produce and detect rare events, huge amounts
of observations must be made, most of them of no interest. It has been shown how neural
networks can offer an efficient solution for the processing of vast data volumes in the search
for tiny signals.

In this study, the rare process considered as signal is the production and decay of a
tt quark-pair. Any other type of final state resulting from the collisions of two protons
is considered as background. A dataset of the CMS experiment at CERN, consisting on
simulations of proton-proton collisions is used.

Applying binary classification by means of a neural network, allows us to efficiently sup-
press most of the background maintaining a large proportion of the signal. Results are
presented with uncertainty measures, following the approach in [Gal16]. Expected values
together with their variance are provided, not only point estimations. Therefore, the res-
ults provide reliable information about the network scope. This method to estimate the
performance uncertainty of a neural network applied to particle physics data is innovative.

A continuous classifier (between 0 and 1) is constructed. Background events tend to
score low values of the classification parameter, while signal events concentrate at high val-
ues. Selecting events above certain threshold of the classification parameter allows to select
samples of events with different signal to background proportions. For a 99% background
suppression we obtain a 90 ± 1% signal selection efficiency. For a more severe background
suppression requirement of 99.9%, the signal efficiency achieved by our model is 36.5±1.5%,
still keeping a fair proportion of signal events.

In conclusion, the neural network built is this work is able to very efficiently discriminate
between signal and background events. This allows to apply the model to real data to select
a sample enriched in signal events that can be used to study the physical properties of the
top quark. Our approach additionally provides the estimation of the uncertainty in the
performance of the model. This is key in the measurement of any physical process.

This project opens the possibility of applying machine learning techniques to the classi-
fication of processes of interest in collision data collected by particle physics experiments.

Appendices

27

28

A: Distribution obtention

We want to present the counts of events against their predicted target with uncertainty
measures. We do this by displaying expected bin values and their variance. We suppose that
the prediction of an event follows a normal distribution, the mean of the distribution is the
average prediction previously calculated and the standard deviation the square root of the
prediction variance. We assume, then, ŷi ∼ N(yi,Vari) where i = 1, ..., S, having S events
to be labeled.

We divide the space of prediction, which is [0, 1], into a desired number of bins R.
The fact that the prediction for an event falls into a bin can be viewed as if it followed
a Bernouilli distribution Be(pij), where pij is the probability of an event ei to fall into a
bin bj (delimited by [bj1, bj2]) calculated as pij = P [bj1 ≤ Xi ≤ bj2] given Xi ∼ N(yi,Vari)
i = 1, ..., S, j = 1, ..., R.

The number of events with predicted value in a bin will follow, therefore, a sum of
Bernouilli distributions. We estimate the expected value of each bin and its variance. The
weights of each event wi is taken into account when computing these quantities.

E[bj] =
S∑

i=1

pijwi Var(bj) =
S∑

i=1

pij(1− pij)w
2
i

following the properties E [aX + bY] = aE [X]+bE [Y], where X and Y are random variables
and a and b are constants, and Var(aX + bY) = a2Var(X) + b2Var(Y) if X and Y are
independent from each other.

B: Metrics obtention

Similarly, expected values and variance are calculated for TPR and FPR. The probability
of an event i to be classified as signal, given a cut classification parameter a is calculated
as pi(a) = P [−∞ ≤ Xi ≤ a] given Xi ∼ N(yi,Vari) i = 1, ..., S. If an event is classified
as signal or not is modeled as a Bernouilli distribution Be(pi(a)). As a reminder, the TPR
value for a cut point a is the ratio between the true signal events predicted as such and
all the condition signal events. Therefore, we can model the TPR as a sum of Bernouillis
multiplied by a constant. In an equivalent way the FPR, ratio between true background
events classified as signal and condition background, is obtained. The expected values and
the variance are estimated.

E[TPR(a)] =
1

|Ns|
∑
i∈Ns

pi(a)wi Var(TPR(a)) =
1

|Ns|2
∑
i∈Ns

pi(a)(1− pi(a))w
2
i

E[FPR(a)] =
1

|Nb|
∑
i∈Nb

pi(a)wi Var(FPR(a)) =
1

|Nb|2
∑
i∈Nb

pi(a)(1− pi(a))w
2
i

where Ns is the set of condition signal events and Nb the set of condition background.

Bibliography

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng,
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Soft-
ware available from tensorflow.org.

[Cen] CERN Data Centre, Processing lhc data, https://home.cern/science/
computing/processing-what-record.

[Gal16] Yarin Gal, Uncertainty in Deep Learning, Ph.D. thesis, University of Cambridge,
2016.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning, MIT
Press, Cambridge, MA, USA, 2016, http://www.deeplearningbook.org.

[HvC93] Geoffrey E. Hinton and Drew van Camp, Keeping the neural networks simple by
minimizing the description length of the weights, 5–13.

[JGJS99] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K.
Saul, An introduction to variational methods for graphical models, Mach. Learn.
37 (1999), no. 2, 183–233.

[KB15] Diederik P. Kingma and Jimmy Ba, Adam: A method for stochastic optimization,
CoRR abs/1412.6980 (2015).

[Kul59] Solomon Kullback, Information theory and statistics, Wiley, 1959.

[Mac92] David J. C. MacKay, A practical bayesian framework for backpropagation net-
works., Neural Computation 4 (1992), no. 3, 448–472.

[Mit97] Thomas M. Mitchell, Artificial neural networks, Machine Learning, McGraw-Hill,
Inc., 1997, pp. 81–126.

29

https://home.cern/science/computing/processing-what-record
https://home.cern/science/computing/processing-what-record
http://www.deeplearningbook.org

BIBLIOGRAPHY 30

[NH10] Vinod Nair and Geoffrey E. Hinton, Rectified linear units improve restricted
boltzmann machines, Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning (Madison, WI, USA), ICML’10,
Omnipress, 2010, p. 807–814.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, Learning Rep-
resentations by Back-propagating Errors, Nature 323 (1986), no. 6088, 533–536.

[RM51] H. Robbins and S. Monro, A stochastic approximation method, Annals of Math-
ematical Statistics 22 (1951), 400–407.

[Rub81] Donald B. Rubin, The bayesian bootstrap, Ann. Statist. 9 (1981), no. 1, 130–134.

[SC14] Schmidt A. Sander C., CMS data analysis tutorial, September 2014, http://
ippog.org/resources/2012/cms-hep-tutorial.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov, Dropout: A simple way to prevent neural networks from overfit-
ting, Journal of Machine Learning Research 15 (2014), 1929–1958.

[TLS89] Tishby, Levin, and Solla, Consistent inference of probabilities in layered networks:
predictions and generalizations, 403–409 vol.2.

http://ippog.org/resources/2012/cms-hep-tutorial
http://ippog.org/resources/2012/cms-hep-tutorial

	Introduction
	Mathematical background
	Multilayer perceptron
	Bayesian neural networks
	Bayesian model
	Bayesian Neural Networks

	Dropout technique
	Achieving uncertainity measures

	Dataset
	Results
	Procedure
	Training performance
	Classification performance
	Classification parameter distribution
	True and false positive rates
	The ROC curve

	Summary and conclusions

	Appendices
	A: Distribution obtention
	B: Metrics obtention

