(Institución)
 
 

Docu-menta > Energía > Artículos de Energía >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/2611

Título : Genomic and transcriptomic analysis of Candida intermedia reveals the genetic determinants for its xylose-converting capacity
Autor : Geijer, Cecilia
Faria-Oliveira, Fábio
Moreno, Antonio D.
Stenberg, Simon
Mazurkewich, Scott
Olsson, Lisbeth
Palabras clave : Saccharomyces cerevisiae
Xylose utilization
Complete genome sequence
RNA-Seq
Xylose/aldose reductase
NADH-preferring xylose reductase
Biofuels
Pentose metabolism
Fecha de publicación : 12-mar-2020
Editorial : BioMed Central Ltd
Citación : Geijer, C.; Faria-Oliveira, F.; Moreno, A.D.; Stenberg, S.; Mazurkewich, S.; Olsson, L. Genomic and transcriptomic analysis of Candida intermedia reveals the genetic determinants for its xylose-converting capacity. Biotechnology for Biofuels 2020, 13(1):48. https://doi.org/10.1186/s13068-020-1663-9
Resumen : BACKGROUND: An economically viable production of biofuels and biochemicals from lignocellulose requires microorganisms that can readily convert both the cellulosic and hemicellulosic fractions into product. The yeast Candida intermedia displays a high capacity for uptake and conversion of several lignocellulosic sugars including the abundant pentose D-xylose, an underutilized carbon source since most industrially relevant microorganisms cannot naturally ferment it. Thus, C. intermedia constitutes an important source of knowledge and genetic information that could be transferred to industrial microorganisms such as Saccharomyces cerevisiae to improve their capacity to ferment lignocellulose-derived xylose. RESULTS: To understand the genetic determinants that underlie the metabolic properties of C. intermedia, we sequenced the genomes of both the in-house-isolated strain CBS 141442 and the reference strain PYCC 4715. De novo genome assembly and subsequent analysis revealed C. intermedia to be a haploid species belonging to the CTG clade of ascomycetous yeasts. The two strains have highly similar genome sizes and number of protein-encoding genes, but they differ on the chromosomal level due to numerous translocations of large and small genomic segments. The transcriptional profiles for CBS 141442 grown in medium with either high or low concentrations of glucose and xylose were determined through RNA-sequencing analysis, revealing distinct clusters of co-regulated genes in response to different specific growth rates, carbon sources and osmotic stress. Analysis of the genomic and transcriptomic data also identified multiple xylose reductases, one of which displayed dual NADH/NADPH co-factor specificity that likely plays an important role for co-factor recycling during xylose fermentation. CONCLUSIONS: In the present study, we performed the first genomic and transcriptomic analysis of C. intermedia and identified several novel genes for conversion of xylose. Together the results provide insights into the mechanisms underlying saccharide utilization in C. intermedia and reveal potential target genes to aid in xylose fermentation in S. cerevisiae.
URI : http://documenta.ciemat.es/handle/123456789/2611
ISSN : 1754-6834
Aparece en las colecciones: Artículos de Energía

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Geijer C (2020).pdfPublished paper2.11 MBAdobe PDFVisualizar/Abrir
13068_2020_1663_MOESM1_ESM.pdfSupplementary data148.61 kBAdobe PDFVisualizar/Abrir
13068_2020_1663_MOESM2_ESM.pdfSupplementary data267.63 kBAdobe PDFVisualizar/Abrir
13068_2020_1663_MOESM3_ESM.pdfSupplementary data3488.61 kBAdobe PDFVisualizar/Abrir
13068_2020_1663_MOESM4_ESM.pdfSupplementary data442.7 kBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal