(Institución)
 
 

Docu-menta > Laboratorio Nacional de Fusión > Artículos del Laboratorio Nacional de Fusión >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/5001

Título : Prediction of exhaust emission in transient conditions of a diesel engine fueled with animal fat using Artificial Neural Network and Symbolic Regression
Autor : Dominguez-Saez, Aida
Ratta, Giuseppe
Barrios, Carmen
Palabras clave : Diesel engine
Particle number
Exhaust emission
Artificial Neural Network
Fecha de publicación : abr-2018
Editorial : Elsevier
Citación : Domínguez-Sáez, A., Rattá, G. A., & Barrios, C. C. (2018). Prediction of exhaust emission in transient conditions of a diesel engine fueled with animal fat using Artificial Neural Network and Symbolic Regression. Energy, 149, 675-683.
Citación : Vol 149;
Resumen : The objective of this study is the development and evaluation of two models to predict instantaneous exhaust emissions of CO2, NOx, particle number concentration and geometric mean diameter in accumulation mode (30–560 nm) and in nucleation mode (5.6–30 nm) of a 2.0 euro 4 diesel engine fueled with pure diesel and animal fat in different proportions. To acquire data for training, validation and testing, 4 repetitions of the urban part of the New European Driving Cycle and 5 steady-state conditions (15, 30, 50, 70 and 100 km/h) were reproduced in a dynamic engine test bench. The used prediction models were Artificial Neural Networks and Symbolic Regression. Vehicle speed and acceleration, engine speed and torque, air intake temperature, boost pressure, mass air flow and fuel consumption were used as inputs variables. Artificial Neural Networks provided a R2 for testing dataset equal to 0.91, 0.78, 0.87 and 0.81 for CO2, NOx, number of particles in accumulation mode and geometric mean diameter, respectively. Symbolic regression showed a R2 of 0.91, 0.82, 0.87 and 0.82 for the mentioned pollutants. Particle number concentration in nucleation mode presents low correlation with the considered inputs due to the variability of the formation process of this particle mode.
URI : http://documenta.ciemat.es/handle/123456789/5001
Aparece en las colecciones: Artículos del Laboratorio Nacional de Fusión

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Prediction exhaust.pdf1.25 MBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal