(Institución)
 
 

Docu-menta > Investigación Básica > Artículos de Investigación Básica >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/5460

Título : Nonviral CRISPR/Cas9 mutagenesis for streamlined generation of mouse lung cancer models
Autor : Lara-Sáez, I
Mencía, A
Recuero, E
Li, Y
García, M
Oteo, M
Gallego, MI
Enguita, AB
de Prado-Verdún, D
Sigen, A
Wang, W
García-Escudero, R
Murillas, R
Santos, M
Palabras clave : CRISPR/Cas9 ribonucleoprotein
SCLC
in vivo gene editing
lung cancer models
Fecha de publicación : jul-2024
Editorial : Proc Natl Acad Sci U S A.
Citación : Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2322917121. doi: 10.1073/pnas.2322917121
Resumen : Functional analysis in mouse models is necessary to establish the involvement of a set of genetic variations in tumor development. A modeling platform to facilitate and cost-effectively analyze the role of multiple genes in carcinogenesis would be valuable. Here, we present an innovative strategy for lung mutagenesis using CRISPR/Cas9 ribonucleoproteins delivered via cationic polymers. This approach allows the simultaneous inactivation of multiple genes. We validate the effectiveness of this system by targeting a group of tumor suppressor genes, specifically Rb1, Rbl1, Pten, and Trp53, which were chosen for their potential to cause lung tumors, namely small cell lung carcinoma (SCLC). Tumors with histologic and transcriptomic features of human SCLC emerged after intratracheal administration of CRISPR/polymer nanoparticles. These tumors carried loss-of-function mutations in all four tumor suppressor genes at the targeted positions. These findings were reproduced in two different pure genetic backgrounds. We provide a proof of principle for simplified modeling of lung tumorigenesis to facilitate functional testing of potential cancer-related genes.
URI : http://documenta.ciemat.es/handle/123456789/5460
Aparece en las colecciones: Artículos de Investigación Básica

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Lara_Saez_Mencía_2024.pdf4.04 MBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal