(Institución)
 
 

Docu-menta > Medio Ambiente > Artículos de Medio Ambiente >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/5477

Título : Indoor aerosol size distributions in a gymnasium
Autor : Castro Izquierdo, Amaya
Calvo Gordaliza, Ana Isabel
Alves, Célia
Alonso Blanco, Elisabeth
Coz Diego, Esther
Marques, Liliana
Nunes, Teresa
Fernández Guisuraga, Jose Manuel
Fraile Laiz, Roberto
Palabras clave : Aerosol size distribution
Alveolar fraction
Fine mode
Gymnasium
Magnesia alba
Tracheobronchial fraction
Fecha de publicación : 17-abr-2015
Citación : Castro, A., Calvo, A. I., Alves, C., Alonso-Blanco, E., Coz, E., Marques, L., ... & Fraile, R. (2015). Indoor aerosol size distributions in a gymnasium. Science of the Total Environment, 524, 178-186.
Resumen : In this study, an indoor/outdoor monitoring program was carried out in a gymnasium at the University of Leon, Spain. The main goal was a characterization of aerosol size distributions in a university gymnasium under different conditions and sports activities (with and without magnesia alba) and the study of the mass fraction deposited in each of the parts of the respiratory tract. The aerosol particles were measured in 31 discrete channels (size ranges) using a laser spectrometer probe. Aerosol size distributions were studied under different conditions: i) before sports activities, ii) activities without using magnesia alba, iii) activities using magnesia alba, iv) cleaning procedures, and v) outdoors. The aerosol refractive index and density indoors were estimated from the aerosol composition: 1.577–0.003i and 2.055 g cm−3, respectively. Using the estimated density, the mass concentration was calculated, and the evolution of PM1, PM2.5 and PM10 for different activities was assessed. The quality of the air in the gymnasium was strongly influenced by the use of magnesia alba (MgCO3) and the number of gymnasts who were training. Due to the climbing chalk and the constant process of resuspension, average PM10 concentrations of over 440 μg m−3 were reached. The maximum daily concentrations ranged from 500 to 900 μg m−3. Particle size determines the place in the respiratory tract where the deposition occurs. For this reason, the inhalable, thoracic, tracheobronchial and respirable fractions were assessed for healthy adults and high risk people, according to international standards. The estimations show that, for healthy adults, up to 300 μg m−3 can be retained by the trachea and bronchi, and 130 μg m−3 may reach the alveolar region. The different physical activities and the attendance rates in the sports facility have a significant influence on the concentration and size distributions observed.
URI : https://hdl.handle.net/20.500.14855/5477
ISSN : 0048-9697
Aparece en las colecciones: Artículos de Medio Ambiente

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
2015-Castro_et al_STOTEN.pdf569.62 kBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal