(Institución)
 
 

Docu-menta > Tecnología > Artículos de Tecnología >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/5498

Título : Analysis of the SVD Scaling on Large Sparse Matrices
Autor : Castro-Sánchez, M.
Moríñigo, J.A.
Terragni, F.
Mayo-García, R.
Palabras clave : Clustering algorithms
Partitioning algorithms
Sparse matrices
Singular value decomposition
Fecha de publicación : 2024
Editorial : IEEE Comp. Soc.
Citación : M. De Castro-Sánchez, J. A. Moríñigo, F. Terragni and R. Mayo-García, "Analysis of the SVD Scaling on Large Sparse Matrices," 2024 Winter Simulation Conference (WSC), Orlando, FL, USA, 2024, pp. 2523-2534
Resumen : There has been great interest in the Singular Value Decomposition (SVD) algorithm over the last years because of its wide applicability in multiple fields of science and engineering, both standalone and as part of other computing methods. The advent of the exascale era with massively parallel computers brings incredible possibilities to deal with very large amounts of data, often stored in a matrix. These advances set the focus on developing better scaling parallel algorithms: e.g., an improved SVD to efficiently factorize a matrix. This study assesses the strong scaling of four SVDs of the SLEPc library, plugged into the PETSc framework to extend its capabilities, via a performance analysis on a population of sparse matrices with up to 109 degrees of freedom. Among them, there is a randomized SVD with promising performance at scale, a key aspect in solvers for exascale simulations since communication must be minimized for scalability success.
URI : https://hdl.handle.net/20.500.14855/5498
Aparece en las colecciones: Artículos de Tecnología

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
SVD_WSC24.pdf2.49 MBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal