(Institución)
 
 

Docu-menta > Laboratorio Nacional de Fusión > Artículos del Laboratorio Nacional de Fusión >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/5519

Título : A multidimensional linear model for disruption prediction in JET
Autor : Rattá, Giuseppe A.
Vega, J
Murari, A
Palabras clave : Disruption predictionLinear equationMachine learningJET
Fecha de publicación : 2019
Editorial : ELSEVIER
Citación : Rattá, G. A., Vega, J., Murari, A., & Contributors, J. E. T. (2019). A multidimensional linear model for disruption prediction in JET. Fusion Engineering and Design, 146, 2393-2396.
Resumen : The implementation of Machine Learning (ML) techniques has considerably improved the prediction of disruptions. However, they usually provide outcomes difficult to understand from a physics point of view due to their mathematical formulation. In this work an interpretable linear equation has been derived from an accurate ML disruption predictor. It can be used for real-time forecasting and the off-line analysis of the variables that contribute to the alarm triggering. To create the linear model, in addition to physic quantities, Time Increments (TIs) have been considered. TIs represent the variation of two amplitude values of a signal X at two different times divided by their temporal difference (i.e. ΔX/Δt). To select the best subset of quantities for training purposes among the wide possible combinations of signals and Tis, Genetic Algorithms have been applied. The results, obtained over an independent testing database of 131 unintentional disruptive and 1310 non-disruptive shots, are 99,24% of success rate (94,66% of them with at least 10 ms of warning time) and 3,51% of false alarms.
URI : https://hdl.handle.net/20.500.14855/5519
Aparece en las colecciones: Artículos del Laboratorio Nacional de Fusión

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Multidimensional.pdf587.88 kBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal