|
Docu-menta >
Laboratorio Nacional de Fusión >
Artículos del Laboratorio Nacional de Fusión >
Por favor, use este identificador para citar o enlazar este ítem:
http://documenta.ciemat.es/handle/123456789/5519
|
| Título : | A multidimensional linear model for disruption prediction in JET |
| Autor : | Rattá, Giuseppe A. Vega, J Murari, A |
| Palabras clave : | Disruption predictionLinear equationMachine learningJET |
| Fecha de publicación : | 2019 |
| Editorial : | ELSEVIER |
| Citación : | Rattá, G. A., Vega, J., Murari, A., & Contributors, J. E. T. (2019). A multidimensional linear model for disruption prediction in JET. Fusion Engineering and Design, 146, 2393-2396. |
| Resumen : | The implementation of Machine Learning (ML) techniques has considerably improved the prediction of
disruptions. However, they usually provide outcomes difficult to understand from a physics point of view due to
their mathematical formulation. In this work an interpretable linear equation has been derived from an accurate ML
disruption predictor. It can be used for real-time forecasting and the off-line analysis of the variables that contribute
to the alarm triggering. To create the linear model, in addition to physic quantities, Time Increments (TIs) have
been considered. TIs represent the variation of two amplitude values of a signal X at two different times divided by
their temporal difference (i.e. ΔX/Δt). To select the best subset of quantities for training purposes among the wide
possible combinations of signals and Tis, Genetic Algorithms have been applied. The results, obtained over an
independent testing database of 131 unintentional disruptive and 1310 non-disruptive shots, are 99,24% of success
rate (94,66% of them with at least 10 ms of warning time) and 3,51% of false alarms. |
| URI : | https://hdl.handle.net/20.500.14855/5519 |
| Aparece en las colecciones: | Artículos del Laboratorio Nacional de Fusión
|
Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.
|