|
Docu-menta >
Tecnología >
Artículos de Tecnología >
Por favor, use este identificador para citar o enlazar este ítem:
http://documenta.ciemat.es/handle/123456789/2304
|
Título : | Sitagliptin improved glucose assimilation in detriment of fatty-acid utilization in experimental type-II diabetes: role of GLP-1 isoforms in Glut4 receptor trafficking. |
Autor : | Ramirez, E. Picatoste, B. González-Bris, A. Oteo, M. Cruz, F. Caro-Vadillo, A. Egido, J. Tuñon, J Morcillo, M.A. |
Palabras clave : | Diabetic cardiomyopathy GLP-1 GLP-1(9-36) Glut4 PET Sitagliptin |
Fecha de publicación : | 1-feb-2024 |
Resumen : | Background: The distribution of glucose and fatty-acid transporters in the heart is crucial for energy consecution and myocardial function. In this sense, the glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, improves glucose homeostasis but it could also trigger direct cardioprotective actions, including regulation of energy substrate utilization.
Methods: Type-II diabetic GK (Goto-Kakizaki), sitagliptin-treated GK (10 mg/kg/day) and wistar rats (n = 10, each) underwent echocardiographic evaluation, and positron emission tomography scanning for [18F]-2-fluoro-2-deoxy-D-glucose (18FDG). Hearts and plasma were isolated for biochemical approaches. Cultured cardiomyocytes were examined for receptor distribution after incretin stimulation in high fatty acid or high glucose media.
Results: Untreated GK rats exhibited hyperglycemia, hyperlipidemia, insulin resistance, and plasma GLP-1 reduction. Moreover, GK myocardium decreased 18FDG assimilation and diastolic dysfunction. However, sitagliptin improved hyperglycemia, insulin resistance, and GLP-1 levels, and additionally, enhanced 18FDG uptake and diastolic function. Sitagliptin also stimulated the sarcolemmal translocation of the glucose transporter-4 (Glut4), in detriment of the fatty acyl translocase (FAT)/CD36. In fact, Glut4 mRNA expression and sarcolemmal translocation were also increased after GLP-1 stimulation in high-fatty acid incubated cardiomyocytes. PI3K/Akt and AMPKα were involved in this response. Intriguingly, the GLP-1 degradation metabolite, GLP-1(9-36), showed similar effects.
Conclusions: Besides of its anti-hyperglycemic effect, sitagliptin-enhanced GLP-1 may ameliorate diastolic dysfunction in type-II diabetes by shifting fatty acid to glucose utilization in the cardiomyocyte, and thus, improving cardiac efficiency and reducing lipolysis. |
URI : | http://documenta.ciemat.es/handle/123456789/2304 |
ISSN : | 1475-2840 |
Aparece en las colecciones: | Artículos de Tecnología
|
Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.
|