Docu-menta >
Laboratorio Nacional de Fusión >
Artículos del Laboratorio Nacional de Fusión >
Por favor, use este identificador para citar o enlazar este ítem:
http://documenta.ciemat.es/handle/123456789/2334
|
Título : | Assessment of linear disruption predictors using JT-60U data |
Autor : | Vega, Jesús Hernández, Francisco Dormido-Canto, Sebastián Isayama, A Joffrin, Emmanuel Matsunaga, Go Suzuki, T |
Palabras clave : | disruption prediction signal increments nearest centroid JT-60SA ITER nuclear fusion |
Fecha de publicación : | 2019 |
Editorial : | Elsevier |
Citación : | Fusion Engineering and Design 146 (2019) 1291-1294 |
Citación : | Fusion Engineering and Design;146 (2019) |
Resumen : | Disruptions are dangerous events in tokamaks that require mitigation methods to alleviate its detrimental effects. A prerequisite to trigger any mitigation action is the existence of a reliable disruption predictor. This article assesses a predictor that relates in a linear way consecutive samples of a single quantity (in particular, the magnetic perturbation time derivative signal has been used). With this kind of predictor, the recognition of disruptions does not depend on how large the signal amplitude is but on how large the signal increments are: small increments mean smooth plasma evolution whereas abrupt increments reflect a non-smooth evolution and potential risk of disruption. Results are presented with data from the JT-60U tokamak and high-beta discharges. Two training methods have been tested: a classical approach in which the more data for training the better and an adaptive method that starts from scratch. In both cases the success rate is about 95%. It should be noted that predictors based on signal increments and their adaptive versions can be of big interest for next devices such as JT-60SA or ITER. |
URI : | http://documenta.ciemat.es/handle/123456789/2334 |
ISSN : | 0920-3796 |
Aparece en las colecciones: | Artículos del Laboratorio Nacional de Fusión
|
Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.
|