|
Docu-menta >
Energía >
Artículos de Energía >
Por favor, use este identificador para citar o enlazar este ítem:
http://documenta.ciemat.es/handle/123456789/3008
|
Título : | Raytracing Modelling of Infrared Light Management Using Molybdenum Disulfide (MoS2) as a Back-Reflector Layer in a Silicon Heterojunction Solar Cell (SHJ) |
Autor : | Elsmani, Mohammed Islam Noshin, Fatima Torres, I. Fernández, S. Jallorina, Michael Paul A. Chelvanathan, Puvaneswaran Rujhan Mohd Rais, Ahmad Norizam Md Daud, Mohd Nurain Syed Nasir, Sharifah Sepeai, Suhaila Ahmad Ludin, Norasikin Asri Mat Teridi, Mohd Sopian, Kamaruzzaman Adib Ibrahim, Mohd |
Palabras clave : | computer simulations dimensionality reduction light trapping photovoltaic cells raytracing thin films |
Fecha de publicación : | 19-jul-2022 |
Editorial : | Antonio Polimeni and Alexander N. Obraztsov |
Citación : | Elsmani, M.I.; Fatima, N.; Torres, I.; Fernández, S.; Jallorina, M.P.A.; Chelvanathan, P.; Rais, A.R.M.; Daud, M.N.M.; Nasir, S.N.S.; Sepeai, S.; et al. Raytracing Modelling of Infrared Light Management Using Molybdenum Disulfide (MoS2) as a Back-Reflector Layer in a Silicon Heterojunction Solar Cell (SHJ). Materials 2022, 15, 5024. https:// doi.org/10.3390/ma15145024 |
Citación : | volume;15 |
Resumen : | The silicon heterojunction solar cell (SHJ) is considered the dominant state-of-the-art silicon
solar cell technology due to its excellent passivation quality and high efficiency. However, SHJ’s light
management performance is limited by its narrow optical absorption in long-wave near-infrared (NIR)
due to the front, and back tin-doped indium oxide (ITO) layer’s free carrier absorption and reflection
losses. Despite the light-trapping efficiency (LTE) schemes adopted by SHJ in terms of back surface
texturing, the previous investigations highlighted the ITO layer as a reason for an essential longwavelength
light loss mechanism in SHJ solar cells. In this study, we propose the use of Molybdenum
disulfide (MoS2) as a way of improving back-reflection in SHJ. The text presents simulations of
the optical response in the backside of the SHJ applying the Monte-Carlo raytracing method with
a web-based Sunsolve high-precision raytracing tool. The solar cells’ electrical parameters were also
resolved using the standard electrical equivalent circuit model provided by Sunsolve. The proposed
structure geometry slightly improved the SHJ cell optical current density by ~0.37% (rel.), and hence
efficiency (h) by about 0.4% (rel.). The SHJ cell efficiency improved by 21.68% after applying thinner
back ITO of about 30 nm overlayed on ~1 nm MoS2. The efficiency improvement following the
application of MoS2 is tentatively attributed to the increased NIR absorption in the silicon bulk due
to the light constructive interface with the backside components, namely silver (Ag) and ITO. Study
outcomes showed that improved SHJ efficiency could be further optimized by addressing front cell
components, mainly front ITO and MoS2 contact engineering. |
URI : | http://documenta.ciemat.es/handle/123456789/3008 |
ISSN : | 1996-1944 |
Aparece en las colecciones: | Artículos de Energía
|
Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.
|