|
Docu-menta >
Energía >
Artículos de Energía >
Por favor, use este identificador para citar o enlazar este ítem:
http://documenta.ciemat.es/handle/123456789/3016
|
Título : | Effects of Deposition Temperature and Working Pressure on the Thermal and Nanomechanical Performances of Stoichiometric
Cu3N: An Adaptable Material for Photovoltaic Applications |
Autor : | Rodriguez-Tapiador, M.I. Jiménez-Suárez, A. Lama, A. Gordillo, N. Asensi, J.M. Del Rosario, G. Merino, J. Bertomeu, J. Agarwal, A. Fernández, S. |
Palabras clave : | Cu3N thin films reactive magnetron sputtering nanoindentation optical parameters |
Fecha de publicación : | 15-nov-2023 |
Editorial : | Elisa Sani and Marco Cannas |
Citación : | Rodríguez-Tapiador, M.I.; Jiménez-Suárez, A.; Lama, A.; Gordillo, N.; Asensi, J.M.; del Rosario, G.; Merino, J.; Bertomeu, J.; Agarwal, A.; Fernández, S. Effects of Deposition Temperature and Working Pressure on the Thermal and Nanomechanical Performances of Stoichiometric Cu3N: An Adaptable Material for Photovoltaic Applications. Nanomaterials 2023, 13, 2950. https://doi.org/10.3390/ nano13222950 |
Citación : | volume;13 |
Resumen : | The pursuit of efficient, profitable, and ecofriendly materials has defined solar cell research
from its inception to today. Some materials, such as copper nitride (Cu3N), show great promise for
promoting sustainable solar technologies. This study employed reactive radio-frequency magnetron
sputtering using a pure nitrogen environment to fabricate quality Cu3N thin films to evaluate how
both temperature and gas working pressure affect their solar absorption capabilities. Several characterization
techniques, including X-ray diffraction (XRD), Rutherford backscattering spectrometry
(RBS), Raman spectroscopy, scanning electron microscopy (SEM), nanoindentation, and photothermal
deflection spectroscopy (PDS), were used to determine the main properties of the thin films.
The results indicated that, at room temperature, it is possible to obtain a material that is close to
stoichiometric Cu3N material (Cu/N ratio 3) with (100) preferred orientation, which was lost as
the substrate temperature increases, demonstrating a clear influence of this parameter on the film
structure attributed to nitrogen re-emission at higher temperatures. Raman microscopy confirmed
the formation of Cu-N bonds within the 628–637 cm1 range. In addition, the temperature and the
working pressure significantly also influence the film hardness and the grain size, affecting the elastic
modulus. Finally, the optical properties revealed suitable properties at lower temperatures, including
bandgap values, refractive index, and Urbach energy. These findings underscore the potential of
Cu3N thin films in solar energy due to their advantageous properties and resilience against defects.
This research paves the way for future advancements in efficient and sustainable solar technologies |
URI : | http://documenta.ciemat.es/handle/123456789/3016 |
ISSN : | 2079-4991 |
Aparece en las colecciones: | Artículos de Energía
|
Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.
|