|
Docu-menta >
Energía >
Artículos de Energía >
Por favor, use este identificador para citar o enlazar este ítem:
http://documenta.ciemat.es/handle/123456789/4003
|
Título : | Intercomparison of opto-thermal spectral measurements for concentrating solar thermal receiver materials from room temperature up to 800 °C |
Autor : | Caron, Simon Farchado, Meryem San Vicente, Gema Morales, Ángel Ballestrin, Jesús Carvalho, Maria Joao Pascoa, Soraia le Baron, Estelle Disdier, Angela Guillot, Emmanuel Escape, Christophe Sans, Jean-Louis Binyamin, Yaniv Baidossi, Mubeen Sutter, Florian Röger, Marc Manzano-Agugliaro, Francisco |
Palabras clave : | Concentrated solar power Absorber coating Solar absorptance Thermal emittance |
Fecha de publicación : | mar-2024 |
Editorial : | Solar Energy Materials & Solar Cells |
Citación : | Simon Caron, Meryem Farchado, Gema San Vicente, Angel Morales, Jesus Ballestrín, Maria Joao Carvalho, Soraia Pascoa, Estelle le Baron, Angela Disdier, Emmanuel Guillot, Christophe Escape, Jean-Louis Sans, Yaniv Binyamin, Mubeen Baidossi, Florian Sutter, Marc Röger, Francisco Manzano-Agugliaro, Intercomparison of opto-thermal spectral measurements for concentrating solar thermal receiver materials from room temperature up to 800 °C, Solar Energy Materials and Solar Cells, Volume 266, 2024, 112677, ISSN 0927-0248, |
Resumen : | An intercomparison of opto-thermal spectral measurements has been performed for some relevant receiver materials in concentrating solar thermal applications, from room temperature up to 800°C. Five European laboratories performed spectral measurements at room temperature, while two laboratories performed infrared spectral measurements at operating temperature up to 800 °C. Relevant materials include Haynes 230 (oxidized, Pyromark 2500 and industrial black coating) and silicon carbide. Two key figures of merit were analyzed: i) solar absorptance αsol at room temperature, over the spectral range [0.3 – 2.5] μm, ii) thermal emittance εth(T), over the common spectral range [2-14] μm, derived from spectral measurements performed from room temperature up to 800 °C.
Oxidized H230 reached an αsol value of 90.9±1.0%. Pyromark 2500 reached an αsol value of 96.3±0.5%, while the industrial black coating achieved an αsol value of 97.0±0.4%. Silicon carbide reached an αsol value of 93.5±1.1%. Low standard deviations in αsol indicate reproducible measurements at room temperature.
For oxidized H230, the εth,calc(T) value varied from 55% at room temperature up to 81% at 800 °C. For Pyromark 2500 and the industrial black coating, εth,calc(T) fluctuated between 90% and 95%, with a weak temperature dependence. For silicon carbide, εth,calc(T) varied from 70% at room temperature up to 86% at 800 °C. The typical standard deviation among participating laboratories is about 3%. εth,meas(T) values derived from spectral measurements at operating temperature were consistent within a few percentage points in comparison to εth,calc(T) values derived from spectral measurements at room temperature. |
URI : | https://doi.org/10.1016/j.solmat.2023.112677 http://documenta.ciemat.es/handle/123456789/4003 |
Aparece en las colecciones: | Artículos de Energía
|
Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.
|