Docu-menta >
Laboratorio Nacional de Fusión >
Artículos del Laboratorio Nacional de Fusión >
Por favor, use este identificador para citar o enlazar este ítem:
http://documenta.ciemat.es/handle/123456789/4441
|
Título : | Automated estimation of L/H transition times at JET by combining Bayesian statistics and support vector machines |
Autor : | Vega, J. Murari, A. Vagliasindi, G. Rattá, G.A. JET-EFDA Contributors |
Palabras clave : | confinement TRansitions JET SVM Bayesian |
Fecha de publicación : | jul-2009 |
Editorial : | IOP Science |
Citación : | J. Vega et al 2009 Nucl. Fusion 49 085023 |
Resumen : | This paper describes a pattern recognition method for off-line estimation of both L/H and H/L transition times in JET. The technique is based on a combined classifier to identify the confinement regime (L or H) at any time instant during a discharge. The classifier is a combination of two different classification systems: a Bayesian classifier whose likelihood is computed by means of a non-parametric statistical classifier (Parzen window) and a support vector machine classifier. They are combined through a fuzzy aggregation operator, in particular the Einstein sum. The success rate achieved exceeds 99% for the L to H transition and 96% for the H to L transition. The estimation of transition times is accomplished by following the temporal evolution of the confinement regimes. |
URI : | http://documenta.ciemat.es/handle/123456789/4441 |
ISSN : | 0029-5515 |
Aparece en las colecciones: | Artículos del Laboratorio Nacional de Fusión
|
Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.
|