(Institución)
 
 

Docu-menta > Fisión Nuclear > Artículos de Fisión Nuclear >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/4472

Título : Prediction of Long-Term Geochemical Change in Bentonite Based on the Interpretative THMC Model of the FEBEX In Situ Test
Autor : Zheng, Liange
Fernández, Ana María
Palabras clave : High-level radioactive waste
Repository
bentonite
Model
THMC
Field Test
geochemical
long-term
prediction
Fecha de publicación : 5-dic-2023
Citación : Zheng, L.; Fernández, A.M. Prediction of Long-Term Geochemical Change in Bentonite Based on the Interpretative THMC Model of the FEBEX In Situ Test. Minerals 2023, 13, 1522. https://doi.org/10.3390/ min13121522
Citación : Minerals;13
Resumen : Since nuclear energy is crucial in the decarbonization of the energy supply, one hurdle to remove is the handling of high-level radioactive waste (HLW). Disposal of HLW in a deep geological repository has long been deemed a viable permanent option. In the design of a deep geological repository, compacted bentonite is the most commonly proposed buffer material. Predicting the longterm chemical evolution in bentonite, which is important for the safety assessment of a repository, has been challenging because of the complex coupled processes. Models for large-scale tests and predictions based on such models have been some of the best practices for such purposes. An 18-yearlong in situ test with two dismantling events provided a unique set of chemical data that allowed for studying chemical changes in bentonite. In this paper, we first developed coupled thermal, hydrological, mechanical, and chemical (THMC) models to interpret the geochemical data collected in the in situ test and then extended the THMC model to 200 years to make long-term prediction of the geochemical evolution of bentonite. The interpretive coupled THMC model shows that the geochemical profiles were strongly affected by THM processes such as evaporation/condensation, porosity change caused by swelling, permeability change, and the shape of concentration profiles for major cations were largely controlled by transport processes, but concentration levels were regulated by chemical reactions, and the profiles of some species such as pH, bicarbonate, and sulfate were dominated by these reactions. The long-term THMC model showed that heating prolongs the time that bentonite becomes fully saturated in the area close to the heater/canister; however, once the bentonite becomes fully saturated, high concentrations of ions in bentonite near the heater, which was observed in the field test, will disappear; illitization continues for 50 years but will not proceed further.
URI : http://documenta.ciemat.es/handle/123456789/4472
ISSN : 2075-163X
Aparece en las colecciones: Artículos de Fisión Nuclear

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
2023_Zheng_Fernandez_Minerals.pdf7.23 MBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal