(Institución)
 
 

Docu-menta > Laboratorio Nacional de Fusión > Artículos del Laboratorio Nacional de Fusión >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/4552

Título : Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture
Autor : Rattá, G.A.
Vega, J.
Murari, A.
Dormido-Canto, S.
Moreno, R.
Palabras clave : Optimization
Genetic algorithms
Machine learning
nuclear fusion
Fecha de publicación : nov-2016
Editorial : Elsevier
Citación : Rattá, G. A., et al. "Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture." Fusion engineering and design 112 (2016): 1014-1018.
Resumen : Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.
URI : http://documenta.ciemat.es/handle/123456789/4552
ISSN : 0920-3796
Aparece en las colecciones: Artículos del Laboratorio Nacional de Fusión

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Global.pdf378.59 kBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal