Docu-menta >
Laboratorio Nacional de Fusión >
Artículos del Laboratorio Nacional de Fusión >
Por favor, use este identificador para citar o enlazar este ítem:
http://documenta.ciemat.es/handle/123456789/4601
|
Título : | Automatic recognition of plasma relevant events: Implications for ITER |
Autor : | Vega, Jesús Castro, Rodrigo Dormido-Canto, Sebastián Rattá, Guiuseppe Ruíz, Mariano |
Palabras clave : | Automatic recognition Massive databases ITER Nuclear fusion Big data |
Fecha de publicación : | 8-may-2020 |
Editorial : | ELSEVIER |
Citación : | J. Vega, R. Castro, S. Dormido-Canto, G.A. Rattá, M. Ruiz, "Automatic recognition of plasma relevant events: Implications for ITER", Fusion Engineering and Design, Volume 156, 2020, 111638 |
Resumen : | This work makes a proposal about the use of big data techniques for the automatic recognition and classification
of plasma relevant events in huge databases of nuclear fusion devices. A relevant event can be any kind of
anomaly (or perturbation) in the plasma evolution. This is revealed in the temporal evolution signals as (typically) abrupt variations (for instance in amplitude, noise, or sudden presence/suppression of patterns with
periodical structure). A general algorithm based on five steps is presented here for the automatic location and
unsupervised classification of plasma events: dataset selection, location of anomalies in individual signals, definition of multi-signal patterns, unsupervised clustering of multi-signal patterns and creation of supervised
classifiers. It is important to note that the algorithm implementation is for off-line analysis but supervised
classifiers could be implemented under real-time conditions. |
URI : | https://doi.org/10.1016/j.fusengdes.2020.111638 http://documenta.ciemat.es/handle/123456789/4601 |
ISSN : | 0920-3796 |
Aparece en las colecciones: | Artículos del Laboratorio Nacional de Fusión
|
Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.
|