(Institución)
 
 

Docu-menta > Laboratorio Nacional de Fusión > Artículos del Laboratorio Nacional de Fusión >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/4601

Título : Automatic recognition of plasma relevant events: Implications for ITER
Autor : Vega, Jesús
Castro, Rodrigo
Dormido-Canto, Sebastián
Rattá, Guiuseppe
Ruíz, Mariano
Palabras clave : Automatic recognition
Massive databases
ITER
Nuclear fusion
Big data
Fecha de publicación : 8-may-2020
Editorial : ELSEVIER
Citación : J. Vega, R. Castro, S. Dormido-Canto, G.A. Rattá, M. Ruiz, "Automatic recognition of plasma relevant events: Implications for ITER", Fusion Engineering and Design, Volume 156, 2020, 111638
Resumen : This work makes a proposal about the use of big data techniques for the automatic recognition and classification of plasma relevant events in huge databases of nuclear fusion devices. A relevant event can be any kind of anomaly (or perturbation) in the plasma evolution. This is revealed in the temporal evolution signals as (typically) abrupt variations (for instance in amplitude, noise, or sudden presence/suppression of patterns with periodical structure). A general algorithm based on five steps is presented here for the automatic location and unsupervised classification of plasma events: dataset selection, location of anomalies in individual signals, definition of multi-signal patterns, unsupervised clustering of multi-signal patterns and creation of supervised classifiers. It is important to note that the algorithm implementation is for off-line analysis but supervised classifiers could be implemented under real-time conditions.
URI : https://doi.org/10.1016/j.fusengdes.2020.111638
http://documenta.ciemat.es/handle/123456789/4601
ISSN : 0920-3796
Aparece en las colecciones: Artículos del Laboratorio Nacional de Fusión

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Automatic recognition plasma events.pdf1.54 MBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal