(Institución)
 
 

Docu-menta > Investigación Básica > Tesis y trabajos académicos de Investigación Básica >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/5168

Título : Deep Active Learning applied to gravitational waves
Autor : Stammer Goldaracena, Johanna
Cárdenas Montes, Miguel
Delgado Méndez, Carlos José
Palabras clave : Gravitational Waves
deep learning
Deep Active Learning
Fecha de publicación : 22-sep-2025
Resumen : The detection of gravitational waves (GW) has opened a new window to progress in our understanding of astrophysical events and objects. The instruments used for direct detection (interferometers) require high sensitivity due to the tiny signals these GWs generate. In addition, proper characterisation of the detector is crucial for identifying noise sources and enhancing the performance. This thesis explores the implementation of Deep Active Learning (DAL) to identify and characterise short duration transient noise in the GW signal stream. We employ a convolutional neural network (CNN) combined with the DBSCAN clustering algorithm to classify glitches detected by interferometers. Moreover, an Attention Layer is implemented to highlight the relevant areas of the images for the final classification. Our approach recognises patterns similar to previously identified signals and detects anomalous ones that could correspond to previously unseen phenomena.
URI : http://documenta.ciemat.es/handle/123456789/5168
Aparece en las colecciones: Tesis y trabajos académicos de Investigación Básica

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
TFM_Johanna_Stammer_Goldaracena.pdf2.78 MBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal