(Institución)
 
 

Docu-menta > Laboratorio Nacional de Fusión > Artículos del Laboratorio Nacional de Fusión >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/2328

Título : Adaptive predictors based on probabilistic SVM for real time disruption mitigation on JET
Autor : Murari, Andrea
Lungaroni, Michele
Peluso, Emmanuele
Gaudio, Pasqualino
Vega, Jesús
Dormido-Canto, Sebastián
Baruzzo, Matteo
Gelfusa, Michela
Palabras clave : disruptions
probabilistic SVM
machine learning predictors
decision support systems
Fecha de publicación : 2018
Editorial : IOP Publishing. International Atomic Energy Agency
Citación : Nucl. Fusion 58 (2018) 056002 (16pp)
Citación : Nuclear Fusion;58 (2018) 056002
Resumen : Detecting disruptions with sufficient anticipation time is essential to undertake any form of remedial strategy, mitigation or avoidance. Traditional predictors based on machine learning techniques can be very performing, if properly optimised, but do not provide a natural estimate of the quality of their outputs and they typically age very quickly. In this paper a new set of tools, based on probabilistic extensions of support vector machines (SVM), are introduced and applied for the first time to JET data. The probabilistic output constitutes a natural qualification of the prediction quality and provides additional flexibility. An adaptive training strategy ‘from scratch’ has also been devised, which allows preserving the performance even when the experimental conditions change significantly. Large JET databases of disruptions, covering entire campaigns and thousands of discharges, have been analysed, both for the case of the graphite and the ITER Like Wall. Performance significantly better than any previous predictor using adaptive training has been achieved, satisfying even the requirements of the next generation of devices. The adaptive approach to the training has also provided unique information about the evolution of the operational space. The fact that the developed tools give the probability of disruption improves the interpretability of the results, provides an estimate of the predictor quality and gives new insights into the physics. Moreover, the probabilistic treatment permits to insert more easily these classifiers into general decision support and control systems.
URI : http://documenta.ciemat.es/handle/123456789/2328
ISSN : 0029-5515
Aparece en las colecciones: Artículos del Laboratorio Nacional de Fusión

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
Aceptado_NF_2018.pdf1.95 MBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal