(Institución)
 
 

Docu-menta > Investigación Básica > Artículos de Investigación Básica >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/2390

Título : Machine learning microfluidic based platform: Integration of Lab-on-Chip devices and data analysis algorithms for red blood cell plasticity evaluation in Pyruvate Kinase Disease monitoring.
Autor : Mencattini, A
Rizzuto, V
Antonelli, G
Di Giuseppe, D
D'Orazio, M
Filippi, J
Comes, MC
Casti, P
Vives-Corrons, JL
Garcia-Bravo, M
Segovia, JC
Mañu-Pereira, MM
López-Martínez, MJ
Samitier, J
Martinelli, E
Palabras clave : Machine learning microfluidics
Deep transfer learning
Video analysis
Blood disease
Fecha de publicación : ene-2023
Editorial : Sensors and Actuators: A. Physical
Citación : A. Mencattini, V. Rizzuto, G. Antonelli, D. Di Giuseppe, M. D’Orazio, J. Filippi, M.C. Comes, P. Casti, J.L. Vives Corrons, M. Garcia-Bravo, J.C. Segovia, Maria del Mar Mañú-Pereira, M.J. Lopez-Martinez, J. Samitier, E. Martinelli, Machine learning microfluidic based platform: Integration of Lab-on-Chip devices and data analysis algorithms for red blood cell plasticity evaluation in Pyruvate Kinase Disease monitoring, Sensors and Actuators A: Physical, Volume 351, 2023, 114187, ISSN 0924-4247, https://doi.org/10.1016/j.sna.2023.114187. (https://www.sciencedirect.com/science/article/pii/S0924424723000365) Abstract: Microfluidics represents a very promising technological solution for conducting massive biological experiments. However, the difficulty of managing the amount of information available often precludes the wide potential offered. Using machine learning, we aim to accelerate microfluidics uptake and lead to quantitative and reliable findings. In this work, we propose complementing microfluidics with machine learning (MLM) approaches to enhance the diagnostic capability of lab-on-chip devices. The introduction of data analysis methodologies within the deep learning framework corroborates the possibility of encoding cell morphology beyond the standard cell appearance. The proposed MLM platform is used in a diagnostic test for blood diseases in murine RBC samples in a dedicated microfluidics device in flow. The lack of plasticity of RBCs in Pyruvate Kinase Disease (PKD) is measured massively by recognizing the shape deformation in RBCs walking in a forest of pillars within the chip. Very high accuracy results, far over 85 %, in recognizing PKD from control RBCs either in simulated and in real experiments demonstrate the effectiveness of the platform. Keywords: Machine learning microfluidics; Deep transfer learning; Video analysis; Blood disease
Resumen : Microfluidics represents a very promising technological solution for conducting massive biological experiments. However, the difficulty of managing the amount of information available often precludes the wide potential offered. Using machine learning, we aim to accelerate microfluidics uptake and lead to quantitative and reliable findings. In this work, we propose complementing microfluidics with machine learning (MLM) approaches to enhance the diagnostic capability of lab-on-chip devices. The introduction of data analysis methodologies within the deep learning framework corroborates the possibility of encoding cell morphology beyond the standard cell appearance. The proposed MLM platform is used in a diagnostic test for blood diseases in murine RBC samples in a dedicated microfluidics device in flow. The lack of plasticity of RBCs in Pyruvate Kinase Disease (PKD) is measured massively by recognizing the shape deformation in RBCs walking in a forest of pillars within the chip. Very high accuracy results, far over 85 %, in recognizing PKD from control RBCs either in simulated and in real experiments demonstrate the effectiveness of the platform.
URI : http://documenta.ciemat.es/handle/123456789/2390
ISSN : 0924-4247
Aparece en las colecciones: Artículos de Investigación Básica

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
26. Mencattini-SENSORS AND ACTUAATORS A PHYSICAL.pdf3.21 MBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal