Docu-menta >
Energía >
Artículos de Energía >
Por favor, use este identificador para citar o enlazar este ítem:
http://documenta.ciemat.es/handle/123456789/3482
|
Título : | Premixed flames in narrow heated channels of circular cross-section: Steady-state solutions, their linear stability analysis and the multiplicity of stable dynamic modes, |
Autor : | Vadim N., Kurdyumov Daniel, Fernández-Galisteo Carmen, JIménez |
Palabras clave : | Flame instabilities Multiplicity of solutions Micro combustion Narrow-channel approximation |
Fecha de publicación : | 2024 |
Editorial : | Elsevier |
Citación : | Combustion and Flame 265, 113479 (2024). |
Resumen : | Premixed flames in narrow heated circular channels subjected to a Poiseuille flow are investigated within the constant density model for various Lewis numbers using irreversible one-step Arrhenius kinetics. A global stability analysis of steady-state axisymmetric solutions is carried out, together with time-dependent direct numerical simulations. The analysis reveals the criteria for the appearance of oscillatory and three-dimensional cellular flame structures. The problem is also studied separately within the framework of the narrow-channel approximation.
Among the results obtained, the following can be singled out as the main ones. First, the multiplicity of stable dynamic modes, oscillatory and steady-state, taking place for the same set of parameters for flames with 𝐿𝑒 < 1 is demonstrated. The actual occurrence of one mode or another depends on the initial conditions. Second, the appearance of chaotic regimes is shown for flames with 𝐿𝑒 > 1. The chaotic dynamics occurs in a narrow range of values of the flow rate, with Feigenbaum period-doubling cascades taking place both before and after this interval. The results of this study could be useful in the development and use of small-scale combustion devices. |
URI : | http://documenta.ciemat.es/handle/123456789/3482 |
ISSN : | 0010-2180 |
Aparece en las colecciones: | Artículos de Energía
|
Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.
|