(Institución)
 
 

Docu-menta > Investigación Básica > Tesis y trabajos académicos de Investigación Básica >

Por favor, use este identificador para citar o enlazar este ítem: http://documenta.ciemat.es/handle/123456789/4762

Título : Architectural Optimization of Dynamic Inception Modules in Convolutional Neural Networks using the Coral Reef Optimization Algorithm
Autor : Pineda Peña, David
Cárdenas Montes, Miguel
Gutiérrez Naranjo, Miguel Angel
Palabras clave : Algoritmo Evolutivo
Redes Neuronales
CRO
Neural Networks
Fecha de publicación : 12-feb-2025
Resumen : The rapid advancement of Deep Learning (DL) has led to increasingly complex neu- ral network architectures in Artificial Intelligence (AI), often increasing computational requirements and environmental impact. This master’s thesis presents a novel methodology for optimizing the architecture of Inception modules within Convolutional Neural Networks (CNNs) that process data at multiple scales using the Coral Reef Optimization (CRO) algorithm, a bio-inspired evolutionary approach. Aligning with Green AI principles that emphasize efficiency and sustainability, we integrate a dynamic Inception module capable of adjusting branches, depths, and filter sizes with the CRO algorithm to effectively explore and exploit the architectural search space. To promote smaller, resource-efficient architectures, we introduce a custom evaluation metric that balances accuracy and model complexity by penalizing excessive parameters. Experimental results on the MNIST dataset demonstrate that the optimized models achieve competitive performance, reducing the number of parameters by up to 40% while maintaining accuracy comparable to standard models. This work contributes to the development of sustainable AI models and provides a foundation for future research in efficient neural architecture optimization.
URI : http://documenta.ciemat.es/handle/123456789/4762
Aparece en las colecciones: Tesis y trabajos académicos de Investigación Básica

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
TFM_David_Pineda_Peña.pdf2.45 MBAdobe PDFVisualizar/Abrir
View Statistics

Los ítems de Docu-menta están protegidos por una Licencia Creative Commons, con derechos reservados.

 

Información y consultas: documenta@ciemat.es | Documento legal